1
|
|
|
""" |
2
|
|
|
Household electricity demand time series for scenarios in 2035 and 2050 |
3
|
|
|
assigned to OSM-buildings. |
4
|
|
|
|
5
|
|
|
""" |
6
|
|
|
|
7
|
|
|
import random |
8
|
|
|
|
9
|
|
|
from geoalchemy2 import Geometry |
10
|
|
|
from sqlalchemy import REAL, Column, Integer, String, Table, func, inspect |
11
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
12
|
|
|
import geopandas as gpd |
13
|
|
|
import numpy as np |
14
|
|
|
import pandas as pd |
15
|
|
|
|
16
|
|
|
from egon.data import db |
17
|
|
|
from egon.data.datasets import Dataset |
18
|
|
|
from egon.data.datasets.electricity_demand_timeseries.hh_profiles import ( |
19
|
|
|
HouseholdElectricityProfilesInCensusCells, |
20
|
|
|
get_iee_hh_demand_profiles_raw, |
21
|
|
|
) |
22
|
|
|
from egon.data.datasets.electricity_demand_timeseries.tools import ( |
23
|
|
|
random_point_in_square, |
24
|
|
|
) |
25
|
|
|
import egon.data.config |
26
|
|
|
|
27
|
|
|
engine = db.engine() |
28
|
|
|
Base = declarative_base() |
29
|
|
|
|
30
|
|
|
data_config = egon.data.config.datasets() |
31
|
|
|
RANDOM_SEED = egon.data.config.settings()["egon-data"]["--random-seed"] |
32
|
|
|
np.random.seed(RANDOM_SEED) |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class HouseholdElectricityProfilesOfBuildings(Base): |
36
|
|
|
""" |
37
|
|
|
Class definition of table demand.egon_household_electricity_profile_of_buildings. |
38
|
|
|
|
39
|
|
|
Mapping of demand timeseries and buildings and cell_id. This table is created within |
40
|
|
|
:py:func:`hh_buildings.map_houseprofiles_to_buildings()`. |
41
|
|
|
|
42
|
|
|
""" |
43
|
|
|
|
44
|
|
|
__tablename__ = "egon_household_electricity_profile_of_buildings" |
45
|
|
|
__table_args__ = {"schema": "demand"} |
46
|
|
|
|
47
|
|
|
id = Column(Integer, primary_key=True) |
48
|
|
|
building_id = Column(Integer, index=True) |
49
|
|
|
cell_id = Column(Integer, index=True) |
50
|
|
|
profile_id = Column(String, index=True) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
class HouseholdElectricityProfilesOfBuildingsStats(Base): |
54
|
|
|
""" |
55
|
|
|
Class definition of table `demand.egon_household_electricity_profile_of_buildings_stats`. |
56
|
|
|
Contains number of households per building and type from table |
57
|
|
|
`demand.egon_household_electricity_profile_of_buildings` |
58
|
|
|
|
59
|
|
|
Columns |
60
|
|
|
------- |
61
|
|
|
building_id: Building id as used in tables `openstreetmap.osm_buildings_*`, index col |
62
|
|
|
households_total: total count of households |
63
|
|
|
SR: count of household type SR single retiree |
64
|
|
|
SO: count of household type SA single adults |
65
|
|
|
PR: count of household type PR pair retiree |
66
|
|
|
PO: count of household type PA pair adults |
67
|
|
|
SK: count of household type SK single n children |
68
|
|
|
P1: count of household type P1 pair 1 child |
69
|
|
|
P2: count of household type P2 pair 2 children |
70
|
|
|
P3: count of household type P3 pair 3 children |
71
|
|
|
OR: count of household type OR multi retiree n children |
72
|
|
|
OO: count of household type OO multi adults n children |
73
|
|
|
""" |
74
|
|
|
|
75
|
|
|
__tablename__ = "egon_household_electricity_profile_of_buildings_stats" |
76
|
|
|
__table_args__ = {"schema": "demand"} |
77
|
|
|
|
78
|
|
|
building_id = Column(Integer, primary_key=True) |
79
|
|
|
households_total = Column(Integer, nullable=True) |
80
|
|
|
SR = Column(Integer, nullable=True) |
81
|
|
|
SO = Column(Integer, nullable=True) |
82
|
|
|
PR = Column(Integer, nullable=True) |
83
|
|
|
PO = Column(Integer, nullable=True) |
84
|
|
|
SK = Column(Integer, nullable=True) |
85
|
|
|
P1 = Column(Integer, nullable=True) |
86
|
|
|
P2 = Column(Integer, nullable=True) |
87
|
|
|
P3 = Column(Integer, nullable=True) |
88
|
|
|
OR = Column(Integer, nullable=True) |
89
|
|
|
OO = Column(Integer, nullable=True) |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
class OsmBuildingsSynthetic(Base): |
93
|
|
|
""" |
94
|
|
|
Class definition of table demand.osm_buildings_synthetic. |
95
|
|
|
|
96
|
|
|
Lists generated synthetic building with id, zensus_population_id and |
97
|
|
|
building type. This table is created within |
98
|
|
|
:py:func:`hh_buildings.map_houseprofiles_to_buildings()`. |
99
|
|
|
""" |
100
|
|
|
|
101
|
|
|
__tablename__ = "osm_buildings_synthetic" |
102
|
|
|
__table_args__ = {"schema": "openstreetmap"} |
103
|
|
|
|
104
|
|
|
id = Column(String, primary_key=True) |
105
|
|
|
cell_id = Column(String, index=True) |
106
|
|
|
geom_building = Column(Geometry("Polygon", 3035), index=True) |
107
|
|
|
geom_point = Column(Geometry("POINT", 3035)) |
108
|
|
|
n_amenities_inside = Column(Integer) |
109
|
|
|
building = Column(String(11)) |
110
|
|
|
area = Column(REAL) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
class BuildingElectricityPeakLoads(Base): |
114
|
|
|
""" |
115
|
|
|
Class definition of table demand.egon_building_electricity_peak_loads. |
116
|
|
|
|
117
|
|
|
Mapping of electricity demand time series and buildings including cell_id, |
118
|
|
|
building area and peak load. This table is created within |
119
|
|
|
:func:`hh_buildings.get_building_peak_loads()`. |
120
|
|
|
""" |
121
|
|
|
|
122
|
|
|
__tablename__ = "egon_building_electricity_peak_loads" |
123
|
|
|
__table_args__ = {"schema": "demand"} |
124
|
|
|
|
125
|
|
|
building_id = Column(Integer, primary_key=True) |
126
|
|
|
scenario = Column(String, primary_key=True) |
127
|
|
|
sector = Column(String, primary_key=True) |
128
|
|
|
peak_load_in_w = Column(REAL) |
129
|
|
|
voltage_level = Column(Integer, index=True) |
130
|
|
|
|
131
|
|
|
|
132
|
|
|
def match_osm_and_zensus_data( |
133
|
|
|
egon_hh_profile_in_zensus_cell, |
134
|
|
|
egon_map_zensus_buildings_residential, |
135
|
|
|
): |
136
|
|
|
""" |
137
|
|
|
Compares OSM buildings and census hh demand profiles. |
138
|
|
|
|
139
|
|
|
OSM building data and hh demand profiles based on census data is compared. |
140
|
|
|
Census cells with only profiles but no osm-ids are identified to generate |
141
|
|
|
synthetic buildings. Census building count is used, if available, to define |
142
|
|
|
number of missing buildings. Otherwise, we use a twofold approach for the |
143
|
|
|
rate: first, the rate is calculated using adjacent cells (function |
144
|
|
|
`find_adjacent_cells()`), a distance of 3 cells in each direction is used |
