| Total Complexity | 110 |
| Total Lines | 2045 |
| Duplicated Lines | 5.87 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electrical_neighbours often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """The central module containing all code dealing with electrical neighbours |
||
| 2 | """ |
||
| 3 | |||
| 4 | from os import path |
||
| 5 | from pathlib import Path |
||
| 6 | import datetime |
||
| 7 | import logging |
||
| 8 | import os.path |
||
| 9 | import zipfile |
||
| 10 | |||
| 11 | from shapely.geometry import LineString |
||
| 12 | from sqlalchemy.orm import sessionmaker |
||
| 13 | import entsoe |
||
| 14 | import geopandas as gpd |
||
| 15 | import pandas as pd |
||
| 16 | import requests |
||
| 17 | |||
| 18 | from egon.data import config, db, logger |
||
| 19 | from egon.data.db import session_scope |
||
| 20 | from egon.data.datasets import Dataset, wrapped_partial |
||
| 21 | from egon.data.datasets.fill_etrago_gen import add_marginal_costs |
||
| 22 | from egon.data.datasets.fix_ehv_subnetworks import select_bus_id |
||
| 23 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
| 24 | import egon.data.datasets.etrago_setup as etrago |
||
| 25 | import egon.data.datasets.scenario_parameters.parameters as scenario_parameters |
||
| 26 | |||
| 27 | |||
| 28 | class ElectricalNeighbours(Dataset): |
||
| 29 | """ |
||
| 30 | Add lines, loads, generation and storage for electrical neighbours |
||
| 31 | |||
| 32 | This dataset creates data for modelling the considered foreign countries and writes |
||
| 33 | that data into the database tables that can be read by the eTraGo tool. |
||
| 34 | Neighbouring countries are modelled in a lower spatial resolution, in general one node per |
||
| 35 | country is considered. |
||
| 36 | Defined load timeseries as well as generatrion and storage capacities are connected to these nodes. |
||
| 37 | The nodes are connected by AC and DC transmission lines with the German grid and other neighbouring countries |
||
| 38 | considering the grid topology from ENTSO-E. |
||
| 39 | |||
| 40 | |||
| 41 | *Dependencies* |
||
| 42 | * :py:class:`Tyndp <egon.data.datasets.tyndp.Tyndp>` |
||
| 43 | * :py:class:`PypsaEurSec <egon.data.datasets.pypsaeursec.PypsaEurSec>` |
||
| 44 | |||
| 45 | |||
| 46 | *Resulting tables* |
||
| 47 | * :py:class:`grid.egon_etrago_bus <egon.data.datasets.etrago_setup.EgonPfHvBus>` is extended |
||
| 48 | * :py:class:`grid.egon_etrago_link <egon.data.datasets.etrago_setup.EgonPfHvLink>` is extended |
||
| 49 | * :py:class:`grid.egon_etrago_line <egon.data.datasets.etrago_setup.EgonPfHvLine>` is extended |
||
| 50 | * :py:class:`grid.egon_etrago_load <egon.data.datasets.etrago_setup.EgonPfHvLoad>` is extended |
||
| 51 | * :py:class:`grid.egon_etrago_load_timeseries <egon.data.datasets.etrago_setup.EgonPfHvLoadTimeseries>` is extended |
||
| 52 | * :py:class:`grid.egon_etrago_storage <egon.data.datasets.etrago_setup.EgonPfHvStorageUnit>` is extended |
||
| 53 | * :py:class:`grid.egon_etrago_generator <egon.data.datasets.etrago_setup.EgonPfHvGenerator>` is extended |
