1
|
|
|
""" |
2
|
|
|
The central module creating heat demand time series for the eTraGo tool |
3
|
|
|
""" |
4
|
|
|
from egon.data import config, db |
5
|
|
|
from egon.data.db import next_etrago_id |
6
|
|
|
from egon.data.datasets import Dataset |
7
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
8
|
|
|
|
9
|
|
|
import pandas as pd |
10
|
|
|
import numpy as np |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def hts_to_etrago(scenario): |
14
|
|
|
sources = config.datasets()["etrago_heat"]["sources"] |
15
|
|
|
targets = config.datasets()["etrago_heat"]["targets"] |
16
|
|
|
carriers = ["central_heat", "rural_heat", "rural_gas_boiler"] |
17
|
|
|
|
18
|
|
|
if "status" in scenario: |
19
|
|
|
carriers = ["central_heat", "rural_heat"] |
20
|
|
|
|
21
|
|
|
for carrier in carriers: |
22
|
|
|
if carrier == "central_heat": |
23
|
|
|
# Map heat buses to district heating id and area_id |
24
|
|
|
# interlinking bus_id and area_id |
25
|
|
|
bus_area = db.select_dataframe( |
26
|
|
|
f""" |
27
|
|
|
SELECT bus_id, area_id, id FROM |
28
|
|
|
{targets['heat_buses']['schema']}. |
29
|
|
|
{targets['heat_buses']['table']} |
30
|
|
|
JOIN {sources['district_heating_areas']['schema']}. |
31
|
|
|
{sources['district_heating_areas']['table']} |
32
|
|
|
ON ST_Transform(ST_Centroid(geom_polygon), 4326) = geom |
33
|
|
|
WHERE carrier = '{carrier}' |
34
|
|
|
AND scenario='{scenario}' |
35
|
|
|
AND scn_name = '{scenario}' |
36
|
|
|
""", |
37
|
|
|
index_col="id", |
38
|
|
|
) |
39
|
|
|
|
40
|
|
|
# district heating time series time series |
41
|
|
|
disct_time_series = db.select_dataframe( |
42
|
|
|
f""" |
43
|
|
|
SELECT * FROM |
44
|
|
|
demand.egon_timeseries_district_heating |
45
|
|
|
WHERE scenario ='{scenario}' |
46
|
|
|
""" |
47
|
|
|
) |
48
|
|
|
# bus_id connected to corresponding time series |
49
|
|
|
bus_ts = pd.merge( |
50
|
|
|
bus_area, disct_time_series, on="area_id", how="inner" |
51
|
|
|
) |
52
|
|
|
|
53
|
|
|
elif carrier == "rural_heat": |
54
|
|
|
# interlinking heat_bus_id and mv_grid bus_id |
55
|
|
|
bus_sub = db.select_dataframe( |
56
|
|
|
f""" |
57
|
|
|
SELECT {targets['heat_buses']['schema']}. |
58
|
|
|
{targets['heat_buses']['table']}.bus_id as heat_bus_id, |
59
|
|
|
{sources['egon_mv_grid_district']['schema']}. |
60
|
|
|
{sources['egon_mv_grid_district']['table']}.bus_id as |
61
|
|
|
bus_id FROM |
62
|
|
|
{targets['heat_buses']['schema']}. |
63
|
|
|
{targets['heat_buses']['table']} |
64
|
|
|
JOIN {sources['egon_mv_grid_district']['schema']}. |
65
|
|
|
{sources['egon_mv_grid_district']['table']} |
66
|
|
|
ON ST_Transform(ST_Centroid({sources['egon_mv_grid_district']['schema']}. |
67
|
|
|
{sources['egon_mv_grid_district']['table']}.geom), |
68
|
|
|
4326) = {targets['heat_buses']['schema']}. |
69
|
|
|
{targets['heat_buses']['table']}.geom |
70
|
|
|
WHERE carrier = '{carrier}' |
71
|
|
|
AND scn_name = '{scenario}' |
72
|
|
|
""" |
73
|
|
|
) |
74
|
|
|
##**scenario name still needs to be adjusted in bus_sub** |
75
|
|
|
|
76
|
|
|
# individual heating time series |
77
|
|
|
ind_time_series = db.select_dataframe( |
78
|
|
|
f""" |
79
|
|
|
SELECT scenario, bus_id, dist_aggregated_mw FROM |
80
|
|
|
demand.egon_etrago_timeseries_individual_heating |
81
|
|
|
WHERE scenario ='{scenario}' |