145
|
|
|
by default (resulting in a 7x7 lookup matrix). As fallback, the overall |
146
|
|
|
median profile/building rate is used to derive the number of buildings |
147
|
|
|
from the number of already generated demand profiles. |
148
|
|
|
|
149
|
|
|
Parameters |
150
|
|
|
---------- |
151
|
|
|
egon_hh_profile_in_zensus_cell: pd.DataFrame |
152
|
|
|
Table mapping hh demand profiles to census cells |
153
|
|
|
|
154
|
|
|
egon_map_zensus_buildings_residential: pd.DataFrame |
155
|
|
|
Table with buildings osm-id and cell_id |
156
|
|
|
|
157
|
|
|
Returns |
158
|
|
|
------- |
159
|
|
|
pd.DataFrame |
160
|
|
|
Table with cell_ids and number of missing buildings |
161
|
|
|
""" |
162
|
|
|
|
163
|
|
|
def find_adjacent_cells(row, adj_cell_radius): |
164
|
|
|
""" |
165
|
|
|
Find adjacent cells for cell by iterating over census grid ids |
166
|
|
|
(100mN...E...). |
167
|
|
|
|
168
|
|
|
Parameters |
169
|
|
|
---------- |
170
|
|
|
row : Dataframe row |
171
|
|
|
Dataframe row |
172
|
|
|
adj_cell_radius : int |
173
|
|
|
distance of cells in each direction to find cells, |
174
|
|
|
e.g. adj_cell_radius=3 -> 7x7 cell matrix |
175
|
|
|
|
176
|
|
|
Returns |
177
|
|
|
------- |
178
|
|
|
tuples of int |
179
|
|
|
N coordinates, E coordinates in format |
180
|
|
|
[(N_cell_1, E_cell_1), ..., (N_cell_n, E_cell_n)] |
181
|
|
|
""" |
182
|
|
|
return [ |
183
|
|
|
f"100mN{_[0]}E{_[1]}" |
184
|
|
|
for _ in np.array( |
185
|
|
|
np.meshgrid( |
186
|
|
|
np.arange( |
187
|
|
|
row.N - adj_cell_radius, row.N + adj_cell_radius + 1 |
188
|
|
|
), |
189
|
|
|
np.arange( |
190
|
|
|
row.E - adj_cell_radius, row.E + adj_cell_radius + 1 |
191
|
|
|
), |
192
|
|
|
) |
193
|
|
|
).T.reshape(-1, 2) |
194
|
|
|
] |
195
|
|
|
|
196
|
|
|
# count number of profiles for each cell |
197
|
|
|
profiles_per_cell = egon_hh_profile_in_zensus_cell.cell_profile_ids.apply( |
198
|
|
|
len |
199
|
|
|
) |
200
|
|
|
|
201
|
|
|
# Add number of profiles per cell |
202
|
|
|
number_of_buildings_profiles_per_cell = pd.merge( |
203
|
|
|
left=profiles_per_cell, |
204
|
|
|
right=egon_hh_profile_in_zensus_cell["cell_id"], |
205
|
|
|
left_index=True, |
206
|
|
|
right_index=True, |
207
|
|
|
) |
208
|
|
|
|
209
|
|
|
# count buildings/ids for each cell |
210
|
|
|
buildings_per_cell = egon_map_zensus_buildings_residential.groupby( |
211
|
|
|
"cell_id" |
212
|
|
|
)["id"].count() |
213
|
|
|
buildings_per_cell = buildings_per_cell.rename("building_ids") |
214
|
|
|
|
215
|
|
|
# add buildings left join to have all the cells with assigned profiles |
216
|
|
|
number_of_buildings_profiles_per_cell = pd.merge( |
217
|
|
|
left=number_of_buildings_profiles_per_cell, |
218
|
|
|
right=buildings_per_cell, |
219
|
|
|
left_on="cell_id", |
220
|
|
|
right_index=True, |
221
|
|
|
how="left", |
222
|
|
|
) |
223
|
|
|
|
224
|
|
|
# identify cell ids with profiles but no buildings |
225
|
|
|
number_of_buildings_profiles_per_cell = ( |
226
|
|
|
number_of_buildings_profiles_per_cell.fillna(0).astype(int) |
227
|
|
|
) |
228
|
|
|
missing_buildings = number_of_buildings_profiles_per_cell.loc[ |
229
|
|
|
number_of_buildings_profiles_per_cell.building_ids == 0, |
230
|
|
|
["cell_id", "cell_profile_ids"], |
231
|
|
|
].set_index("cell_id") |
232
|
|
|
|
233
|
|
|
# query zensus building count |
234
|
|
|
egon_destatis_building_count = Table( |
235
|
|
|
"egon_destatis_zensus_apartment_building_population_per_ha", |
236
|
|
|
Base.metadata, |
237
|
|
|
schema="society", |
238
|
|
|
) |
239
|
|
|
# get table metadata from db by name and schema |
240
|
|
|
inspect(engine).reflecttable(egon_destatis_building_count, None) |
241
|
|
|
|
242
|
|
|
with db.session_scope() as session: |
243
|
|
|
cells_query = session.query( |
244
|
|
|
egon_destatis_building_count.c.zensus_population_id, |
245
|
|
|
egon_destatis_building_count.c.building_count, |
246
|
|
|
) |
247
|
|
|
|
248
|
|
|
egon_destatis_building_count = pd.read_sql( |
249
|
|
|
cells_query.statement, |
250
|
|
|
cells_query.session.bind, |
251
|
|
|
index_col="zensus_population_id", |
252
|
|
|
) |
253
|
|
|
egon_destatis_building_count = egon_destatis_building_count.dropna() |
254
|
|
|
|
255
|
|
|
missing_buildings = pd.merge( |
256
|
|
|
left=missing_buildings, |
257
|
|
|
right=egon_destatis_building_count, |
258
|
|
|
left_index=True, |
259
|
|
|
right_index=True, |
260
|
|
|
how="left", |
261
|
|
|
) |
262
|
|
|
|
263
|
|
|
# exclude cells without buildings |
264
|
|
|
only_cells_with_buildings = ( |
265
|
|
|
number_of_buildings_profiles_per_cell["building_ids"] != 0 |
266
|
|
|
) |
267
|
|
|
# get profile/building rate for each cell |
268
|
|
|
profile_building_rate = ( |
269
|
|
|
number_of_buildings_profiles_per_cell.loc[ |
270
|
|
|
only_cells_with_buildings, "cell_profile_ids" |
271
|
|
|
] |
272
|
|
|
/ number_of_buildings_profiles_per_cell.loc[ |
273
|
|
|
only_cells_with_buildings, "building_ids" |
274
|
|
|
] |
275
|
|
|
) |
276
|
|
|
|
277
|
|
|
# prepare values for missing building counts by number of profile ids |
278
|
|
|
building_count_fillna = missing_buildings.loc[ |
279
|
|
|
missing_buildings["building_count"].isna(), "cell_profile_ids" |
280
|
|
|
] |
281
|
|
|
# devide by median profile/building rate |
282
|
|
|
building_count_fillna = ( |
283
|
|
|
building_count_fillna / profile_building_rate.median() |
284
|
|
|
) |
285
|
|
|
# replace missing building counts |
286
|
|
|
missing_buildings["building_count"] = missing_buildings[ |
287
|
|
|
"building_count" |
288
|
|
|
].fillna(value=building_count_fillna) |
289
|
|
|
|
290
|
|
|
# ========== START Update profile/building rate in cells w/o bld using adjacent cells ========== |
291
|
|
|
missing_buildings_temp = ( |
292
|
|
|
egon_hh_profile_in_zensus_cell[["cell_id", "grid_id"]] |
293
|
|
|
.set_index("cell_id") |
294
|
|
|
.loc[missing_buildings.index.unique()] |
295
|
|
|
) |
296
|
|
|
|
297
|
|
|
# Extract coordinates |
298
|
|
|
missing_buildings_temp = pd.concat( |
299
|
|
|
[ |
300
|
|
|
missing_buildings_temp, |
301
|
|
|
missing_buildings_temp.grid_id.str.extract(r"100mN(\d+)E(\d+)") |
302
|
|
|
.astype(int) |
303
|
|
|
.rename(columns={0: "N", 1: "E"}), |
304
|
|
|
], |
305
|
|
|
axis=1, |
306
|
|
|
) |
307
|
|
|
|
308
|
|
|
# Find adjacent cells for cell |
309
|
|
|
missing_buildings_temp["cell_adj"] = missing_buildings_temp.apply( |
310
|
|
|
