|
1
|
|
|
import geopandas as gpd |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
import pandas as pd |
|
4
|
|
|
|
|
5
|
|
|
from egon.data import config, db |
|
6
|
|
|
from egon.data.datasets import Dataset |
|
7
|
|
|
from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
|
8
|
|
|
from egon.data.datasets.industry.temporal import identify_bus |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
class dsm_Potential(Dataset): |
|
12
|
|
|
def __init__(self, dependencies): |
|
13
|
|
|
super().__init__( |
|
14
|
|
|
name="DSM_potentials", |
|
15
|
|
|
version="0.0.4.dev", |
|
16
|
|
|
dependencies=dependencies, |
|
17
|
|
|
tasks=(dsm_cts_ind_processing), |
|
18
|
|
|
) |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
def cts_data_import(cts_cool_vent_ac_share): |
|
22
|
|
|
|
|
23
|
|
|
""" |
|
24
|
|
|
Import CTS data necessary to identify DSM-potential. |
|
25
|
|
|
---------- |
|
26
|
|
|
cts_share: float |
|
27
|
|
|
Share of cooling, ventilation and AC in CTS demand |
|
28
|
|
|
""" |
|
29
|
|
|
|
|
30
|
|
|
# import load data |
|
31
|
|
|
|
|
32
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
33
|
|
|
"cts_loadcurves" |
|
34
|
|
|
] |
|
35
|
|
|
|
|
36
|
|
|
ts = db.select_dataframe( |
|
37
|
|
|
f"""SELECT bus_id, scn_name, p_set FROM |
|
38
|
|
|
{sources['schema']}.{sources['table']}""" |
|
39
|
|
|
) |
|
40
|
|
|
|
|
41
|
|
|
# identify relevant columns and prepare df to be returned |
|
42
|
|
|
|
|
43
|
|
|
dsm = pd.DataFrame(index=ts.index) |
|
44
|
|
|
|
|
45
|
|
|
dsm["bus"] = ts["bus_id"].copy() |
|
46
|
|
|
dsm["scn_name"] = ts["scn_name"].copy() |
|
47
|
|
|
dsm["p_set"] = ts["p_set"].copy() |
|
48
|
|
|
|
|
49
|
|
|
# calculate share of timeseries for air conditioning, cooling and |
|
50
|
|
|
# ventilation out of CTS-data |
|
51
|
|
|
|
|
52
|
|
|
timeseries = dsm["p_set"].copy() |
|
53
|
|
|
|
|
54
|
|
|
for index, liste in timeseries.iteritems(): |
|
55
|
|
|
share = [float(item) * cts_cool_vent_ac_share for item in liste] |
|
56
|
|
|
timeseries.loc[index] = share |
|
57
|
|
|
|
|
58
|
|
|
dsm["p_set"] = timeseries.copy() |
|
59
|
|
|
|
|
60
|
|
|
return dsm |
|
61
|
|
|
|
|
62
|
|
|
|
|
63
|
|
|
def ind_osm_data_import(ind_vent_cool_share): |
|
64
|
|
|
|
|
65
|
|
|
""" |
|
66
|
|
|
Import industry data per osm-area necessary to identify DSM-potential. |
|
67
|
|
|
---------- |
|
68
|
|
|
ind_share: float |
|
69
|
|
|
Share of considered application in industry demand |
|
70
|
|
|
""" |
|
71
|
|
|
|
|
72
|
|
|
# import load data |
|
73
|
|
|
|
|
74
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
75
|
|
|
"ind_osm_loadcurves" |
|
76
|
|
|
] |
|
77
|
|
|
|
|
78
|
|
|
dsm = db.select_dataframe( |
|
79
|
|
|
f"""SELECT bus, scn_name, p_set FROM |
|
80
|
|
|
{sources['schema']}.{sources['table']}""" |
|
81
|
|
|
) |
|
82
|
|
|
|
|
83
|
|
|
# calculate share of timeseries for cooling and ventilation out of |
|
84
|
|
|
# industry-data |
|
85
|
|
|
|
|
86
|
|
|
timeseries = dsm["p_set"].copy() |
|
87
|
|
|
|
|
88
|
|
|
for index, liste in timeseries.iteritems(): |
|
89
|
|
|
share = [float(item) * ind_vent_cool_share for item in liste] |
|
90
|
|
|
|
|
91
|
|
|
timeseries.loc[index] = share |
|
92
|
|
|
|
|
93
|
|
|
dsm["p_set"] = timeseries.copy() |
|
94
|
|
|
|
|
95
|
|
|
return dsm |
|
96
|
|
|
|
|
97
|
|
|
|
|
98
|
|
|
def ind_sites_vent_data_import(ind_vent_share, wz): |
|
99
|
|
|
|
|
100
|
|
|
""" |
|
101
|
|
|
Import industry sites necessary to identify DSM-potential. |
|
102
|
|
|
---------- |
|
103
|
|
|
ind_vent_share: float |
|
104
|
|
|
Share of considered application in industry demand |
|
105
|
|
|
wz: int |
|
106
|
|
|
Wirtschaftszweig to be considered within industry sites |
|
107
|
|
|
""" |
|
108
|
|
|
|
|
109
|
|
|
# import load data |
|
110
|
|
|
|
|
111
|
|
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
112
|
|
|
"ind_sites_loadcurves" |
|
113
|
|
|
] |
|
114
|
|
|
|
|
115
|
|
|
dsm = db.select_dataframe( |
|
116
|
|
|
f"""SELECT bus, scn_name, p_set, wz FROM |
|
117
|
|
|
{sources['schema']}.{sources['table']}""" |
|
118
|
|
|
) |
|
119
|
|
|
|
|
120
|
|
|
# select load for considered applications |
|
121
|
|
|
|
|
122
|
|
|
dsm = dsm[dsm["wz"] == wz] |
|
123
|
|
|
|
|
124
|
|
|
# calculate share of timeseries for ventilation |
|
125
|
|
|
|
|
126
|
|
|
timeseries = dsm["p_set"].copy() |
|
127
|
|
|
|
|
128
|
|
|
for index, liste in timeseries.iteritems(): |
|
129
|
|
|
share = [float(item) * ind_vent_share for item in liste] |
|
130
|
|
|
timeseries.loc[index] = share |
|
131
|
|
|
|
|
132
|
|
|
dsm["p_set"] = timeseries.copy() |
|
133
|
|
|
|
|
134
|
|
|
return dsm |
|
135
|
|
|
|
|
136
|
|
|
|
|
137
|
|
|
def calc_ind_site_timeseries(scenario): |
|
138
|
|
|
|
|
139
|
|
|
# calculate timeseries per site |
|
140
|
|
|
# -> using code from egon.data.datasets.industry.temporal: |
|
141
|
|
|
# calc_load_curves_ind_sites |
|
142
|
|
|
|
|
143
|
|
|
# select demands per industrial site including the subsector information |
|
144
|
|
|
source1 = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
145
|
|
|
"demandregio_ind_sites" |
|
146
|
|
|
] |
|
147
|
|
|
|
|
148
|
|
|
demands_ind_sites = db.select_dataframe( |
|
149