||
| 54 | * :py:class:`grid.egon_etrago_generator_timeseries <egon.data.datasets.etrago_setup.EgonPfHvGeneratorTimeseries>` is extended |
||
| 55 | * :py:class:`grid.egon_etrago_transformer <egon.data.datasets.etrago_setup.EgonPfHvTransformer>` is extended |
||
| 56 | |||
| 57 | """ |
||
| 58 | |||
| 59 | #: |
||
| 60 | name: str = "ElectricalNeighbours" |
||
| 61 | #: |
||
| 62 | version: str = "0.0.7" |
||
| 63 | |||
| 64 | def __init__(self, dependencies): |
||
| 65 | super().__init__( |
||
| 66 | name=self.name, |
||
| 67 | version=self.version, |
||
| 68 | dependencies=dependencies, |
||
| 69 | tasks=(grid, {tyndp_generation, tyndp_demand}), |
||
| 70 | ) |
||
| 71 | |||
| 72 | |||
| 73 | def get_cross_border_buses(scenario, sources): |
||
| 74 | """Returns buses from osmTGmod which are outside of Germany. |
||
| 75 | |||
| 76 | Parameters |
||
| 77 | ---------- |
||
| 78 | sources : dict |
||
| 79 | List of sources |
||
| 80 | |||
| 81 | Returns |
||
| 82 | ------- |
||
| 83 | geopandas.GeoDataFrame |
||
| 84 | Electricity buses outside of Germany |
||
| 85 | |||
| 86 | """ |
||
| 87 | return db.select_geodataframe( |
||
| 88 | f""" |
||
| 89 | SELECT * |
||
| 90 | FROM {sources['electricity_buses']['schema']}. |
||
| 91 | {sources['electricity_buses']['table']} |
||
| 92 | WHERE |
||
| 93 | NOT ST_INTERSECTS ( |
||
| 94 | geom, |
||
| 95 | (SELECT ST_Transform(ST_Buffer(geometry, 5), 4326) FROM |
||
| 96 | {sources['german_borders']['schema']}. |
||
| 97 | {sources['german_borders']['table']})) |
||
| 98 | AND (bus_id IN ( |
||
| 99 | SELECT bus0 FROM |
||
| 100 | {sources['lines']['schema']}.{sources['lines']['table']}) |
||
| 101 | OR bus_id IN ( |
||
| 102 | SELECT bus1 FROM |
||
| 103 | {sources['lines']['schema']}.{sources['lines']['table']})) |
||
| 104 | AND scn_name = '{scenario}'; |
||
| 105 | """, |
||
| 106 | epsg=4326, |
||
| 107 | ) |
||
| 108 | |||
| 109 | |||
| 110 | def get_cross_border_lines(scenario, sources): |
||
| 111 | """Returns lines from osmTGmod which end or start outside of Germany. |
||
| 112 | |||
| 113 | Parameters |
||
| 114 | ---------- |
||
| 115 | sources : dict |
||
| 116 | List of sources |
||
| 117 | |||
| 118 | Returns |
||
| 119 | ------- |
||
| 120 | geopandas.GeoDataFrame |
||
| 121 | AC-lines outside of Germany |
||
| 122 | |||
| 123 | """ |
||
| 124 | return db.select_geodataframe( |
||
| 125 | f""" |
||
| 126 | SELECT * |
||
| 127 | FROM {sources['lines']['schema']}.{sources['lines']['table']} a |
||
| 128 | WHERE |
||
| 129 | ST_INTERSECTS ( |
||
| 130 | a.topo, |
||
| 131 | (SELECT ST_Transform(ST_boundary(geometry), 4326) |
||
| 132 | FROM {sources['german_borders']['schema']}. |
||
| 133 | {sources['german_borders']['table']})) |
||
| 134 | AND scn_name = '{scenario}'; |
||
| 135 | """, |
||
| 136 | epsg=4326, |
||
| 137 | ) |
||
| 138 | |||
| 139 | |||
| 140 | def central_buses_egon100(sources): |
||
| 141 | """Returns buses in the middle of foreign countries based on eGon100RE |