find_adjacent_cells, adj_cell_radius=3, axis=1 |
311
|
|
|
) |
312
|
|
|
missing_buildings_temp = ( |
313
|
|
|
missing_buildings_temp.explode("cell_adj") |
314
|
|
|
.drop(columns=["grid_id", "N", "E"]) |
315
|
|
|
.reset_index() |
316
|
|
|
) |
317
|
|
|
|
318
|
|
|
# Create mapping table cell -> adjacent cells |
319
|
|
|
missing_buildings_temp = ( |
320
|
|
|
missing_buildings_temp.set_index("cell_adj") |
321
|
|
|
.join( |
322
|
|
|
egon_hh_profile_in_zensus_cell.set_index("grid_id").cell_id, |
323
|
|
|
rsuffix="_adj", |
324
|
|
|
) |
325
|
|
|
.dropna() |
326
|
|
|
.set_index("cell_id_adj") |
327
|
|
|
) |
328
|
|
|
|
329
|
|
|
# Calculate profile/building rate for those cells |
330
|
|
|
profile_building_rate.name = "profile_building_rate" |
331
|
|
|
missing_buildings_temp = missing_buildings_temp.join( |
332
|
|
|
number_of_buildings_profiles_per_cell[["cell_id"]] |
333
|
|
|
.join(profile_building_rate) |
334
|
|
|
.set_index("cell_id") |
335
|
|
|
) |
336
|
|
|
missing_buildings_temp = ( |
337
|
|
|
missing_buildings_temp.groupby("cell_id").median().dropna() |
338
|
|
|
) |
339
|
|
|
|
340
|
|
|
# Update mising buildings |
341
|
|
|
missing_buildings["building_count"] = ( |
342
|
|
|
missing_buildings.cell_profile_ids.div( |
343
|
|
|
missing_buildings_temp.profile_building_rate |
344
|
|
|
).fillna(missing_buildings.building_count) |
345
|
|
|
) |
346
|
|
|
# ========== END Update profile/building rate in cells w/o bld using adjacent cells ========== |
347
|
|
|
|
348
|
|
|
# ceil to have at least one building each cell and make type int |
349
|
|
|
missing_buildings = missing_buildings.apply(np.ceil).astype(int) |
350
|
|
|
# generate list of building ids for each cell |
351
|
|
|
missing_buildings["building_count"] = missing_buildings[ |
352
|
|
|
"building_count" |
353
|
|
|
].apply(range) |
354
|
|
|
missing_buildings = missing_buildings.explode(column="building_count") |
355
|
|
|
|
356
|
|
|
return missing_buildings |
357
|
|
|
|
358
|
|
|
|
359
|
|
|
def generate_synthetic_buildings(missing_buildings, edge_length): |
360
|
|
|
""" |
361
|
|
|
Generate synthetic square buildings in census cells for every entry |
362
|
|
|
in missing_buildings. |
363
|
|
|
|
364
|
|
|
Generate random placed synthetic buildings incl geom data within the bounds |
365
|
|
|
of the cencus cell. Buildings have each a square area with edge_length^2. |
366
|
|
|
|
367
|
|
|
|
368
|
|
|
Parameters |
369
|
|
|
---------- |
370
|
|
|
missing_buildings: pd.Series or pd.DataFrame |
371
|
|
|
Table with cell_ids and building number |
372
|
|
|
edge_length: int |
373
|
|
|
Edge length of square synthetic building in meter |
374
|
|
|
|
375
|
|
|
Returns |
376
|
|
|
------- |
377
|
|
|
pd.DataFrame |
378
|
|
|
Table with generated synthetic buildings, area, cell_id and geom data |
379
|
|
|
|
380
|
|
|
""" |
381
|
|
|
destatis_zensus_population_per_ha_inside_germany = Table( |
382
|
|
|
"destatis_zensus_population_per_ha_inside_germany", |
383
|
|
|
Base.metadata, |
384
|
|
|
schema="society", |
385
|
|
|
) |
386
|
|
|
# get table metadata from db by name and schema |
387
|
|
|
inspect(engine).reflecttable( |
388
|
|
|
destatis_zensus_population_per_ha_inside_germany, None |
389
|
|
|
) |
390
|
|
|
|
391
|
|
|
with db.session_scope() as session: |
392
|
|
|
cells_query = session.query( |
393
|
|
|
destatis_zensus_population_per_ha_inside_germany |
394
|
|
|
).filter( |
395
|
|
|
destatis_zensus_population_per_ha_inside_germany.c.id.in_( |
396
|
|
|
missing_buildings.index.unique() |
397
|
|
|
) |
398
|
|
|
) |
399
|
|
|
|
400
|
|
|
destatis_zensus_population_per_ha_inside_germany = gpd.read_postgis( |
401
|
|
|
cells_query.statement, cells_query.session.bind, index_col="id" |
402
|
|
|
) |
403
|
|
|
|
404
|
|
|
# add geom data of zensus cell |
405
|
|
|
missing_buildings_geom = pd.merge( |
406
|
|
|
left=destatis_zensus_population_per_ha_inside_germany[["geom"]], |
407
|
|
|
right=missing_buildings, |
408
|
|
|
left_index=True, |
409
|
|
|
right_index=True, |
410
|
|
|
how="right", |
411
|
|
|
) |
412
|
|
|
|
413
|
|
|
missing_buildings_geom = missing_buildings_geom.reset_index(drop=False) |
414
|
|
|
missing_buildings_geom = missing_buildings_geom.rename( |
415
|
|
|
columns={ |
416
|
|
|
"building_count": "building_id", |
417
|
|
|
"cell_profile_ids": "profiles", |
418
|
|
|
"id": "cell_id", |
419
|
|
|
} |
420
|
|
|
) |
421
|
|
|
|
422
|
|
|
# create random points within census cells |
423
|
|
|
points = random_point_in_square( |
424
|
|
|
geom=missing_buildings_geom["geom"], tol=edge_length / 2 |
425
|
|
|
) |
426
|
|
|
|
427
|
|
|
# Store center of poylon |
428
|
|
|
missing_buildings_geom["geom_point"] = points |
429
|
|
|
# Create building using a square around point |
430
|
|
|
missing_buildings_geom["geom_building"] = points.buffer( |
431
|
|
|
distance=edge_length / 2, cap_style=3 |
432
|
|
|
) |
433
|
|
|
missing_buildings_geom = missing_buildings_geom.drop(columns=["geom"]) |
434
|
|
|
missing_buildings_geom = gpd.GeoDataFrame( |
435
|
|
|
missing_buildings_geom, crs="EPSG:3035", geometry="geom_building" |
436
|
|
|
) |
437
|
|
|
|
438
|
|
|
# get table metadata from db by name and schema |
439
|
|
|
buildings = Table("osm_buildings", Base.metadata, schema="openstreetmap") |
440
|
|
|
inspect(engine).reflecttable(buildings, None) |
441
|
|
|
|
442
|
|
|
# get max number of building ids from non-filtered building table |
443
|
|
|
with db.session_scope() as session: |
444
|
|
|
buildings = session.execute(func.max(buildings.c.id)).scalar() |
445
|
|
|
|
446
|
|
|
# apply ids following the sequence of openstreetmap.osm_buildings id |
447
|
|
|
missing_buildings_geom["id"] = range( |
448
|
|
|
buildings + 1, |
449
|
|
|
buildings + len(missing_buildings_geom) + 1, |
450
|
|
|
) |
451
|
|
|
|
452
|
|
|
drop_columns = [ |
453
|
|
|
i |
454
|
|
|
for i in ["building_id", "profiles"] |
455
|
|
|
if i in missing_buildings_geom.columns |
456
|
|
|
] |
457
|
|
|
if drop_columns: |
458
|
|
|
missing_buildings_geom = missing_buildings_geom.drop( |
459
|
|
|
columns=drop_columns |
460
|
|
|
) |
461
|
|
|
|
462
|
|
|
missing_buildings_geom["building"] = "residential" |
463
|
|
|
missing_buildings_geom["area"] = missing_buildings_geom[ |
464
|
|
|
"geom_building" |
465
|
|
|
].area |
466
|
|
|
|
467
|
|
|
return missing_buildings_geom |
468
|
|
|
|
469
|
|
|
|
470
|
|
|
def generate_mapping_table( |
471