|
|
|
f"""SELECT industrial_sites_id, wz, demand |
|
150
|
|
|
FROM {source1['schema']}.{source1['table']} |
|
151
|
|
|
WHERE scenario = '{scenario}' |
|
152
|
|
|
AND demand > 0 |
|
153
|
|
|
""" |
|
154
|
|
|
).set_index(["industrial_sites_id"]) |
|
155
|
|
|
|
|
156
|
|
|
# select industrial sites as demand_areas from database |
|
157
|
|
|
source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"] |
|
158
|
|
|
|
|
159
|
|
|
demand_area = db.select_geodataframe( |
|
160
|
|
|
f"""SELECT id, geom, subsector FROM |
|
161
|
|
|
{source2['schema']}.{source2['table']}""", |
|
162
|
|
|
index_col="id", |
|
163
|
|
|
geom_col="geom", |
|
164
|
|
|
epsg=3035, |
|
165
|
|
|
) |
|
166
|
|
|
|
|
167
|
|
|
# replace entries to bring it in line with demandregio's subsector |
|
168
|
|
|
# definitions |
|
169
|
|
|
demands_ind_sites.replace(1718, 17, inplace=True) |
|
170
|
|
|
share_wz_sites = demands_ind_sites.copy() |
|
171
|
|
|
|
|
172
|
|
|
# create additional df on wz_share per industrial site, which is always set |
|
173
|
|
|
# to one as the industrial demand per site is subsector specific |
|
174
|
|
|
share_wz_sites.demand = 1 |
|
175
|
|
|
share_wz_sites.reset_index(inplace=True) |
|
176
|
|
|
|
|
177
|
|
|
share_transpose = pd.DataFrame( |
|
178
|
|
|
index=share_wz_sites.industrial_sites_id.unique(), |
|
179
|
|
|
columns=share_wz_sites.wz.unique(), |
|
180
|
|
|
) |
|
181
|
|
|
share_transpose.index.rename("industrial_sites_id", inplace=True) |
|
182
|
|
|
for wz in share_transpose.columns: |
|
183
|
|
|
share_transpose[wz] = ( |
|
184
|
|
|
share_wz_sites[share_wz_sites.wz == wz] |
|
185
|
|
|
.set_index("industrial_sites_id") |
|
186
|
|
|
.demand |
|
187
|
|
|
) |
|
188
|
|
|
|
|
189
|
|
|
# calculate load curves |
|
190
|
|
|
load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"]) |
|
191
|
|
|
|
|
192
|
|
|
# identify bus per industrial site |
|
193
|
|
|
curves_bus = identify_bus(load_curves, demand_area) |
|
194
|
|
|
curves_bus.index = curves_bus["id"].astype(int) |
|
195
|
|
|
|
|
196
|
|
|
# initialize dataframe to be returned |
|
197
|
|
|
|
|
198
|
|
|
ts = pd.DataFrame( |
|
199
|
|
|
data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
|
200
|
|
|
) |
|
201
|
|
|
ts["scenario_name"] = scenario |
|
202
|
|
|
curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
|
203
|
|
|
ts["p_set"] = curves_bus.values.tolist() |
|
204
|
|
|
|
|
205
|
|
|
# add subsector to relate to Schmidt's tables afterwards |
|
206
|
|
|
ts["application"] = demand_area["subsector"] |
|
207
|
|
|
|
|
208
|
|
|
return ts |
|
209
|
|
|
|
|
210
|
|
|
|
|
211
|
|
|
def relate_to_schmidt_sites(dsm): |
|
212
|
|
|
|
|
213
|
|
|
# import industrial sites by Schmidt |
|
214
|
|
|
|
|
215
|
|
|
source = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
216
|
|
|
"ind_sites_schmidt" |
|
217
|
|
|
] |
|
218
|
|
|
|
|
219
|
|
|
schmidt = db.select_dataframe( |
|
220
|
|
|
f"""SELECT application, geom FROM |
|
221
|
|
|
{source['schema']}.{source['table']}""" |
|
222
|
|
|
) |
|
223
|
|
|
|
|
224
|
|
|
# relate calculated timeseries (dsm) to Schmidt's industrial sites |
|
225
|
|
|
|
|
226
|
|
|
applications = np.unique(schmidt["application"]) |
|
227
|
|
|
dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
|
228
|
|
|
|
|
229
|
|
|
# initialize dataframe to be returned |
|
230
|
|
|
|
|
231
|
|
|
dsm.rename( |
|
232
|
|
|
columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
|
233
|
|
|
inplace=True, |
|
234
|
|
|
) |
|
235
|
|
|
|
|
236
|
|
|
return dsm |
|
237
|
|
|
|
|
238
|
|
|
|
|
239
|
|
|
def ind_sites_data_import(): |
|
240
|
|
|
""" |
|
241
|
|
|
Import industry sites data necessary to identify DSM-potential. |
|
242
|
|
|
""" |
|
243
|
|
|
# calculate timeseries per site |
|
244
|
|
|
|
|
245
|
|
|
# scenario eGon2035 |
|
246
|
|
|
dsm_2035 = calc_ind_site_timeseries("eGon2035") |
|
247
|
|
|
dsm_2035.reset_index(inplace=True) |
|
248
|
|
|
# scenario eGon100RE |
|
249
|
|
|
dsm_100 = calc_ind_site_timeseries("eGon100RE") |
|
250
|
|
|
dsm_100.reset_index(inplace=True) |
|
251
|
|
|
# bring df for both scenarios together |
|
252
|
|
|
dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100)))) |
|
253
|
|
|
dsm = dsm_2035.append(dsm_100) |
|
254
|
|
|
|
|
255
|
|
|
# relate calculated timeseries to Schmidt's industrial sites |
|
256
|
|
|
|
|
257
|
|
|
dsm = relate_to_schmidt_sites(dsm) |
|
258
|
|
|
|
|
259
|
|
|
return dsm |
|
260
|
|
|
|
|
261
|
|
|
|
|
262
|
|
|
def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
|
263
|
|
|
|
|
264
|
|
|
""" |
|
265
|
|
|
Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
|
266
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
|
267
|
|
|
Parameters |
|
268
|
|
|
---------- |
|
269
|
|
|
s_flex: float |
|
270
|
|
|
Feasability factor to account for socio-technical restrictions |
|
271
|
|
|
s_util: float |
|
272
|
|
|
Average annual utilisation rate |
|
273
|
|
|
s_inc: float |
|
274
|
|
|
Shiftable share of installed capacity up to which load can be |
|
275
|
|
|
increased considering technical limitations |
|
276
|
|
|
s_dec: float |
|
277
|
|
|
Shiftable share of installed capacity up to which load can be |
|
278
|
|
|