||
| 142 | |||
| 143 | Parameters |
||
| 144 | ---------- |
||
| 145 | sources : dict |
||
| 146 | List of sources |
||
| 147 | |||
| 148 | Returns |
||
| 149 | ------- |
||
| 150 | pandas.DataFrame |
||
| 151 | Buses in the center of foreign countries |
||
| 152 | |||
| 153 | """ |
||
| 154 | return db.select_dataframe( |
||
| 155 | f""" |
||
| 156 | SELECT * |
||
| 157 | FROM {sources['electricity_buses']['schema']}. |
||
| 158 | {sources['electricity_buses']['table']} |
||
| 159 | WHERE country != 'DE' |
||
| 160 | AND scn_name = 'eGon100RE' |
||
| 161 | AND bus_id NOT IN ( |
||
| 162 | SELECT bus_i |
||
| 163 | FROM {sources['osmtgmod_bus']['schema']}. |
||
| 164 | {sources['osmtgmod_bus']['table']}) |
||
| 165 | AND carrier = 'AC' |
||
| 166 | """ |
||
| 167 | ) |
||
| 168 | |||
| 169 | |||
| 170 | def buses(scenario, sources, targets): |
||
| 171 | """Insert central buses in foreign countries per scenario |
||
| 172 | |||
| 173 | Parameters |
||
| 174 | ---------- |
||
| 175 | sources : dict |
||
| 176 | List of dataset sources |
||
| 177 | targets : dict |
||
| 178 | List of dataset targets |
||
| 179 | |||
| 180 | Returns |
||
| 181 | ------- |
||
| 182 | central_buses : geoapndas.GeoDataFrame |
||
| 183 | Buses in the center of foreign countries |
||
| 184 | |||
| 185 | """ |
||
| 186 | sql_delete = f""" |
||
| 187 | DELETE FROM {sources['electricity_buses']['schema']}. |
||
| 188 | {sources['electricity_buses']['table']} |
||
| 189 | WHERE country != 'DE' AND scn_name = '{scenario}' |
||
| 190 | AND carrier = 'AC' |
||
| 191 | AND bus_id NOT IN ( |
||
| 192 | SELECT bus_i |
||
| 193 | FROM {sources['osmtgmod_bus']['schema']}. |
||
| 194 | {sources['osmtgmod_bus']['table']}) |
||
| 195 | """ |
||
| 196 | # Drop only buses with v_nom != 380 for eGon100RE |
||
| 197 | # to keep buses from pypsa-eur-sec |
||
| 198 | if scenario == "eGon100RE": |
||
| 199 | sql_delete += "AND v_nom < 380" |
||
| 200 | |||
| 201 | # Delete existing buses |
||
| 202 | db.execute_sql(sql_delete) |
||
| 203 | |||
| 204 | central_buses = central_buses_egon100(sources) |
||
| 205 | |||
| 206 | next_bus_id = db.next_etrago_id("bus") + 1 |
||
| 207 | |||
| 208 | # if in test mode, add bus in center of Germany |
||
| 209 | if config.settings()["egon-data"]["--dataset-boundary"] != "Everything": |
||
| 210 | central_buses = pd.concat( |
||
| 211 | [ |
||
| 212 | central_buses, |
||
| 213 | pd.DataFrame( |
||
| 214 | index=[central_buses.index.max() + 1], |
||
| 215 | data={ |
||
| 216 | "scn_name": scenario, |
||
| 217 | "bus_id": next_bus_id, |
||
| 218 | "x": 10.4234469, |
||
| 219 | "y": 51.0834196, |
||
| 220 | "country": "DE", |
||
| 221 | "carrier": "AC", |
||
| 222 | "v_nom": 380.0, |
||
| 223 | }, |
||
| 224 | ), |
||
| 225 | ], |
||
| 226 | ignore_index=True, |
||
| 227 | ) |
||
| 228 | next_bus_id += 1 |
||
| 229 | |||
| 230 | # Add buses for other voltage levels |
||
| 231 | foreign_buses = get_cross_border_buses(scenario, sources) |
||
| 232 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