|
|
|
egon_map_zensus_buildings_residential_synth, |
472
|
|
|
egon_hh_profile_in_zensus_cell, |
473
|
|
|
): |
474
|
|
|
""" |
475
|
|
|
Generate a mapping table for hh profiles to buildings. |
476
|
|
|
|
477
|
|
|
All hh demand profiles are randomly assigned to buildings within the same |
478
|
|
|
cencus cell. |
479
|
|
|
|
480
|
|
|
* profiles > buildings: buildings can have multiple profiles but every |
481
|
|
|
building gets at least one profile |
482
|
|
|
* profiles < buildings: not every building gets a profile |
483
|
|
|
|
484
|
|
|
|
485
|
|
|
Parameters |
486
|
|
|
---------- |
487
|
|
|
egon_map_zensus_buildings_residential_synth: pd.DataFrame |
488
|
|
|
Table with OSM and synthetic buildings ids per census cell |
489
|
|
|
egon_hh_profile_in_zensus_cell: pd.DataFrame |
490
|
|
|
Table mapping hh demand profiles to census cells |
491
|
|
|
|
492
|
|
|
Returns |
493
|
|
|
------- |
494
|
|
|
pd.DataFrame |
495
|
|
|
Table with mapping of profile ids to buildings with OSM ids |
496
|
|
|
|
497
|
|
|
""" |
498
|
|
|
|
499
|
|
|
def create_pool(buildings, profiles): |
500
|
|
|
if profiles > buildings: |
501
|
|
|
surplus = profiles - buildings |
502
|
|
|
surplus = rng.integers(0, buildings, surplus) |
503
|
|
|
pool = list(range(buildings)) + list(surplus) |
504
|
|
|
else: |
505
|
|
|
pool = list(range(buildings)) |
506
|
|
|
result = random.sample(population=pool, k=profiles) |
507
|
|
|
|
508
|
|
|
return result |
509
|
|
|
|
510
|
|
|
# group oms_ids by census cells and aggregate to list |
511
|
|
|
osm_ids_per_cell = ( |
512
|
|
|
egon_map_zensus_buildings_residential_synth[["id", "cell_id"]] |
513
|
|
|
.groupby("cell_id") |
514
|
|
|
.agg(list) |
515
|
|
|
) |
516
|
|
|
|
517
|
|
|
# cell ids of cells with osm ids |
518
|
|
|
cells_with_buildings = osm_ids_per_cell.index.astype(int).values |
519
|
|
|
# cell ids of cells with profiles |
520
|
|
|
cells_with_profiles = ( |
521
|
|
|
egon_hh_profile_in_zensus_cell["cell_id"].astype(int).values |
522
|
|
|
) |
523
|
|
|
# cell ids of cells with osm ids and profiles |
524
|
|
|
cell_with_profiles_and_buildings = np.intersect1d( |
525
|
|
|
cells_with_profiles, cells_with_buildings |
526
|
|
|
) |
527
|
|
|
|
528
|
|
|
# cells with only buildings might not be residential etc. |
529
|
|
|
|
530
|
|
|
# reduced list of profile_ids per cell with both buildings and profiles |
531
|
|
|
profile_ids_per_cell_reduced = egon_hh_profile_in_zensus_cell.set_index( |
532
|
|
|
"cell_id" |
533
|
|
|
).loc[cell_with_profiles_and_buildings, "cell_profile_ids"] |
534
|
|
|
# reduced list of osm_ids per cell with both buildings and profiles |
535
|
|
|
osm_ids_per_cell_reduced = osm_ids_per_cell.loc[ |
536
|
|
|
cell_with_profiles_and_buildings, "id" |
537
|
|
|
].rename("building_ids") |
538
|
|
|
|
539
|
|
|
# concat both lists by same cell_id |
540
|
|
|
mapping_profiles_to_buildings_reduced = pd.concat( |
541
|
|
|
[profile_ids_per_cell_reduced, osm_ids_per_cell_reduced], axis=1 |
542
|
|
|
) |
543
|
|
|
|
544
|
|
|
# count number of profiles and buildings for each cell |
545
|
|
|
# tells how many profiles have to be assigned to how many buildings |
546
|
|
|
number_profiles_and_buildings_reduced = ( |
547
|
|
|
mapping_profiles_to_buildings_reduced.applymap(len) |
548
|
|
|
) |
549
|
|
|
|
550
|
|
|
# map profiles randomly per cell |
551
|
|
|
# if profiles > buildings, every building will get at least one profile |
552
|
|
|
rng = np.random.default_rng(RANDOM_SEED) |
553
|
|
|
random.seed(RANDOM_SEED) |
554
|
|
|
mapping_profiles_to_buildings = pd.Series( |
555
|
|
|
[ |
556
|
|
|
create_pool(buildings, profiles) |
557
|
|
|
for buildings, profiles in zip( |
558
|
|
|
number_profiles_and_buildings_reduced["building_ids"].values, |
559
|
|
|
number_profiles_and_buildings_reduced[ |
560
|
|
|
"cell_profile_ids" |
561
|
|
|
].values, |
562
|
|
|
) |
563
|
|
|
], |
564
|
|
|
index=number_profiles_and_buildings_reduced.index, |
565
|
|
|
) |
566
|
|
|
|
567
|
|
|
# unnest building assignement per cell |
568
|
|
|
mapping_profiles_to_buildings = ( |
569
|
|
|
mapping_profiles_to_buildings.rename("building") |
570
|
|
|
.explode() |
571
|
|
|
.reset_index() |
572
|
|
|
) |
573
|
|
|
# add profile position as attribute by number of entries per cell (*) |
574
|
|
|
mapping_profiles_to_buildings["profile"] = ( |
575
|
|
|
mapping_profiles_to_buildings.groupby(["cell_id"]).cumcount() |
576
|
|
|
) |
577
|
|
|
# get multiindex of profiles in cells (*) |
578
|
|
|
index_profiles = mapping_profiles_to_buildings.set_index( |
579
|
|
|
["cell_id", "profile"] |
580
|
|
|
).index |
581
|
|
|
# get multiindex of buildings in cells (*) |
582
|
|
|
index_buildings = mapping_profiles_to_buildings.set_index( |
583
|
|
|
["cell_id", "building"] |
584
|
|
|
).index |
585
|
|
|
|
586
|
|
|
# get list of profiles by cell and profile position |
587
|
|
|
profile_ids_per_cell_reduced = ( |
588
|
|
|
profile_ids_per_cell_reduced.explode().reset_index() |
589
|
|
|
) |
590
|
|
|
# assign profile position by order of list |
591
|
|
|
profile_ids_per_cell_reduced["profile"] = ( |
592
|
|
|
profile_ids_per_cell_reduced.groupby(["cell_id"]).cumcount() |
593
|
|
|
) |
594
|
|
|
profile_ids_per_cell_reduced = profile_ids_per_cell_reduced.set_index( |
595
|
|
|
["cell_id", "profile"] |
596
|
|
|
) |
597
|
|
|
|
598
|
|
|
# get list of building by cell and building number |
599
|
|
|
osm_ids_per_cell_reduced = osm_ids_per_cell_reduced.explode().reset_index() |
600
|
|
|
# assign building number by order of list |
601
|
|
|
osm_ids_per_cell_reduced["building"] = osm_ids_per_cell_reduced.groupby( |
602
|
|
|
["cell_id"] |
603
|
|
|
).cumcount() |
604
|
|
|
osm_ids_per_cell_reduced = osm_ids_per_cell_reduced.set_index( |
605
|
|
|
["cell_id", "building"] |
606
|
|
|
) |
607
|
|
|
|
608
|
|
|
# map profiles and buildings by profile position and building number |
609
|
|
|
# merge is possible as both index results from the same origin (*) and are |
610
|
|
|
# not rearranged, therefore in the same order |
611
|
|
|
mapping_profiles_to_buildings = pd.merge( |
612
|
|
|
osm_ids_per_cell_reduced.loc[index_buildings].reset_index(drop=False), |
613
|
|
|
profile_ids_per_cell_reduced.loc[index_profiles].reset_index( |
614
|
|
|
drop=True |
615
|
|
|
), |
616
|
|
|
left_index=True, |
617
|
|
|
right_index=True, |
618
|
|
|
) |
619
|
|
|
|
620
|
|
|
# rename columns |
621