decreased considering technical limitations |
|
279
|
|
|
delta_t: int |
|
280
|
|
|
Maximum shift duration in hours |
|
281
|
|
|
dsm: DataFrame |
|
282
|
|
|
List of existing buses with DSM-potential including timeseries of |
|
283
|
|
|
loads |
|
284
|
|
|
""" |
|
285
|
|
|
|
|
286
|
|
|
# copy relevant timeseries |
|
287
|
|
|
timeseries = dsm["p_set"].copy() |
|
288
|
|
|
|
|
289
|
|
|
# calculate scheduled load L(t) |
|
290
|
|
|
|
|
291
|
|
|
scheduled_load = timeseries.copy() |
|
292
|
|
|
|
|
293
|
|
|
for index, liste in scheduled_load.iteritems(): |
|
294
|
|
|
share = [] |
|
295
|
|
|
for item in liste: |
|
296
|
|
|
share.append(item * s_flex) |
|
297
|
|
|
scheduled_load.loc[index] = share |
|
298
|
|
|
|
|
299
|
|
|
# calculate maximum capacity Lambda |
|
300
|
|
|
|
|
301
|
|
|
# calculate energy annual requirement |
|
302
|
|
|
energy_annual = pd.Series(index=timeseries.index, dtype=float) |
|
303
|
|
|
for index, liste in timeseries.iteritems(): |
|
304
|
|
|
energy_annual.loc[index] = sum(liste) |
|
305
|
|
|
|
|
306
|
|
|
# calculate Lambda |
|
307
|
|
|
lam = (energy_annual * s_flex) / (8760 * s_util) |
|
308
|
|
|
|
|
309
|
|
|
# calculation of P_max and P_min |
|
310
|
|
|
|
|
311
|
|
|
# P_max |
|
312
|
|
|
p_max = scheduled_load.copy() |
|
313
|
|
|
for index, liste in scheduled_load.iteritems(): |
|
314
|
|
|
lamb = lam.loc[index] |
|
315
|
|
|
p = [] |
|
316
|
|
|
for item in liste: |
|
317
|
|
|
value = lamb * s_inc - item |
|
318
|
|
|
if value < 0: |
|
319
|
|
|
value = 0 |
|
320
|
|
|
p.append(value) |
|
321
|
|
|
p_max.loc[index] = p |
|
322
|
|
|
|
|
323
|
|
|
# P_min |
|
324
|
|
|
p_min = scheduled_load.copy() |
|
325
|
|
|
for index, liste in scheduled_load.iteritems(): |
|
326
|
|
|
lamb = lam.loc[index] |
|
327
|
|
|
p = [] |
|
328
|
|
|
for item in liste: |
|
329
|
|
|
value = -(item - lamb * s_dec) |
|
330
|
|
|
if value > 0: |
|
331
|
|
|
value = 0 |
|
332
|
|
|
p.append(value) |
|
333
|
|
|
p_min.loc[index] = p |
|
334
|
|
|
|
|
335
|
|
|
# calculation of E_max and E_min |
|
336
|
|
|
|
|
337
|
|
|
e_max = scheduled_load.copy() |
|
338
|
|
|
e_min = scheduled_load.copy() |
|
339
|
|
|
|
|
340
|
|
|
for index, liste in scheduled_load.iteritems(): |
|
341
|
|
|
emin = [] |
|
342
|
|
|
emax = [] |
|
343
|
|
|
for i in range(len(liste)): |
|
344
|
|
|
if i + delta_t > len(liste): |
|
345
|
|
|
emax.append( |
|
346
|
|
|
(sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)])) |
|
347
|
|
|
) |
|
348
|
|
|
else: |
|
349
|
|
|
emax.append(sum(liste[i : i + delta_t])) |
|
350
|
|
|
if i - delta_t < 0: |
|
351
|
|
|
emin.append( |
|
352
|
|
|
( |
|
353
|
|
|
-1 |
|
354
|
|
|
* ( |
|
355
|
|
|
( |
|
356
|
|
|
sum(liste[:i]) |
|
357
|
|
|
+ sum(liste[len(liste) - delta_t + i :]) |
|
358
|
|
|
) |
|
359
|
|
|
) |
|
360
|
|
|
) |
|
361
|
|
|
) |
|
362
|
|
|
else: |
|
363
|
|
|
emin.append(-1 * sum(liste[i - delta_t : i])) |
|
364
|
|
|
e_max.loc[index] = emax |
|
365
|
|
|
e_min.loc[index] = emin |
|
366
|
|
|
|
|
367
|
|
|
return p_max, p_min, e_max, e_min |
|
368
|
|
|
|
|
369
|
|
|
|
|
370
|
|
|
def create_dsm_components(con, p_max, p_min, e_max, e_min, dsm): |
|
371
|
|
|
|
|
372
|
|
|
""" |
|
373
|
|
|
Create components representing DSM. |
|
374
|
|
|
Parameters |
|
375
|
|
|
---------- |
|
376
|
|
|
con : |
|
377
|
|
|
Connection to database |
|
378
|
|
|
p_max: DataFrame |
|
379
|
|
|
Timeseries identifying maximum load increase |
|
380
|
|
|
p_min: DataFrame |
|
381
|
|
|
Timeseries identifying maximum load decrease |
|
382
|
|
|
e_max: DataFrame |
|
383
|
|
|
Timeseries identifying maximum energy amount to be preponed |
|
384
|
|
|
e_min: DataFrame |
|
385
|
|
|
Timeseries identifying maximum energy amount to be postponed |
|
386
|
|
|
dsm: DataFrame |
|
387
|
|
|
List of existing buses with DSM-potential including timeseries of loads |
|
388
|
|
|
""" |
|
389
|
|
|
|
|
390
|
|
|
# calculate P_nom and P per unit |
|
391
|
|
|
p_nom = pd.Series(index=p_max.index, dtype=float) |
|
392
|
|
|
for index, row in p_max.iteritems(): |
|
393
|
|
|
nom = max(max(row), abs(min(p_min.loc[index]))) |
|
394
|
|
|
p_nom.loc[index] = nom |
|
395
|
|
|
new = [element / nom for element in row] |
|
396
|
|
|
p_max.loc[index] = new |
|
397
|
|
|
new = [element / nom for element in p_min.loc[index]] |
|
398
|
|
|
p_min.loc[index] = new |
|
399
|
|
|
|
|
400
|
|
|
# calculate E_nom and E per unit |
|
401
|
|
|
e_nom = pd.Series(index=p_min.index, dtype=float) |
|
402
|
|
|
for index, row in e_max.iteritems(): |
|
403
|
|
|
nom = max(max(row), abs(min(e_min.loc[index]))) |
|
404
|
|
|
e_nom.loc[index] = nom |
|
405
|
|
|
new = [element / nom for element in row] |
|
406
|
|
|
e_max.loc[index] = new |
|
407
|
|
|
new = [element / nom for element in e_min.loc[index]] |
|
408
|
|
|
e_min.loc[index] = new |
|
409
|
|
|
|
|
410
|
|
|
# add DSM-buses to "original" buses |
|
411
|
|
|
dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
|
412
|
|
|
dsm_buses["original_bus"] = dsm["bus"].copy() |
|
413
|
|
|
dsm_buses["scn_name"] = dsm["scn_name"].copy() |
|
414
|
|
|
|
|
415
|
|
|
# get original buses and add copy of relevant information |
|
416
|
|
|
target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"] |