| 233 | foreign_buses = foreign_buses[foreign_buses.country != "DE"] |
||
| 234 | vnom_per_country = foreign_buses.groupby("country").v_nom.unique().copy() |
||
| 235 | for cntr in vnom_per_country.index: |
||
| 236 | print(cntr) |
||
| 237 | View Code Duplication | if 110.0 in vnom_per_country[cntr]: |
|
|
|
|||
| 238 | central_buses = pd.concat( |
||
| 239 | [ |
||
| 240 | central_buses, |
||
| 241 | pd.DataFrame( |
||
| 242 | index=[central_buses.index.max() + 1], |
||
| 243 | data={ |
||
| 244 | "scn_name": scenario, |
||
| 245 | "bus_id": next_bus_id, |
||
| 246 | "x": central_buses[ |
||
| 247 | central_buses.country == cntr |
||
| 248 | ].x.unique()[0], |
||
| 249 | "y": central_buses[ |
||
| 250 | central_buses.country == cntr |
||
| 251 | ].y.unique()[0], |
||
| 252 | "country": cntr, |
||
| 253 | "carrier": "AC", |
||
| 254 | "v_nom": 110.0, |
||
| 255 | }, |
||
| 256 | ), |
||
| 257 | ], |
||
| 258 | ignore_index=True, |
||
| 259 | ) |
||
| 260 | next_bus_id += 1 |
||
| 261 | View Code Duplication | if 220.0 in vnom_per_country[cntr]: |
|
| 262 | central_buses = pd.concat( |
||
| 263 | [ |
||
| 264 | central_buses, |
||
| 265 | pd.DataFrame( |
||
| 266 | index=[central_buses.index.max() + 1], |
||
| 267 | data={ |
||
| 268 | "scn_name": scenario, |
||
| 269 | "bus_id": next_bus_id, |
||
| 270 | "x": central_buses[ |
||
| 271 | central_buses.country == cntr |
||
| 272 | ].x.unique()[0], |
||
| 273 | "y": central_buses[ |
||
| 274 | central_buses.country == cntr |
||
| 275 | ].y.unique()[0], |
||
| 276 | "country": cntr, |
||
| 277 | "carrier": "AC", |
||
| 278 | "v_nom": 220.0, |
||
| 279 | }, |
||
| 280 | ), |
||
| 281 | ], |
||
| 282 | ignore_index=True, |
||
| 283 | ) |
||
| 284 | next_bus_id += 1 |
||
| 285 | |||
| 286 | # Add geometry column |
||
| 287 | central_buses = gpd.GeoDataFrame( |
||
| 288 | central_buses, |
||
| 289 | geometry=gpd.points_from_xy(central_buses.x, central_buses.y), |
||
| 290 | crs="EPSG:4326", |
||
| 291 | ) |
||
| 292 | central_buses["geom"] = central_buses.geometry.copy() |
||
| 293 | central_buses = central_buses.set_geometry("geom").drop( |
||
| 294 | "geometry", axis="columns" |
||
| 295 | ) |
||
| 296 | central_buses.scn_name = scenario |
||
| 297 | |||
| 298 | # Insert all central buses for eGon2035 |
||
| 299 | if scenario in [ |
||
| 300 | "eGon2035", |
||
| 301 | "status2019", |
||
| 302 | "status2023", |
||
| 303 | ]: # TODO: status2023 this is hardcoded shit |
||
| 304 | central_buses.to_postgis( |
||
| 305 | targets["buses"]["table"], |
||
| 306 | schema=targets["buses"]["schema"], |
||
| 307 | if_exists="append", |
||
| 308 | con=db.engine(), |
||
| 309 | index=False, |
||
| 310 | ) |
||
| 311 | # Insert only buses for eGon100RE that are not coming from pypsa-eur-sec |
||
| 312 | # (buses with another voltage_level or inside Germany in test mode) |
||
| 313 | else: |
||
| 314 | central_buses[ |
||
| 315 | (central_buses.v_nom != 380) | (central_buses.country == "DE") |
||
| 316 | ].to_postgis( |
||
| 317 | targets["buses"]["table"], |