|
|
|
mapping_profiles_to_buildings.rename( |
622
|
|
|
columns={ |
623
|
|
|
"building_ids": "building_id", |
624
|
|
|
"cell_profile_ids": "profile_id", |
625
|
|
|
}, |
626
|
|
|
inplace=True, |
627
|
|
|
) |
628
|
|
|
|
629
|
|
|
return mapping_profiles_to_buildings |
630
|
|
|
|
631
|
|
|
|
632
|
|
|
def reduce_synthetic_buildings( |
633
|
|
|
mapping_profiles_to_buildings, synthetic_buildings |
634
|
|
|
): |
635
|
|
|
"""Reduced list of synthetic buildings to amount actually used. |
636
|
|
|
|
637
|
|
|
Not all are used, due to randomised assignment with replacing |
638
|
|
|
Id's are adapted to continuous number sequence following |
639
|
|
|
openstreetmap.osm_buildings""" |
640
|
|
|
|
641
|
|
|
buildings = Table("osm_buildings", Base.metadata, schema="openstreetmap") |
642
|
|
|
# get table metadata from db by name and schema |
643
|
|
|
inspect(engine).reflecttable(buildings, None) |
644
|
|
|
|
645
|
|
|
# total number of buildings |
646
|
|
|
with db.session_scope() as session: |
647
|
|
|
buildings = session.execute(func.max(buildings.c.id)).scalar() |
648
|
|
|
|
649
|
|
|
synth_ids_used = mapping_profiles_to_buildings.loc[ |
650
|
|
|
mapping_profiles_to_buildings["building_id"] > buildings, |
651
|
|
|
"building_id", |
652
|
|
|
].unique() |
653
|
|
|
|
654
|
|
|
synthetic_buildings = synthetic_buildings.loc[ |
655
|
|
|
synthetic_buildings["id"].isin(synth_ids_used) |
656
|
|
|
] |
657
|
|
|
# id_mapping = dict( |
658
|
|
|
# list( |
659
|
|
|
# zip( |
660
|
|
|
# synth_ids_used, |
661
|
|
|
# range( |
662
|
|
|
# buildings, |
663
|
|
|
# buildings |
664
|
|
|
# + len(synth_ids_used) + 1 |
665
|
|
|
# ) |
666
|
|
|
# ) |
667
|
|
|
# ) |
668
|
|
|
# ) |
669
|
|
|
|
670
|
|
|
# time expensive because of regex |
671
|
|
|
# mapping_profiles_to_buildings['building_id'] = ( |
672
|
|
|
# mapping_profiles_to_buildings['building_id'].replace(id_mapping) |
673
|
|
|
# ) |
674
|
|
|
return synthetic_buildings |
675
|
|
|
|
676
|
|
|
|
677
|
|
|
def get_building_peak_loads(): |
678
|
|
|
""" |
679
|
|
|
Peak loads of buildings are determined. |
680
|
|
|
|
681
|
|
|
Timeseries for every building are accumulated, the maximum value |
682
|
|
|
determined and with the respective nuts3 factor scaled for 2035 and 2050 |
683
|
|
|
scenario. |
684
|
|
|
|
685
|
|
|
Note |
686
|
|
|
---------- |
687
|
|
|
In test-mode 'SH' the iteration takes place by 'cell_id' to avoid |
688
|
|
|
intensive RAM usage. For whole Germany 'nuts3' are taken and |
689
|
|
|
RAM > 32GB is necessary. |
690
|
|
|
""" |
691
|
|
|
|
692
|
|
|
with db.session_scope() as session: |
693
|
|
|
cells_query = ( |
694
|
|
|
session.query( |
695
|
|
|
HouseholdElectricityProfilesOfBuildings, |
696
|
|
|
HouseholdElectricityProfilesInCensusCells.nuts3, |
697
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2019, |
698
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2023, |
699
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2035, |
700
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2050, |
701
|
|
|
) |
702
|
|
|
.filter( |
703
|
|
|
HouseholdElectricityProfilesOfBuildings.cell_id |
704
|
|
|
== HouseholdElectricityProfilesInCensusCells.cell_id |
705
|
|
|
) |
706
|
|
|
.order_by(HouseholdElectricityProfilesOfBuildings.id) |
707
|
|
|
) |
708
|
|
|
|
709
|
|
|
df_buildings_and_profiles = pd.read_sql( |
710
|
|
|
cells_query.statement, cells_query.session.bind, index_col="id" |
711
|
|
|
) |
712
|
|
|
|
713
|
|
|
# fill columns with None with np.nan to allow multiplication with emtpy columns |
714
|
|
|
df_buildings_and_profiles = df_buildings_and_profiles.fillna(np.nan) |
715
|
|
|
|
716
|
|
|
# Read demand profiles from egon-data-bundle |
717
|
|
|
df_profiles = get_iee_hh_demand_profiles_raw() |
718
|
|
|
|
719
|
|
|
def ve(s): |
720
|
|
|
raise (ValueError(s)) |
721
|
|
|
|
722
|
|
|
dataset = egon.data.config.settings()["egon-data"][ |
723
|
|
|
"--dataset-boundary" |
724
|
|
|
] |
725
|
|
|
iterate_over = ( |
726
|
|
|
"nuts3" |
727
|
|
|
if dataset == "Everything" |
728
|
|
|
else ( |
729
|
|
|
"cell_id" |
730
|
|
|
if dataset == "Schleswig-Holstein" |
731
|
|
|
else ve(f"'{dataset}' is not a valid dataset boundary.") |
732
|
|
|
) |
733
|
|
|
) |
734
|
|
|
|
735
|
|
|
df_building_peak_loads = pd.DataFrame() |
736
|
|
|
|
737
|
|
|
for nuts3, df in df_buildings_and_profiles.groupby(by=iterate_over): |
738
|
|
|
df_building_peak_load_nuts3 = df_profiles.loc[:, df.profile_id] |
739
|
|
|
|
740
|
|
|
m_index = pd.MultiIndex.from_arrays( |
741
|
|
|
[df.profile_id, df.building_id], |
742
|
|
|
names=("profile_id", "building_id"), |
743
|
|
|
) |
744
|
|
|
df_building_peak_load_nuts3.columns = m_index |
745
|
|
|
df_building_peak_load_nuts3 = ( |
746
|
|
|
df_building_peak_load_nuts3.groupby("building_id", axis=1) |
747
|
|
|
.sum() |
748
|
|
|
.max() |
749
|
|
|
) |
750
|
|
|
|
751
|
|
|
df_building_peak_load_nuts3 = pd.DataFrame( |
752
|
|
|
[ |
753
|
|
|
df_building_peak_load_nuts3 * df["factor_2019"].unique(), |
754
|
|
|
df_building_peak_load_nuts3 * df["factor_2023"].unique(), |
755
|
|
|
df_building_peak_load_nuts3 * df["factor_2035"].unique(), |
756
|
|
|
df_building_peak_load_nuts3 * df["factor_2050"].unique(), |
757
|
|
|
], |
758
|
|
|
index=[ |
759
|
|
|
"status2019", |
760
|
|
|
"status2023", |
761
|
|
|
"eGon2035", |
762
|
|
|
"eGon100RE", |
763
|
|
|
], |
764
|
|
|
).T |
765
|
|
|
|
766
|
|
|
df_building_peak_loads = pd.concat( |
767
|
|
|
[df_building_peak_loads, df_building_peak_load_nuts3], axis=0 |
768
|
|
|
) |
769
|
|
|
|
770
|
|
|
df_building_peak_loads.reset_index(inplace=True) |
771
|
|
|
df_building_peak_loads["sector"] = "residential" |
772
|
|
|
|
773
|
|
|
BuildingElectricityPeakLoads.__table__.drop( |
774
|
|
|
bind=engine, checkfirst=True |
775
|
|
|
) |
776
|
|
|
BuildingElectricityPeakLoads.__table__.create( |
777
|
|
|
bind=engine, checkfirst=True |
778
|
|
|
) |
779
|
|
|
|
780
|
|
|
df_building_peak_loads = df_building_peak_loads.melt( |
781
|
|
|
id_vars=["building_id", "sector"], |
782
|
|
|
var_name="scenario", |
783
|
|
|
value_name="peak_load_in_w", |
784
|
|
|
) |
785
|
|
|
|
786
|
|
|
# Write peak loads into db |
787
|
|
|
with db.session_scope() as session: |
788
|
|
|
session.bulk_insert_mappings( |
789
|
|
|
BuildingElectricityPeakLoads, |
790
|
|
|
df_building_peak_loads.to_dict(orient="records"), |
791
|
|
|
) |
792
|
|
|
|
793
|
|
|
|