|
417
|
|
|
original_buses = db.select_geodataframe( |
|
418
|
|
|
f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
|
419
|
|
|
{target1['schema']}.{target1['table']}""", |
|
420
|
|
|
geom_col="geom", |
|
421
|
|
|
epsg=4326, |
|
422
|
|
|
) |
|
423
|
|
|
|
|
424
|
|
|
# copy relevant information from original buses to DSM-buses |
|
425
|
|
|
dsm_buses["index"] = dsm_buses.index |
|
426
|
|
|
originals = original_buses[ |
|
427
|
|
|
original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
|
428
|
|
|
] |
|
429
|
|
|
dsm_buses = originals.merge( |
|
430
|
|
|
dsm_buses, |
|
431
|
|
|
left_on=["bus_id", "scn_name"], |
|
432
|
|
|
right_on=["original_bus", "scn_name"], |
|
433
|
|
|
) |
|
434
|
|
|
dsm_buses.index = dsm_buses["index"] |
|
435
|
|
|
dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
|
436
|
|
|
|
|
437
|
|
|
# new bus_ids for DSM-buses |
|
438
|
|
|
max_id = original_buses["bus_id"].max() |
|
439
|
|
|
if np.isnan(max_id): |
|
440
|
|
|
max_id = 0 |
|
441
|
|
|
dsm_id = max_id + 1 |
|
442
|
|
|
bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
|
443
|
|
|
|
|
444
|
|
|
# Get number of DSM buses for both scenarios |
|
445
|
|
|
rows_per_scenario = ( |
|
446
|
|
|
dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
|
447
|
|
|
) |
|
448
|
|
|
|
|
449
|
|
|
# Assignment of DSM ids |
|
450
|
|
|
bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
|
451
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
|
452
|
|
|
) |
|
453
|
|
|
|
|
454
|
|
|
bus_id.iloc[ |
|
455
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
|
456
|
|
|
"eGon2035", 0 |
|
457
|
|
|
) |
|
458
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
|
459
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
|
460
|
|
|
|
|
461
|
|
|
dsm_buses["bus_id"] = bus_id |
|
462
|
|
|
|
|
463
|
|
|
# add links from "orignal" buses to DSM-buses |
|
464
|
|
|
|
|
465
|
|
|
dsm_links = pd.DataFrame(index=dsm_buses.index) |
|
466
|
|
|
dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
|
467
|
|
|
dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
|
468
|
|
|
dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
|
469
|
|
|
|
|
470
|
|
|
# set link_id |
|
471
|
|
|
target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"] |
|
472
|
|
|
sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
|
473
|
|
|
max_id = pd.read_sql_query(sql, con) |
|
474
|
|
|
max_id = max_id["link_id"].max() |
|
475
|
|
|
if np.isnan(max_id): |
|
476
|
|
|
max_id = 0 |
|
477
|
|
|
dsm_id = max_id + 1 |
|
478
|
|
|
link_id = pd.Series(index=dsm_buses.index, dtype=int) |
|
479
|
|
|
|
|
480
|
|
|
# Assignment of link ids |
|
481
|
|
|
link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
|
482
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
|
483
|
|
|
) |
|
484
|
|
|
|
|
485
|
|
|
link_id.iloc[ |
|
486
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
|
487
|
|
|
"eGon2035", 0 |
|
488
|
|
|
) |
|
489
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
|
490
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
|
491
|
|
|
|
|
492
|
|
|
dsm_links["link_id"] = link_id |
|
493
|
|
|
|
|
494
|
|
|
# add calculated timeseries to df to be returned |
|
495
|
|
|
dsm_links["p_nom"] = p_nom |
|
496
|
|
|
dsm_links["p_min"] = p_min |
|
497
|
|
|
dsm_links["p_max"] = p_max |
|
498
|
|
|
|
|
499
|
|
|
# add DSM-stores |
|
500
|
|
|
|
|
501
|
|
|
dsm_stores = pd.DataFrame(index=dsm_buses.index) |
|
502
|
|
|
dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
|
503
|
|
|
dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
|
504
|
|
|
dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
|
505
|
|
|
|
|
506
|
|
|
# set store_id |
|
507
|
|
|
target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"] |
|
508
|
|
|
sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
|
509
|
|
|
max_id = pd.read_sql_query(sql, con) |
|
510
|
|
|
max_id = max_id["store_id"].max() |
|
511
|
|
|
if np.isnan(max_id): |
|
512
|
|
|
max_id = 0 |
|
513
|
|
|
dsm_id = max_id + 1 |
|
514
|
|
|
store_id = pd.Series(index=dsm_buses.index, dtype=int) |
|
515
|
|
|
|
|
516
|
|
|
# Assignment of store ids |
|
517
|
|
|
store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
|
518
|
|
|
dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
|
519
|
|
|
) |
|
520
|
|
|
|
|
521
|
|
|
store_id.iloc[ |
|
522
|
|
|
rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
|
523
|
|
|
"eGon2035", 0 |
|
524
|
|
|
) |
|
525
|
|
|
+ rows_per_scenario.get("eGon100RE", 0) |
|
526
|
|
|
] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
|
527
|
|
|
|
|
528
|
|
|
dsm_stores["store_id"] = store_id |
|
529
|
|
|
|
|
530
|
|
|
# add calculated timeseries to df to be returned |
|
531
|
|
|
dsm_stores["e_nom"] = e_nom |
|
532
|
|
|
dsm_stores["e_min"] = e_min |
|
533
|
|
|
dsm_stores["e_max"] = e_max |
|
534
|
|
|
|
|
535
|
|
|
return dsm_buses, dsm_links, dsm_stores |
|
536
|
|
|
|
|
537
|
|
|
|
|
538
|
|
|
def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores): |
|
539
|
|
|
|
|
540
|
|
|
# aggregate buses |
|
541
|
|
|
|
|
542
|
|
|
grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
|
543
|
|
|
|
|
544
|