82
|
|
|
AND carrier = 'heat_pump' |
83
|
|
|
""" |
84
|
|
|
) |
85
|
|
|
|
86
|
|
|
# bus_id connected to corresponding time series |
87
|
|
|
bus_ts = pd.merge( |
88
|
|
|
bus_sub, ind_time_series, on="bus_id", how="inner" |
89
|
|
|
) |
90
|
|
|
|
91
|
|
|
# Connect heat loads to heat buses |
92
|
|
|
bus_ts.loc[:, "bus_id"] = bus_ts.loc[:, "heat_bus_id"] |
93
|
|
|
|
94
|
|
|
else: |
95
|
|
|
efficiency_gas_boiler = get_sector_parameters("heat", scenario)[ |
96
|
|
|
"efficiency" |
97
|
|
|
]["rural_gas_boiler"] |
98
|
|
|
|
99
|
|
|
# Select rural heat demand coverd by individual gas boilers |
100
|
|
|
ind_time_series = db.select_dataframe( |
101
|
|
|
f""" |
102
|
|
|
SELECT * FROM |
103
|
|
|
demand.egon_etrago_timeseries_individual_heating |
104
|
|
|
WHERE scenario ='{scenario}' |
105
|
|
|
AND carrier = 'CH4' |
106
|
|
|
""" |
107
|
|
|
) |
108
|
|
|
|
109
|
|
|
# Select geoetry of medium voltage grid districts |
110
|
|
|
mvgd_geom = db.select_geodataframe( |
111
|
|
|
f""" |
112
|
|
|
SELECT bus_id, ST_CENTROID(geom) as geom FROM |
113
|
|
|
{sources['egon_mv_grid_district']['schema']}. |
114
|
|
|
{sources['egon_mv_grid_district']['table']} |
115
|
|
|
""" |
116
|
|
|
) |
117
|
|
|
|
118
|
|
|
# Select geometry of gas (CH4) voronoi |
119
|
|
|
gas_voronoi = db.select_geodataframe( |
120
|
|
|
f""" |
121
|
|
|
SELECT bus_id, geom FROM |
122
|
|
|
grid.egon_gas_voronoi |
123
|
|
|
WHERE scn_name = '{scenario}' |
124
|
|
|
AND carrier = 'CH4' |
125
|
|
|
""" |
126
|
|
|
) |
127
|
|
|
|
128
|
|
|
# Map centroid of mvgd to gas voronoi |
129
|
|
|
join = mvgd_geom.sjoin(gas_voronoi, lsuffix="AC", rsuffix="gas")[ |
130
|
|
|
["bus_id_AC", "bus_id_gas"] |
131
|
|
|
].set_index("bus_id_AC") |
132
|
|
|
|
133
|
|
|
# Assign gas bus to each rural heat demand coverd by gas boiler |
134
|
|
|
ind_time_series["gas_bus"] = join.loc[ |
135
|
|
|
ind_time_series.bus_id |
136
|
|
|
].values |
137
|
|
|
|
138
|
|
|
# Initialize dataframe to store final heat demand per gas node |
139
|
|
|
gas_ts = pd.DataFrame( |
140
|
|
|
index=ind_time_series["gas_bus"].unique(), columns=range(8760) |
141
|
|
|
) |
142
|
|
|
|
143
|
|
|
# Group heat demand per hour in the year |
144
|
|
|
for i in range(8760): |
145
|
|
|
gas_ts[i] = ( |
146
|
|
|
ind_time_series.set_index("gas_bus") |
147
|
|
|
.dist_aggregated_mw.str[i] |
148
|
|
|
.groupby("gas_bus") |
149
|
|
|
.sum() |
150
|
|
|
.div(efficiency_gas_boiler) |
151
|
|
|
) |
152
|
|
|
|
153
|
|
|
# Prepare resulting DataFrame |
154
|
|
|
bus_ts = pd.DataFrame(columns=["dist_aggregated_mw", "bus_id"]) |
155
|
|
|
|
156
|
|
|
# Insert values to dataframe |
157
|
|
|
bus_ts.dist_aggregated_mw = gas_ts.values.tolist() |
158
|
|
|
bus_ts.bus_id = gas_ts.index |
159
|
|
|
|
160
|
|
|
# Delete existing data from database |
161
|
|
|
db.execute_sql( |
162
|
|
|
f""" |
163
|
|
|
DELETE FROM grid.egon_etrago_load |
164
|
|
|
WHERE scn_name = '{scenario}' |
165
|
|
|
AND carrier = '{carrier}' |
166
|
|
|
AND bus IN ( |
167
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
168
|
|
|
WHERE country = 'DE' |
169
|
|
|
AND scn_name = '{scenario}' |
170
|
|
|
) |
171
|
|
|
""" |
172
|
|
|
) |
173
|
|
|
|
174
|
|
|
db.execute_sql( |
175
|
|
|
f""" |
176
|
|
|
DELETE FROM |
177
|
|
|
grid.egon_etrago_load_timeseries |