794
|
|
|
def map_houseprofiles_to_buildings(): |
795
|
|
|
""" |
796
|
|
|
Census hh demand profiles are assigned to residential buildings via osm ids. |
797
|
|
|
If no OSM ids are available, synthetic buildings are generated. A list of the |
798
|
|
|
generated buildings and supplementary data as well as the mapping table is stored |
799
|
|
|
in the db. |
800
|
|
|
|
801
|
|
|
**Tables** |
802
|
|
|
|
803
|
|
|
synthetic_buildings: |
804
|
|
|
schema: openstreetmap |
805
|
|
|
tablename: osm_buildings_synthetic |
806
|
|
|
|
807
|
|
|
mapping_profiles_to_buildings: |
808
|
|
|
schema: demand |
809
|
|
|
tablename: egon_household_electricity_profile_of_buildings |
810
|
|
|
|
811
|
|
|
""" |
812
|
|
|
# ========== Get census cells ========== |
813
|
|
|
egon_census_cells = Table( |
814
|
|
|
"egon_destatis_zensus_apartment_building_population_per_ha", |
815
|
|
|
Base.metadata, |
816
|
|
|
schema="society", |
817
|
|
|
) |
818
|
|
|
inspect(engine).reflecttable(egon_census_cells, None) |
819
|
|
|
|
820
|
|
|
with db.session_scope() as session: |
821
|
|
|
cells_query = session.query( |
822
|
|
|
egon_census_cells.c.zensus_population_id, |
823
|
|
|
egon_census_cells.c.population, |
824
|
|
|
egon_census_cells.c.geom, |
825
|
|
|
).order_by(egon_census_cells.c.zensus_population_id) |
826
|
|
|
gdf_egon_census_cells = gpd.read_postgis( |
827
|
|
|
cells_query.statement, cells_query.session.bind, geom_col="geom" |
828
|
|
|
) |
829
|
|
|
|
830
|
|
|
# ========== Get residential buildings ========== |
831
|
|
|
egon_osm_buildings_residential = Table( |
832
|
|
|
"osm_buildings_residential", |
833
|
|
|
Base.metadata, |
834
|
|
|
schema="openstreetmap", |
835
|
|
|
) |
836
|
|
|
inspect(engine).reflecttable(egon_osm_buildings_residential, None) |
837
|
|
|
|
838
|
|
|
with db.session_scope() as session: |
839
|
|
|
cells_query = session.query( |
840
|
|
|
egon_osm_buildings_residential.c.id.label("building_id"), |
841
|
|
|
egon_osm_buildings_residential.c.geom_building, |
842
|
|
|
).order_by(egon_osm_buildings_residential.c.id) |
843
|
|
|
gdf_egon_osm_buildings = gpd.read_postgis( |
844
|
|
|
cells_query.statement, |
845
|
|
|
cells_query.session.bind, |
846
|
|
|
geom_col="geom_building", |
847
|
|
|
) |
848
|
|
|
|
849
|
|
|
# ========== Clip buildings centroids with census cells to get main buildings ========== |
850
|
|
|
|
851
|
|
|
# Copy buildings and set centroid as geom |
852
|
|
|
gdf_egon_osm_buildings_main = gdf_egon_osm_buildings.copy() |
853
|
|
|
gdf_egon_osm_buildings_main["geom_point"] = gdf_egon_osm_buildings_main.centroid |
854
|
|
|
gdf_egon_osm_buildings_main = gdf_egon_osm_buildings_main.drop( |
855
|
|
|
columns=["geom_building"]).set_geometry("geom_point") |
856
|
|
|
|
857
|
|
|
egon_map_zensus_buildings_residential_main = gpd.sjoin( |
858
|
|
|
gdf_egon_osm_buildings_main, |
859
|
|
|
gdf_egon_census_cells, |
860
|
|
|
how="inner", |
861
|
|
|
predicate="within" |
862
|
|
|
)[["building_id", "zensus_population_id"]].rename(columns={"zensus_population_id": "cell_id"}) |
863
|
|
|
|
864
|
|
|
# ========== Clip buildings with census cells to get building parts ========== |
865
|
|
|
|
866
|
|
|
# Clip to create new build parts as buildings |
867
|
|
|
gdf_egon_osm_buildings_census_cells = gdf_egon_census_cells.overlay( |
868
|
|
|
gdf_egon_osm_buildings, how="intersection" |
869
|
|
|
) |
870
|
|
|
|
871
|
|
|
# Remove main buildings which are not located in populated census cells |
872
|
|
|
buildings_centroid_not_in_census_cells = gdf_egon_osm_buildings_census_cells.loc[ |
873
|
|
|
~gdf_egon_osm_buildings_census_cells.building_id.isin( |
874
|
|
|
egon_map_zensus_buildings_residential_main.building_id)] |
875
|
|
|
gdf_egon_osm_buildings_census_cells = gdf_egon_osm_buildings_census_cells.loc[ |
876
|
|
|
~gdf_egon_osm_buildings_census_cells.building_id.isin( |
877
|
|
|
buildings_centroid_not_in_census_cells.building_id.to_list()) |
878
|
|
|
] |
879
|
|
|
|
880
|
|
|
gdf_egon_osm_buildings_census_cells["geom_point"] = ( |
881
|
|
|
gdf_egon_osm_buildings_census_cells.centroid |
882
|
|
|
) |
883
|
|
|
|
884
|
|
|
# Add column with unique building ids using suffixes (building parts split by clipping) |
885
|
|
|
gdf_egon_osm_buildings_census_cells["building_id_temp"] = ( |
886
|
|
|
gdf_egon_osm_buildings_census_cells["building_id"].astype(str) |
887
|
|
|
) |
888
|
|
|
g = ( |
889
|
|
|
gdf_egon_osm_buildings_census_cells.groupby("building_id_temp") |
890
|
|
|
.cumcount() |
891
|
|
|
.add(1) |
892
|
|
|
.astype(str) |
893
|
|
|
) |
894
|
|
|
gdf_egon_osm_buildings_census_cells["building_id_temp"] += "_" + g |
895
|
|
|
|
896
|
|
|
# Check |
897
|
|
|
try: |
898
|
|
|
assert len( |
899
|
|
|
gdf_egon_osm_buildings_census_cells.building_id_temp.unique() |
900
|
|
|
) == len(gdf_egon_osm_buildings_census_cells) |
901
|
|
|
except AssertionError: |
902
|
|
|
print( |
903
|
|
|
"The length of split buildings do not match with original count." |
904
|
|
|
) |
905
|
|
|
|
906
|
|
|
egon_map_zensus_buildings_residential = ( |
907
|
|
|
gdf_egon_osm_buildings_census_cells[ |
908
|
|
|
["zensus_population_id", "building_id_temp"] |
909
|
|
|
].rename( |
910
|
|
|
columns={ |
911
|
|
|
"zensus_population_id": "cell_id", |
912
|
|
|
"building_id_temp": "id", |
913
|
|
|
} |
914
|
|
|
) |
915
|
|
|
) |
916
|
|
|
|
917
|
|
|
# Get household profile to census cells allocations |
918
|
|
|
with db.session_scope() as session: |
919
|
|
|
cells_query = session.query(HouseholdElectricityProfilesInCensusCells) |
920
|
|
|
egon_hh_profile_in_zensus_cell = pd.read_sql( |
921
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
922
|
|
|
) |
923
|
|
|
|
924
|
|
|
# Match OSM and zensus data to define missing buildings |
925
|
|
|
missing_buildings = match_osm_and_zensus_data( |
926
|
|
|
egon_hh_profile_in_zensus_cell, |
927
|
|
|
egon_map_zensus_buildings_residential, |
928
|
|
|
) |
929
|
|
|
|
930
|
|
|
# randomly generate synthetic buildings in cell without any |
931
|
|
|
synthetic_buildings = generate_synthetic_buildings( |
932
|
|
|
missing_buildings, edge_length=5 |
933
|
|
|
) |
934
|
|
|
|
935
|
|
|
# add synthetic buildings to df |
936
|
|
|
egon_map_zensus_buildings_residential_synth = pd.concat( |
937
|
|
|
[ |
938
|
|
|
egon_map_zensus_buildings_residential, |
939
|
|
|
synthetic_buildings[["id", "cell_id"]], |
940
|
|
|
], |
941
|
|
|
ignore_index=True, |