|
|
df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
|
545
|
|
|
|
|
546
|
|
|
df_dsm_buses.reset_index(inplace=True) |
|
547
|
|
|
df_dsm_buses.sort_values("scn_name", inplace=True) |
|
548
|
|
|
|
|
549
|
|
|
# aggregate links |
|
550
|
|
|
|
|
551
|
|
|
df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x)) |
|
552
|
|
|
df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x)) |
|
553
|
|
|
|
|
554
|
|
|
grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
|
555
|
|
|
p_nom = df_dsm_links.groupby(grouper)["p_nom"].sum() |
|
556
|
|
|
p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
|
557
|
|
|
p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
|
558
|
|
|
|
|
559
|
|
|
df_dsm_links = df_dsm_links.groupby(grouper).first() |
|
560
|
|
|
df_dsm_links.p_nom = p_nom |
|
561
|
|
|
df_dsm_links.p_max = p_max |
|
562
|
|
|
df_dsm_links.p_min = p_min |
|
563
|
|
|
|
|
564
|
|
|
df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
|
565
|
|
|
df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
|
566
|
|
|
|
|
567
|
|
|
df_dsm_links.reset_index(inplace=True) |
|
568
|
|
|
df_dsm_links.sort_values("scn_name", inplace=True) |
|
569
|
|
|
|
|
570
|
|
|
# aggregate stores |
|
571
|
|
|
|
|
572
|
|
|
df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
|
573
|
|
|
lambda x: np.array(x) |
|
574
|
|
|
) |
|
575
|
|
|
df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
|
576
|
|
|
lambda x: np.array(x) |
|
577
|
|
|
) |
|
578
|
|
|
|
|
579
|
|
|
grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
|
580
|
|
|
e_nom = df_dsm_stores.groupby(grouper)["e_nom"].sum() |
|
581
|
|
|
e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
|
582
|
|
|
e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
|
583
|
|
|
|
|
584
|
|
|
df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
|
585
|
|
|
df_dsm_stores.e_nom = e_nom |
|
586
|
|
|
df_dsm_stores.e_max = e_max |
|
587
|
|
|
df_dsm_stores.e_min = e_min |
|
588
|
|
|
|
|
589
|
|
|
df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x)) |
|
590
|
|
|
df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x)) |
|
591
|
|
|
|
|
592
|
|
|
df_dsm_stores.reset_index(inplace=True) |
|
593
|
|
|
df_dsm_stores.sort_values("scn_name", inplace=True) |
|
594
|
|
|
|
|
595
|
|
|
# select new bus_ids for aggregated buses and add to links and stores |
|
596
|
|
|
bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
|
597
|
|
|
|
|
598
|
|
|
df_dsm_buses["bus_id"] = bus_id |
|
599
|
|
|
df_dsm_links["dsm_bus"] = bus_id |
|
600
|
|
|
df_dsm_stores["bus"] = bus_id |
|
601
|
|
|
|
|
602
|
|
|
# select new link_ids for aggregated links |
|
603
|
|
|
link_id = db.next_etrago_id("Link") + df_dsm_links.index |
|
604
|
|
|
|
|
605
|
|
|
df_dsm_links["link_id"] = link_id |
|
606
|
|
|
|
|
607
|
|
|
# select new store_ids to aggregated stores |
|
608
|
|
|
|
|
609
|
|
|
store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
|
610
|
|
|
|
|
611
|
|
|
df_dsm_stores["store_id"] = store_id |
|
612
|
|
|
|
|
613
|
|
|
return df_dsm_buses, df_dsm_links, df_dsm_stores |
|
614
|
|
|
|
|
615
|
|
|
|
|
616
|
|
|
def data_export(dsm_buses, dsm_links, dsm_stores, carrier): |
|
617
|
|
|
|
|
618
|
|
|
""" |
|
619
|
|
|
Export new components to database. |
|
620
|
|
|
|
|
621
|
|
|
Parameters |
|
622
|
|
|
---------- |
|
623
|
|
|
dsm_buses: DataFrame |
|
624
|
|
|
Buses representing locations of DSM-potential |
|
625
|
|
|
dsm_links: DataFrame |
|
626
|
|
|
Links connecting DSM-buses and DSM-stores |
|
627
|
|
|
dsm_stores: DataFrame |
|
628
|
|
|
Stores representing DSM-potential |
|
629
|
|
|
carrier: String |
|
630
|
|
|
Remark to be filled in column 'carrier' identifying DSM-potential |
|
631
|
|
|
""" |
|
632
|
|
|
|
|
633
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
|
634
|
|
|
|
|
635
|
|
|
# dsm_buses |
|
636
|
|
|
|
|
637
|
|
|
insert_buses = gpd.GeoDataFrame( |
|
638
|
|
|
index=dsm_buses.index, |
|
639
|
|
|
data=dsm_buses["geom"], |
|
640
|
|
|
geometry="geom", |
|
641
|
|
|
crs=dsm_buses.crs, |
|
642
|
|
|
) |
|
643
|
|
|
insert_buses["scn_name"] = dsm_buses["scn_name"] |
|
644
|
|
|
insert_buses["bus_id"] = dsm_buses["bus_id"] |
|
645
|
|
|
insert_buses["v_nom"] = dsm_buses["v_nom"] |
|
646
|
|
|
insert_buses["carrier"] = carrier |
|
647
|
|
|
insert_buses["x"] = dsm_buses["x"] |
|
648
|
|
|
insert_buses["y"] = dsm_buses["y"] |
|
649
|
|
|
|
|
650
|
|
|
# insert into database |
|
651
|
|
|
insert_buses.to_postgis( |
|
652
|
|
|
targets["bus"]["table"], |
|
653
|
|
|
con=db.engine(), |
|
654
|
|
|
schema=targets["bus"]["schema"], |
|
655
|
|
|
if_exists="append", |
|
656
|
|
|
index=False, |
|
657
|
|
|
dtype={"geom": "geometry"}, |
|
658
|
|
|
) |
|
659
|
|
|
|
|
660
|
|
|
# dsm_links |
|
661
|
|
|
|
|
662
|
|
|
insert_links = pd.DataFrame(index=dsm_links.index) |
|
663
|
|
|
insert_links["scn_name"] = dsm_links["scn_name"] |
|
664
|
|
|
insert_links["link_id"] = dsm_links["link_id"] |
|
665
|
|
|
insert_links["bus0"] = dsm_links["original_bus"] |
|
666
|
|
|
insert_links["bus1"] = dsm_links["dsm_bus"] |
|
667
|
|
|
insert_links["carrier"] = carrier |
|
668
|
|
|
insert_links["p_nom"] = dsm_links["p_nom"] |
|
669
|
|
|
|
|
670
|
|
|