||
| 318 | schema=targets["buses"]["schema"], |
||
| 319 | if_exists="append", |
||
| 320 | con=db.engine(), |
||
| 321 | index=False, |
||
| 322 | ) |
||
| 323 | |||
| 324 | return central_buses |
||
| 325 | |||
| 326 | |||
| 327 | def cross_border_lines(scenario, sources, targets, central_buses): |
||
| 328 | """Adds lines which connect border-crossing lines from osmtgmod |
||
| 329 | to the central buses in the corresponding neigbouring country |
||
| 330 | |||
| 331 | Parameters |
||
| 332 | ---------- |
||
| 333 | sources : dict |
||
| 334 | List of dataset sources |
||
| 335 | targets : dict |
||
| 336 | List of dataset targets |
||
| 337 | central_buses : geopandas.GeoDataFrame |
||
| 338 | Buses in the center of foreign countries |
||
| 339 | |||
| 340 | Returns |
||
| 341 | ------- |
||
| 342 | new_lines : geopandas.GeoDataFrame |
||
| 343 | Lines that connect cross-border lines to central bus per country |
||
| 344 | |||
| 345 | """ |
||
| 346 | # Delete existing data |
||
| 347 | db.execute_sql( |
||
| 348 | f""" |
||
| 349 | DELETE FROM {targets['lines']['schema']}. |
||
| 350 | {targets['lines']['table']} |
||
| 351 | WHERE scn_name = '{scenario}' |
||
| 352 | AND line_id NOT IN ( |
||
| 353 | SELECT branch_id |
||
| 354 | FROM {sources['osmtgmod_branch']['schema']}. |
||
| 355 | {sources['osmtgmod_branch']['table']} |
||
| 356 | WHERE result_id = 1 and (link_type = 'line' or |
||
| 357 | link_type = 'cable')) |
||
| 358 | AND bus0 IN ( |
||
| 359 | SELECT bus_i |
||
| 360 | FROM {sources['osmtgmod_bus']['schema']}. |
||
| 361 | {sources['osmtgmod_bus']['table']}) |
||
| 362 | AND bus1 NOT IN ( |
||
| 363 | SELECT bus_i |
||
| 364 | FROM {sources['osmtgmod_bus']['schema']}. |
||
| 365 | {sources['osmtgmod_bus']['table']}) |
||
| 366 | """ |
||
| 367 | ) |
||
| 368 | |||
| 369 | # Calculate cross-border busses and lines from osmtgmod |
||
| 370 | foreign_buses = get_cross_border_buses(scenario, sources) |
||
| 371 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
| 372 | foreign_buses = foreign_buses[foreign_buses.country != "DE"] |
||
| 373 | lines = get_cross_border_lines(scenario, sources) |
||
| 374 | |||
| 375 | # Select bus outside of Germany from border-crossing lines |
||
| 376 | lines.loc[ |
||
| 377 | lines[lines.bus0.isin(foreign_buses.bus_id)].index, "foreign_bus" |
||
| 378 | ] = lines.loc[lines[lines.bus0.isin(foreign_buses.bus_id)].index, "bus0"] |
||
| 379 | lines.loc[ |
||
| 380 | lines[lines.bus1.isin(foreign_buses.bus_id)].index, "foreign_bus" |
||
| 381 | ] = lines.loc[lines[lines.bus1.isin(foreign_buses.bus_id)].index, "bus1"] |
||
| 382 | |||
| 383 | # Drop lines with start and endpoint in Germany |
||
| 384 | lines = lines[lines.foreign_bus.notnull()] |
||
| 385 | lines.loc[:, "foreign_bus"] = lines.loc[:, "foreign_bus"].astype(int) |
||
| 386 | |||
| 387 | # Copy all parameters from border-crossing lines |
||
| 388 | new_lines = lines.copy().set_crs(4326) |
||
| 389 | |||
| 390 | # Set bus0 as foreign_bus from osmtgmod |
||