942
|
|
|
) |
943
|
|
|
|
944
|
|
|
# assign profiles to buildings |
945
|
|
|
mapping_profiles_to_buildings = generate_mapping_table( |
946
|
|
|
egon_map_zensus_buildings_residential_synth, |
947
|
|
|
egon_hh_profile_in_zensus_cell, |
948
|
|
|
) |
949
|
|
|
|
950
|
|
|
# remove suffixes from buildings split into parts before to merge them back together |
951
|
|
|
mapping_profiles_to_buildings["building_id"] = ( |
952
|
|
|
mapping_profiles_to_buildings.building_id.astype(str).apply( |
953
|
|
|
lambda s: s.split("_")[0] if "_" in s else s |
954
|
|
|
) |
955
|
|
|
) |
956
|
|
|
mapping_profiles_to_buildings["building_id"] = ( |
957
|
|
|
mapping_profiles_to_buildings["building_id"].astype(int) |
958
|
|
|
) |
959
|
|
|
|
960
|
|
|
# reduce list to only used synthetic buildings |
961
|
|
|
synthetic_buildings = reduce_synthetic_buildings( |
962
|
|
|
mapping_profiles_to_buildings, synthetic_buildings |
963
|
|
|
) |
964
|
|
|
synthetic_buildings["n_amenities_inside"] = 0 |
965
|
|
|
|
966
|
|
|
# ========== Reallocate profiles from building part to main building (correct cell_id) ========== |
967
|
|
|
# cf. https://github.com/openego/eGon-data/issues/1190 |
968
|
|
|
|
969
|
|
|
# Get and allocate main building_id |
970
|
|
|
egon_map_zensus_buildings_residential_main = pd.merge( |
971
|
|
|
mapping_profiles_to_buildings[["cell_id", "building_id"]], |
972
|
|
|
egon_map_zensus_buildings_residential_main, |
973
|
|
|
on='building_id', |
974
|
|
|
how='left', |
975
|
|
|
suffixes=('_df1', '_df2') |
976
|
|
|
).dropna() |
977
|
|
|
egon_map_zensus_buildings_residential_main[ |
978
|
|
|
"cell_id_df2"] = egon_map_zensus_buildings_residential_main["cell_id_df2"].astype(int) |
979
|
|
|
mapping_profiles_to_buildings2 = mapping_profiles_to_buildings.copy() |
980
|
|
|
mapping_profiles_to_buildings["cell_id"] = egon_map_zensus_buildings_residential_main["cell_id_df2"] |
981
|
|
|
|
982
|
|
|
# Retain original values where no main building has been found |
983
|
|
|
# (centroid of building part not in a cell) |
984
|
|
|
mapping_profiles_to_buildings["cell_id"].fillna(mapping_profiles_to_buildings2["cell_id"], inplace=True) |
985
|
|
|
mapping_profiles_to_buildings["cell_id"] = mapping_profiles_to_buildings["cell_id"].astype(int) |
986
|
|
|
|
987
|
|
|
# ========== Write results to DB ========== |
988
|
|
|
|
989
|
|
|
OsmBuildingsSynthetic.__table__.drop(bind=engine, checkfirst=True) |
990
|
|
|
OsmBuildingsSynthetic.__table__.create(bind=engine, checkfirst=True) |
991
|
|
|
|
992
|
|
|
# Write new buildings incl coord into db |
993
|
|
|
n_amenities_inside_type = OsmBuildingsSynthetic.n_amenities_inside.type |
994
|
|
|
synthetic_buildings.to_postgis( |
995
|
|
|
"osm_buildings_synthetic", |
996
|
|
|
con=engine, |
997
|
|
|
if_exists="append", |
998
|
|
|
schema="openstreetmap", |
999
|
|
|
dtype={ |
1000
|
|
|
"id": OsmBuildingsSynthetic.id.type, |
1001
|
|
|
"cell_id": OsmBuildingsSynthetic.cell_id.type, |
1002
|
|
|
"geom_building": OsmBuildingsSynthetic.geom_building.type, |
1003
|
|
|
"geom_point": OsmBuildingsSynthetic.geom_point.type, |
1004
|
|
|
"n_amenities_inside": n_amenities_inside_type, |
1005
|
|
|
"building": OsmBuildingsSynthetic.building.type, |
1006
|
|
|
"area": OsmBuildingsSynthetic.area.type, |
1007
|
|
|
}, |
1008
|
|
|
) |
1009
|
|
|
|
1010
|
|
|
HouseholdElectricityProfilesOfBuildings.__table__.drop( |
1011
|
|
|
bind=engine, checkfirst=True |
1012
|
|
|
) |
1013
|
|
|
HouseholdElectricityProfilesOfBuildings.__table__.create( |
1014
|
|
|
bind=engine, checkfirst=True |
1015
|
|
|
) |
1016
|
|
|
|
1017
|
|
|
# Write building mapping into db |
1018
|
|
|
with db.session_scope() as session: |
1019
|
|
|
session.bulk_insert_mappings( |
1020
|
|
|
HouseholdElectricityProfilesOfBuildings, |
1021
|
|
|
mapping_profiles_to_buildings.to_dict(orient="records"), |
1022
|
|
|
) |
1023
|
|
|
|
1024
|
|
|
|
1025
|
|
|
def create_buildings_profiles_stats(): |
1026
|
|
|
""" |
1027
|
|
|
Create DB table `demand.egon_household_electricity_profile_of_buildings_stats` |
1028
|
|
|
with household profile type counts per building |
1029
|
|
|
""" |
1030
|
|
|
|
1031
|
|
|
# Drop and recreate table if existing |
1032
|
|
|
HouseholdElectricityProfilesOfBuildingsStats.__table__.drop( |
1033
|
|
|
bind=engine, checkfirst=True |
1034
|
|
|
) |
1035
|
|
|
HouseholdElectricityProfilesOfBuildingsStats.__table__.create( |
1036
|
|
|
bind=engine, checkfirst=True |
1037
|
|
|
) |
1038
|
|
|
|
1039
|
|
|
# Query final profile table |
1040
|
|
|
with db.session_scope() as session: |
1041
|
|
|
cells_query = session.query( |
1042
|
|
|
HouseholdElectricityProfilesOfBuildings, |
1043
|
|
|
).order_by(HouseholdElectricityProfilesOfBuildings.id) |
1044
|
|
|
|
1045
|
|
|
df_buildings_and_profiles = pd.read_sql( |
1046
|
|
|
cells_query.statement, cells_query.session.bind, index_col="id" |
1047
|
|
|
) |
1048
|
|
|
|
1049
|
|
|
# Extract household type prefix |
1050
|
|
|
df_buildings_and_profiles = df_buildings_and_profiles.assign( |
1051
|
|
|
household_type=df_buildings_and_profiles.profile_id.str[:2] |
1052
|
|
|
) |
1053
|
|
|
|
1054
|
|
|
# Unstack and create total |
1055
|
|
|
df_buildings_and_profiles = ( |
1056
|
|
|
df_buildings_and_profiles.groupby("building_id") |
1057
|
|
|
.value_counts(["household_type"]) |
1058
|
|
|
.unstack(fill_value=0) |
1059
|
|
|
) |
1060
|
|
|
df_buildings_and_profiles["households_total"] = ( |
1061
|
|
|
df_buildings_and_profiles.sum(axis=1) |
1062
|
|
|
) |
1063
|
|
|
|
1064
|
|
|
# Write to DB |
1065
|
|
|
df_buildings_and_profiles.to_sql( |
1066
|
|
|
name=HouseholdElectricityProfilesOfBuildingsStats.__table__.name, |
1067
|
|
|
schema=HouseholdElectricityProfilesOfBuildingsStats.__table__.schema, |
1068
|
|
|
con=engine, |
1069
|
|
|
if_exists="append", |
1070
|
|
|
) |
1071
|
|
|
|
1072
|
|
|
|
1073
|
|
|
class setup(Dataset): |
1074
|
|
|
""" |
1075
|
|
|
Household electricity demand profiles for scenarios in 2035 and 2050 |
1076
|
|
|
assigned to buildings. |
1077
|
|
|
|
1078
|
|
|
Assignment of household electricity demand timeseries to OSM buildings |
1079
|
|
|
and generation of randomly placed synthetic 5x5m buildings if no |
1080
|
|
|
sufficient OSM-data available in the respective census cell. |
1081
|
|
|
|
1082
|
|
|
For more information see data documentation on :ref:`electricity-demand-ref`. |
1083
|
|
|
|
1084
|
|
|