# insert into database |
|
671
|
|
|
insert_links.to_sql( |
|
672
|
|
|
targets["link"]["table"], |
|
673
|
|
|
con=db.engine(), |
|
674
|
|
|
schema=targets["link"]["schema"], |
|
675
|
|
|
if_exists="append", |
|
676
|
|
|
index=False, |
|
677
|
|
|
) |
|
678
|
|
|
|
|
679
|
|
|
insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
|
680
|
|
|
insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
|
681
|
|
|
insert_links_timeseries["link_id"] = dsm_links["link_id"] |
|
682
|
|
|
insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
|
683
|
|
|
insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
|
684
|
|
|
insert_links_timeseries["temp_id"] = 1 |
|
685
|
|
|
|
|
686
|
|
|
# insert into database |
|
687
|
|
|
insert_links_timeseries.to_sql( |
|
688
|
|
|
targets["link_timeseries"]["table"], |
|
689
|
|
|
con=db.engine(), |
|
690
|
|
|
schema=targets["link_timeseries"]["schema"], |
|
691
|
|
|
if_exists="append", |
|
692
|
|
|
index=False, |
|
693
|
|
|
) |
|
694
|
|
|
|
|
695
|
|
|
# dsm_stores |
|
696
|
|
|
|
|
697
|
|
|
insert_stores = pd.DataFrame(index=dsm_stores.index) |
|
698
|
|
|
insert_stores["scn_name"] = dsm_stores["scn_name"] |
|
699
|
|
|
insert_stores["store_id"] = dsm_stores["store_id"] |
|
700
|
|
|
insert_stores["bus"] = dsm_stores["bus"] |
|
701
|
|
|
insert_stores["carrier"] = carrier |
|
702
|
|
|
insert_stores["e_nom"] = dsm_stores["e_nom"] |
|
703
|
|
|
|
|
704
|
|
|
# insert into database |
|
705
|
|
|
insert_stores.to_sql( |
|
706
|
|
|
targets["store"]["table"], |
|
707
|
|
|
con=db.engine(), |
|
708
|
|
|
schema=targets["store"]["schema"], |
|
709
|
|
|
if_exists="append", |
|
710
|
|
|
index=False, |
|
711
|
|
|
) |
|
712
|
|
|
|
|
713
|
|
|
insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
|
714
|
|
|
insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
|
715
|
|
|
insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
|
716
|
|
|
insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
|
717
|
|
|
insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
|
718
|
|
|
insert_stores_timeseries["temp_id"] = 1 |
|
719
|
|
|
|
|
720
|
|
|
# insert into database |
|
721
|
|
|
insert_stores_timeseries.to_sql( |
|
722
|
|
|
targets["store_timeseries"]["table"], |
|
723
|
|
|
con=db.engine(), |
|
724
|
|
|
schema=targets["store_timeseries"]["schema"], |
|
725
|
|
|
if_exists="append", |
|
726
|
|
|
index=False, |
|
727
|
|
|
) |
|
728
|
|
|
|
|
729
|
|
|
|
|
730
|
|
|
def delete_dsm_entries(carrier): |
|
731
|
|
|
|
|
732
|
|
|
""" |
|
733
|
|
|
Deletes DSM-components from database if they already exist before creating |
|
734
|
|
|
new ones. |
|
735
|
|
|
|
|
736
|
|
|
Parameters |
|
737
|
|
|
---------- |
|
738
|
|
|
carrier: String |
|
739
|
|
|
Remark in column 'carrier' identifying DSM-potential |
|
740
|
|
|
""" |
|
741
|
|
|
|
|
742
|
|
|
targets = config.datasets()["DSM_CTS_industry"]["targets"] |
|
743
|
|
|
|
|
744
|
|
|
# buses |
|
745
|
|
|
|
|
746
|
|
|
sql = f"""DELETE FROM {targets["bus"]["schema"]}.{targets["bus"]["table"]} b |
|
747
|
|
|
WHERE (b.carrier LIKE '{carrier}');""" |
|
748
|
|
|
db.execute_sql(sql) |
|
749
|
|
|
|
|
750
|
|
|
# links |
|
751
|
|
|
|
|
752
|
|
|
sql = f""" |
|
753
|
|
|
DELETE FROM {targets["link_timeseries"]["schema"]}. |
|
754
|
|
|
{targets["link_timeseries"]["table"]} t |
|
755
|
|
|
WHERE t.link_id IN |
|
756
|
|
|
( |
|
757
|
|
|
SELECT l.link_id FROM {targets["link"]["schema"]}. |
|
758
|
|
|
{targets["link"]["table"]} l |
|
759
|
|
|
WHERE l.carrier LIKE '{carrier}' |
|
760
|
|
|
); |
|
761
|
|
|
""" |
|
762
|
|
|
|
|
763
|
|
|
db.execute_sql(sql) |
|
764
|
|
|
|
|
765
|
|
|
sql = f""" |
|
766
|
|
|
DELETE FROM {targets["link"]["schema"]}. |
|
767
|
|
|
{targets["link"]["table"]} l |
|
768
|
|
|
WHERE (l.carrier LIKE '{carrier}'); |
|
769
|
|
|
""" |
|
770
|
|
|
|
|
771
|
|
|
db.execute_sql(sql) |
|
772
|
|
|
|
|
773
|
|
|
# stores |
|
774
|
|
|
|
|
775
|
|
|
sql = f""" |
|
776
|
|
|
DELETE FROM {targets["store_timeseries"]["schema"]}. |
|
777
|
|
|
{targets["store_timeseries"]["table"]} t |
|
778
|
|
|
WHERE t.store_id IN |
|
779
|
|
|
( |
|
780
|
|
|
SELECT s.store_id FROM {targets["store"]["schema"]}. |
|
781
|
|
|
{targets["store"]["table"]} s |
|
782
|
|
|
WHERE s.carrier LIKE '{carrier}' |
|
783
|
|
|
); |
|
784
|
|
|
""" |
|
785
|
|
|
|
|
786
|
|
|
db.execute_sql(sql) |
|
787
|
|
|
|
|
788
|
|
|
sql = f""" |
|
789
|
|
|
DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
|
790
|
|
|
WHERE (s.carrier LIKE '{carrier}'); |
|
791
|
|
|
""" |
|
792
|
|
|
|
|
793
|
|
|
db.execute_sql(sql) |
|
794
|
|
|
|
|
795
|
|
|
|
|
796
|
|
|
def dsm_cts_ind( |
|
797
|
|
|
con=db.engine(), |
|
798
|
|
|
cts_cool_vent_ac_share=0.22, |
|
799
|
|
|
ind_cool_vent_share=0.039, |
|
800
|
|
|
ind_vent_share=0.017, |
|
801
|
|
|
): |
|
802
|
|
|
|
|
803
|
|
|
""" |
|
804
|
|
|
Execute methodology to create and implement components for DSM considering |
|
805
|
|
|
a) CTS per osm-area: combined potentials of cooling, ventilation and air |
|
806
|
|
|
conditioning |
|
807
|
|
|
b) Industry per osm-are: combined potentials of cooling and ventilation |
|
808
|
|
|
c) Industrial Sites: potentials of ventilation in sites of |