178
|
|
|
WHERE scn_name = '{scenario}' |
179
|
|
|
AND load_id NOT IN ( |
180
|
|
|
SELECT load_id FROM |
181
|
|
|
grid.egon_etrago_load |
182
|
|
|
WHERE scn_name = '{scenario}') |
183
|
|
|
""" |
184
|
|
|
) |
185
|
|
|
|
186
|
|
|
next_id = next_etrago_id("load") |
187
|
|
|
|
188
|
|
|
bus_ts["load_id"] = np.arange(len(bus_ts)) + next_id |
189
|
|
|
|
190
|
|
|
etrago_load = pd.DataFrame(index=range(len(bus_ts))) |
191
|
|
|
etrago_load["scn_name"] = scenario |
192
|
|
|
etrago_load["load_id"] = bus_ts.load_id |
193
|
|
|
etrago_load["bus"] = bus_ts.bus_id |
194
|
|
|
etrago_load["carrier"] = carrier |
195
|
|
|
etrago_load["sign"] = -1 |
196
|
|
|
|
197
|
|
|
etrago_load.to_sql( |
198
|
|
|
"egon_etrago_load", |
199
|
|
|
schema="grid", |
200
|
|
|
con=db.engine(), |
201
|
|
|
if_exists="append", |
202
|
|
|
index=False, |
203
|
|
|
) |
204
|
|
|
|
205
|
|
|
etrago_load_timeseries = pd.DataFrame(index=range(len(bus_ts))) |
206
|
|
|
etrago_load_timeseries["scn_name"] = scenario |
207
|
|
|
etrago_load_timeseries["load_id"] = bus_ts.load_id |
208
|
|
|
etrago_load_timeseries["temp_id"] = 1 |
209
|
|
|
etrago_load_timeseries["p_set"] = bus_ts.loc[:, "dist_aggregated_mw"] |
210
|
|
|
|
211
|
|
|
etrago_load_timeseries.to_sql( |
212
|
|
|
"egon_etrago_load_timeseries", |
213
|
|
|
schema="grid", |
214
|
|
|
con=db.engine(), |
215
|
|
|
if_exists="append", |
216
|
|
|
index=False, |
217
|
|
|
) |
218
|
|
|
|
219
|
|
|
|
220
|
|
|
def demand(): |
221
|
|
|
"""Insert demand timeseries for heat into eTraGo tables |
222
|
|
|
|
223
|
|
|
Returns |
224
|
|
|
------- |
225
|
|
|
None. |
226
|
|
|
|
227
|
|
|
""" |
228
|
|
|
for scenario in config.settings()["egon-data"]["--scenarios"]: |
229
|
|
|
hts_to_etrago(scenario) |
230
|
|
|
|
231
|
|
|
|
232
|
|
|
class HtsEtragoTable(Dataset): |
233
|
|
|
""" |
234
|
|
|
Collect heat demand time series for the eTraGo tool |
235
|
|
|
|
236
|
|
|
This dataset collects data for individual and district heating demands |
237
|
|
|
and writes that into the tables that can be read by the eTraGo tool. |
238
|
|
|
|
239
|
|
|
*Dependencies* |
240
|
|
|
* :py:class:`DistrictHeatingAreas <egon.data.datasets.district_heating_areas.DistrictHeatingAreas>` |
241
|
|
|
* :py:class:`HeatEtrago <egon.data.datasets.heat_etrago.HeatEtrago>` |
242
|
|
|
* :py:class:`MvGridDistricts <egon.data.datasets.mv_grid_districts.mv_grid_districts_setup>` |
243
|
|
|
* :py:class:`HeatPumps2035 <egon.data.datasets.heat_supply.individual_heating.HeatPumps2035>` |
244
|
|
|
* :py:class:`HeatTimeSeries <egon.data.datasets.heat_demand_timeseries.HeatTimeSeries>` |
245
|
|
|
|
246
|
|
|
*Resulting tables* |
247
|
|
|
* :py:class:`grid.egon_etrago_load <egon.data.datasets.etrago_setup.EgonPfHvLoad>` is extended |
248
|
|
|
* :py:class:`grid.egon_etrago_load_timeseries <egon.data.datasets.etrago_setup.EgonPfHvLoadTimeseries>` is extended |
249
|
|
|
|
250
|
|
|
""" |
251
|
|
|
|
252
|
|
|
#: |
253
|
|
|
name: str = "HtsEtragoTable" |
254
|
|
|
#: |
255
|
|
|
version: str = "0.0.6" |
256
|
|
|
|
257
|
|
|
def __init__(self, dependencies): |
258
|
|
|
super().__init__( |
259
|
|
|
name=self.name, |
260
|
|
|
version=self.version, |
261
|
|
|
dependencies=dependencies, |
262
|
|
|
tasks=(demand,), |
263
|
|
|
) |
264
|
|
|
|