*Dependencies* |
1085
|
|
|
* :py:func:`houseprofiles_in_census_cells |
1086
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_profiles.houseprofiles_in_census_cells>` |
1087
|
|
|
|
1088
|
|
|
*Resulting tables* |
1089
|
|
|
* :py:class:`OsmBuildingsSynthetic |
1090
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_buildings.OsmBuildingsSynthetic>` |
1091
|
|
|
is created and filled |
1092
|
|
|
* :py:class:`HouseholdElectricityProfilesOfBuildings |
1093
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_buildings.HouseholdElectricityProfilesOfBuildings>` |
1094
|
|
|
is created and filled |
1095
|
|
|
* :py:class:`BuildingElectricityPeakLoads |
1096
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_buildings.BuildingElectricityPeakLoads>` |
1097
|
|
|
is created and filled |
1098
|
|
|
|
1099
|
|
|
**The following datasets from the database are used for creation:** |
1100
|
|
|
|
1101
|
|
|
* `demand.household_electricity_profiles_in_census_cells`: |
1102
|
|
|
Lists references and scaling parameters to time series data for each |
1103
|
|
|
household in a cell by identifiers. This table is fundamental for |
1104
|
|
|
creating subsequent data like demand profiles on MV grid level or |
1105
|
|
|
for determining the peak load at load. Only the profile reference |
1106
|
|
|
and the cell identifiers are used. |
1107
|
|
|
|
1108
|
|
|
* `society.egon_destatis_zensus_apartment_building_population_per_ha`: |
1109
|
|
|
Lists number of apartments, buildings and population for each census |
1110
|
|
|
cell. |
1111
|
|
|
|
1112
|
|
|
* `boundaries.egon_map_zensus_buildings_residential`: |
1113
|
|
|
List of OSM tagged buildings which are considered to be residential. |
1114
|
|
|
|
1115
|
|
|
|
1116
|
|
|
**What is the goal?** |
1117
|
|
|
|
1118
|
|
|
To assign every household demand profile allocated each census cell to a |
1119
|
|
|
specific building. |
1120
|
|
|
|
1121
|
|
|
**What is the challenge?** |
1122
|
|
|
|
1123
|
|
|
The census and the OSM dataset differ from each other. The census uses |
1124
|
|
|
statistical methods and therefore lacks accuracy at high spatial |
1125
|
|
|
resolution. The OSM dataset is a community based dataset which is |
1126
|
|
|
extended throughout and does not claim to be complete. By merging these |
1127
|
|
|
datasets inconsistencies need to be addressed. For example: not yet |
1128
|
|
|
tagged buildings in OSM or new building areas not considered in census |
1129
|
|
|
2011. |
1130
|
|
|
|
1131
|
|
|
**How are these datasets combined?** |
1132
|
|
|
|
1133
|
|
|
The assignment of household demand timeseries to buildings takes place |
1134
|
|
|
at cell level. Within each cell a pool of profiles exists, produced by |
1135
|
|
|
the 'HH Demand" module. These profiles are randomly assigned to a |
1136
|
|
|
filtered list of OSM buildings within this cell. Every profile is |
1137
|
|
|
assigned to a building and every building get a profile assigned if |
1138
|
|
|
there is enough households by the census data. If there are more |
1139
|
|
|
profiles than buildings, all additional profiles are randomly assigned. |
1140
|
|
|
Therefore, multiple profiles can be assigned to one building, making it a |
1141
|
|
|
multi-household building. If there are no OSM buildings available, |
1142
|
|
|
synthetic ones are created (see below). |
1143
|
|
|
|
1144
|
|
|
**What are central assumptions during the data processing?** |
1145
|
|
|
|
1146
|
|
|
* Mapping zensus data to OSM data is not trivial. |
1147
|
|
|
Discrepancies are substituted. |
1148
|
|
|
* Missing OSM buildings are generated by census building count. |
1149
|
|
|
* If no census building count data is available, the number of buildings |
1150
|
|
|
is derived by an average rate of households/buildings applied to the |
1151
|
|
|
number of households. |
1152
|
|
|
|
1153
|
|
|
**Drawbacks and limitations of the data** |
1154
|
|
|
|
1155
|
|
|
* Missing OSM buildings in cells without census building count are |
1156
|
|
|
derived by an average (median) rate of households/buildings applied |
1157
|
|
|
to the number of households. We use a twofold approach for the rate: |
1158
|
|
|
first, the rate is calculated using adjacent cells (function |
1159
|
|
|
`find_adjacent_cells()`), a distance of 3 cells in each direction is |
1160
|
|
|
used by default (resulting in a 7x7 lookup matrix). For the remaining |
1161
|
|
|
cells, i.e. cells without any rate in the adjacent cells, the global |
1162
|
|
|
median rate is used. |
1163
|
|
|
|
1164
|
|
|
As only whole houses can exist, the substitute is ceiled to the next |
1165
|
|
|
higher integer. Ceiling is applied to avoid rounding to amount of 0 |
1166
|
|
|
buildings. |
1167
|
|
|
|
1168
|
|
|
* As this dataset uses the load profile assignment at census cell level |
1169
|
|
|
conducted in hh_profiles.py, also check drawbacks and limitations in that module. |
1170
|
|
|
|
1171
|
|
|
**Example Query** |
1172
|
|
|
|
1173
|
|
|
* Get a list with number of houses, households and household types per |
1174
|
|
|
census cell |
1175
|
|
|
|
1176
|
|
|
.. code-block:: SQL |
1177
|
|
|
|
1178
|
|
|
SELECT t1.cell_id, building_count, hh_count, hh_types FROM ( |
1179
|
|
|
SELECT |
1180
|
|
|
cell_id, |
1181
|
|
|
COUNT(DISTINCT(building_id)) AS building_count, |
1182
|
|
|
COUNT(profile_id) AS hh_count |
1183
|
|
|
FROM demand.egon_household_electricity_profile_of_buildings |
1184
|
|
|
GROUP BY cell_id |
1185
|
|
|
) AS t1 |
1186
|
|
|
FULL OUTER JOIN ( |
1187
|
|
|
SELECT |
1188
|
|
|
cell_id, |
1189
|
|
|
array_agg( |
1190
|
|
|
array[CAST(hh_10types AS char), hh_type] |
1191
|
|
|
) AS hh_types |
1192
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
1193
|
|
|
GROUP BY cell_id |
1194
|
|
|
) AS t2 |
1195
|
|
|
ON t1.cell_id = t2.cell_id |
1196
|
|
|
|
1197
|
|
|
""" |
1198
|
|
|
|
1199
|
|
|
#: |
1200
|
|
|
name: str = "Demand_Building_Assignment" |
1201
|
|
|
#: |
1202
|
|
|
version: str = "0.0.7" |
1203
|
|
|
#: |
1204
|
|
|
tasks = ( |
1205
|
|
|
map_houseprofiles_to_buildings, |
1206
|
|
|
create_buildings_profiles_stats, |
1207
|
|
|
get_building_peak_loads, |
1208
|
|
|
) |
1209
|
|
|
|
1210
|
|
|
def __init__(self, dependencies): |
1211
|
|
|
super().__init__( |
1212
|
|
|
name=self.name, |
1213
|
|
|
version=self.version, |
1214
|
|
|
dependencies=dependencies, |
1215
|
|
|
tasks=self.tasks, |
1216
|
|
|
) |
1217
|
|
|
|