|
809
|
|
|
"Wirtschaftszweig" (WZ) 23 |
|
810
|
|
|
d) Industrial Sites: potentials of sites specified by subsectors |
|
811
|
|
|
identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
|
812
|
|
|
Paper, Recycled Paper, Pulp, Cement |
|
813
|
|
|
|
|
814
|
|
|
Modelled using the methods by Heitkoetter et. al.: |
|
815
|
|
|
https://doi.org/10.1016/j.adapen.2020.100001 |
|
816
|
|
|
|
|
817
|
|
|
Parameters |
|
818
|
|
|
---------- |
|
819
|
|
|
con : |
|
820
|
|
|
Connection to database |
|
821
|
|
|
cts_cool_vent_ac_share: float |
|
822
|
|
|
Share of cooling, ventilation and AC in CTS demand |
|
823
|
|
|
ind_cool_vent_share: float |
|
824
|
|
|
Share of cooling and ventilation in industry demand |
|
825
|
|
|
ind_vent_share: float |
|
826
|
|
|
Share of ventilation in industry demand in sites of WZ 23 |
|
827
|
|
|
|
|
828
|
|
|
""" |
|
829
|
|
|
|
|
830
|
|
|
# CTS per osm-area: cooling, ventilation and air conditioning |
|
831
|
|
|
|
|
832
|
|
|
print(" ") |
|
833
|
|
|
print("CTS per osm-area: cooling, ventilation and air conditioning") |
|
834
|
|
|
print(" ") |
|
835
|
|
|
|
|
836
|
|
|
dsm = cts_data_import(cts_cool_vent_ac_share) |
|
837
|
|
|
|
|
838
|
|
|
# calculate combined potentials of cooling, ventilation and air |
|
839
|
|
|
# conditioning in CTS using combined parameters by Heitkoetter et. al. |
|
840
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
|
841
|
|
|
s_flex=0.5, s_util=0.67, s_inc=1, s_dec=0, delta_t=1, dsm=dsm |
|
842
|
|
|
) |
|
843
|
|
|
|
|
844
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
|
845
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
|
846
|
|
|
) |
|
847
|
|
|
|
|
848
|
|
|
df_dsm_buses = dsm_buses.copy() |
|
849
|
|
|
df_dsm_links = dsm_links.copy() |
|
850
|
|
|
df_dsm_stores = dsm_stores.copy() |
|
851
|
|
|
|
|
852
|
|
|
# industry per osm-area: cooling and ventilation |
|
853
|
|
|
|
|
854
|
|
|
print(" ") |
|
855
|
|
|
print("industry per osm-area: cooling and ventilation") |
|
856
|
|
|
print(" ") |
|
857
|
|
|
|
|
858
|
|
|
dsm = ind_osm_data_import(ind_cool_vent_share) |
|
859
|
|
|
|
|
860
|
|
|
# calculate combined potentials of cooling and ventilation in industrial |
|
861
|
|
|
# sector using combined parameters by Heitkoetter et. al. |
|
862
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
|
863
|
|
|
s_flex=0.5, s_util=0.73, s_inc=0.9, s_dec=0.5, delta_t=1, dsm=dsm |
|
864
|
|
|
) |
|
865
|
|
|
|
|
866
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
|
867
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
|
868
|
|
|
) |
|
869
|
|
|
|
|
870
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
|
871
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
|
872
|
|
|
crs="EPSG:4326", |
|
873
|
|
|
) |
|
874
|
|
|
df_dsm_links = pd.DataFrame( |
|
875
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
|
876
|
|
|
) |
|
877
|
|
|
df_dsm_stores = pd.DataFrame( |
|
878
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
|
879
|
|
|
) |
|
880
|
|
|
|
|
881
|
|
|
# industry sites |
|
882
|
|
|
|
|
883
|
|
|
# industry sites: different applications |
|
884
|
|
|
|
|
885
|
|
|
dsm = ind_sites_data_import() |
|
886
|
|
|
|
|
887
|
|
|
print(" ") |
|
888
|
|
|
print("industry sites: paper") |
|
889
|
|
|
print(" ") |
|
890
|
|
|
|
|
891
|
|
|
dsm_paper = gpd.GeoDataFrame( |
|
892
|
|
|
dsm[ |
|
893
|
|
|
dsm["application"].isin( |
|
894
|
|
|
[ |
|
895
|
|
|
"Graphic Paper", |
|
896
|
|
|
"Packing Paper and Board", |
|
897
|
|
|
"Hygiene Paper", |
|
898
|
|
|
"Technical/Special Paper and Board", |
|
899
|
|
|
] |
|
900
|
|
|
) |
|
901
|
|
|
] |
|
902
|
|
|
) |
|
903
|
|
|
|
|
904
|
|
|
# calculate potentials of industrial sites with paper-applications |
|
905
|
|
|
# using parameters by Heitkoetter et al. |
|
906
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
|
907
|
|
|
s_flex=0.15, |
|
908
|
|
|
s_util=0.86, |
|
909
|
|
|
s_inc=0.95, |
|
910
|
|
|
s_dec=0, |
|
911
|
|
|
delta_t=3, |
|
912
|
|
|
dsm=dsm_paper, |
|
913
|
|
|
) |
|
914
|
|
|
|
|
915
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
|
916
|
|
|
con, p_max, p_min, e_max, e_min, dsm_paper |
|
917
|
|
|
) |
|
918
|
|
|
|
|
919
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
|
920
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
|
921
|
|
|
crs="EPSG:4326", |
|
922
|
|
|
) |
|
923
|
|
|
df_dsm_links = pd.DataFrame( |
|
924
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
|
925
|
|
|
) |
|
926
|
|
|
df_dsm_stores = pd.DataFrame( |
|
927
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
|
928
|
|
|
) |
|
929
|
|
|
|
|
930
|
|
|
print(" ") |
|
931
|
|
|
print("industry sites: recycled paper") |
|
932
|
|
|
print(" ") |
|
933
|
|
|
|
|
934
|
|
|
# calculate potentials of industrial sites with recycled paper-applications |
|
935
|
|
|
# using parameters by Heitkoetter et. al. |
|
936
|
|
|
dsm_recycled_paper = gpd.GeoDataFrame( |
|
937
|
|
|
dsm[dsm["application"] == "Recycled Paper"] |
|
938
|
|
|
) |
|
939
|
|
|
|
|
940
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
|
941
|
|
|
s_flex=0.7, |
|
942
|
|
|
s_util=0.85, |
|
943
|
|
|
s_inc=0.95, |
|
944
|
|
|
s_dec=0, |
|
945
|
|
|
delta_t=3, |
|
946
|
|
|
dsm=dsm_recycled_paper, |
|
947
|
|
|
) |
|
948
|
|
|
|
|
949
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
|
950
|
|
|
con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
|
951
|
|
|
) |
|
952
|
|
|
|
|
953
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
|
954
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
|
955
|
|
|
crs="EPSG:4326", |
|
956
|
|
|
) |
|
957
|
|
|
df_dsm_links = pd.DataFrame( |
|
958
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
|
959
|
|
|
) |
|
960
|
|
|
df_dsm_stores = pd.DataFrame( |
|
961
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
|
962
|
|
|
) |
|
963
|
|
|
|
|
964
|
|
|
print(" ") |
|
965
|
|
|
print("industry sites: pulp") |
|
966
|
|
|
print(" ") |
|
967
|
|
|
|
|
968
|
|
|
dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
|
969
|
|
|
|
|
970
|
|
|
# calculate potentials of industrial sites with pulp-applications |
|
971
|
|
|
# using parameters by Heitkoetter et. al. |
|
972
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
|
973
|
|
|
s_flex=0.7, |
|
974
|
|
|
s_util=0.83, |
|
975
|
|
|
s_inc=0.95, |
|
976
|
|
|
s_dec=0, |
|
977
|
|
|
delta_t=2, |
|
978
|
|
|
dsm=dsm_pulp, |
|
979
|
|
|
) |
|
980
|
|
|
|
|
981
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
|
982
|
|
|
con, p_max, p_min, e_max, e_min, dsm_pulp |
|
983
|
|
|
) |
|
984
|
|
|
|
|
985
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
|
986
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
|
987
|
|
|
crs="EPSG:4326", |
|
988
|
|
|
) |
|
989
|
|
|
df_dsm_links = pd.DataFrame( |
|
990
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
|
991
|
|
|
) |
|
992
|
|
|
df_dsm_stores = pd.DataFrame( |
|
993
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
|
994
|
|
|
) |
|
995
|
|
|
|
|
996
|
|
|
# industry sites: cement |
|
997
|
|
|
|
|
998
|
|
|
print(" ") |
|
999
|
|
|
print("industry sites: cement") |
|
1000
|
|
|
print(" ") |
|
1001
|
|
|
|
|
1002
|
|
|
dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
|
1003
|
|
|
|
|
1004
|
|
|
# calculate potentials of industrial sites with cement-applications |
|
1005
|
|
|
# using parameters by Heitkoetter et. al. |
|
1006
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
|
1007
|
|
|
s_flex=0.61, |
|
1008
|
|
|
s_util=0.65, |
|
1009
|
|
|
s_inc=0.95, |
|
1010
|
|
|
s_dec=0, |
|
1011
|
|
|
delta_t=4, |
|
1012
|
|
|
dsm=dsm_cement, |
|
1013
|
|
|
) |
|
1014
|
|
|
|
|
1015
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
|
1016
|
|
|
con, p_max, p_min, e_max, e_min, dsm_cement |
|
1017
|
|
|
) |
|
1018
|
|
|
|
|
1019
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
|
1020
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
|
1021
|
|
|
crs="EPSG:4326", |
|
1022
|
|
|
) |
|
1023
|
|
|
df_dsm_links = pd.DataFrame( |
|
1024
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
|
1025
|
|
|
) |
|
1026
|
|
|
df_dsm_stores = pd.DataFrame( |
|
1027
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
|
1028
|
|
|
) |
|
1029
|
|
|
|
|
1030
|
|
|
# industry sites: ventilation in WZ23 |
|
1031
|
|
|
|
|
1032
|
|
|
print(" ") |
|
1033
|
|
|
print("industry sites: ventilation in WZ23") |
|
1034
|
|
|
print(" ") |
|
1035
|
|
|
|
|
1036
|
|
|
dsm = ind_sites_vent_data_import(ind_vent_share, wz=23) |
|
1037
|
|
|
|
|
1038
|
|
|
# drop entries of Cement Mills whose DSM-potentials have already been |
|
1039
|
|
|
# modelled |
|
1040
|
|
|
cement = np.unique(dsm_cement["bus"].values) |
|
1041
|
|
|
index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
|
1042
|
|
|
dsm.drop(index_names, inplace=True) |
|
1043
|
|
|
|
|
1044
|
|
|
# calculate potentials of ventialtion in industrial sites of WZ 23 |
|
1045
|
|
|
# using parameters by Heitkoetter et. al. |
|
1046
|
|
|
p_max, p_min, e_max, e_min = calculate_potentials( |
|
1047
|
|
|
s_flex=0.5, s_util=0.8, s_inc=1, s_dec=0.5, delta_t=1, dsm=dsm |
|
1048
|
|
|
) |
|
1049
|
|
|
|
|
1050
|
|
|
dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
|
1051
|
|
|
con, p_max, p_min, e_max, e_min, dsm |
|
1052
|
|
|
) |
|
1053
|
|
|
|
|
1054
|
|
|
df_dsm_buses = gpd.GeoDataFrame( |
|
1055
|
|
|
pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
|
1056
|
|
|
crs="EPSG:4326", |
|
1057
|
|
|
) |
|
1058
|
|
|
df_dsm_links = pd.DataFrame( |
|
1059
|
|
|
pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
|
1060
|
|
|
) |
|
1061
|
|
|
df_dsm_stores = pd.DataFrame( |
|
1062
|
|
|
pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
|
1063
|
|
|
) |
|
1064
|
|
|
|
|
1065
|
|
|
# aggregate DSM components per substation |
|
1066
|
|
|
|
|
1067
|
|
|
dsm_buses, dsm_links, dsm_stores = aggregate_components( |
|
1068
|
|
|
df_dsm_buses, df_dsm_links, df_dsm_stores |
|
1069
|
|
|
) |
|
1070
|
|
|
|
|
1071
|
|
|
# export aggregated DSM components to database |
|
1072
|
|
|
|
|
1073
|
|
|
delete_dsm_entries("dsm-cts") |
|
1074
|
|
|
delete_dsm_entries("dsm-ind-osm") |
|
1075
|
|
|
delete_dsm_entries("dsm-ind-sites") |
|
1076
|
|
|
delete_dsm_entries("dsm") |
|
1077
|
|
|
|
|
1078
|
|
|
data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
|
1079
|
|
|
|
|
1080
|
|
|
|
|
1081
|
|
|
def dsm_cts_ind_processing(): |
|
1082
|
|
|
dsm_cts_ind() |
|
1083
|
|
|
|