| 391 | new_lines.bus0 = new_lines.foreign_bus.copy() |
||
| 392 | new_lines.bus0 = new_lines.bus0.astype(int) |
||
| 393 | |||
| 394 | # Add country tag and set index |
||
| 395 | new_lines["country"] = ( |
||
| 396 | foreign_buses.set_index("bus_id") |
||
| 397 | .loc[lines.foreign_bus, "country"] |
||
| 398 | .values |
||
| 399 | ) |
||
| 400 | |||
| 401 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
| 402 | new_lines = new_lines[~new_lines.country.isnull()] |
||
| 403 | new_lines.line_id = range( |
||
| 404 | db.next_etrago_id("line"), db.next_etrago_id("line") + len(new_lines) |
||
| 405 | ) |
||
| 406 | |||
| 407 | # Set bus in center of foreogn countries as bus1 |
||
| 408 | for i, row in new_lines.iterrows(): |
||
| 409 | print(row) |
||
| 410 | new_lines.loc[i, "bus1"] = central_buses.bus_id[ |
||
| 411 | (central_buses.country == row.country) |
||
| 412 | & (central_buses.v_nom == row.v_nom) |
||
| 413 | ].values[0] |
||
| 414 | |||
| 415 | # Create geometry for new lines |
||
| 416 | new_lines["geom_bus0"] = ( |
||
| 417 | foreign_buses.set_index("bus_id").geom[new_lines.bus0].values |
||
| 418 | ) |
||
| 419 | new_lines["geom_bus1"] = ( |
||
| 420 | central_buses.set_index("bus_id").geom[new_lines.bus1].values |
||
| 421 | ) |
||
| 422 | new_lines["topo"] = new_lines.apply( |
||
| 423 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
| 424 | ) |
||
| 425 | |||
| 426 | # Set topo as geometry column |
||
| 427 | new_lines = new_lines.set_geometry("topo").set_crs(4326) |
||
| 428 | # Calcultae length of lines based on topology |
||
| 429 | old_length = new_lines["length"].copy() |
||
| 430 | new_lines["length"] = new_lines.to_crs(3035).length / 1000 |
||
| 431 | |||
| 432 | # Set electrical parameters based on lines from osmtgmod |
||
| 433 | for parameter in ["x", "r"]: |
||
| 434 | new_lines[parameter] = ( |
||
| 435 | new_lines[parameter] / old_length * new_lines["length"] |
||
| 436 | ) |
||
| 437 | for parameter in ["b", "g"]: |
||
| 438 | new_lines[parameter] = ( |
||
| 439 | new_lines[parameter] * old_length / new_lines["length"] |
||
| 440 | ) |
||
| 441 | |||
| 442 | # Drop intermediate columns |
||
| 443 | new_lines.drop( |
||
| 444 | ["foreign_bus", "country", "geom_bus0", "geom_bus1", "geom"], |
||
| 445 | axis="columns", |
||
| 446 | inplace=True, |
||
| 447 | ) |
||
| 448 | |||
| 449 | new_lines = new_lines[new_lines.bus0 != new_lines.bus1] |
||
| 450 | |||
| 451 | # Set scn_name |
||
| 452 | |||
| 453 | # Insert lines to the database |
||
| 454 | new_lines.to_postgis( |
||
| 455 | targets["lines"]["table"], |
||
| 456 | schema=targets["lines"]["schema"], |
||
| 457 | if_exists="append", |
||
| 458 | con=db.engine(), |
||
| 459 | index=False, |
||
| 460 | ) |
||
| 461 | |||
| 462 | return new_lines |
||
| 463 | |||
| 464 | |||
| 465 | def choose_transformer(s_nom): |
||
| 466 | """Select transformer and parameters from existing data in the grid model |
||
| 467 | |||
| 468 | It is assumed that transformers in the foreign countries are not limiting |
||
| 469 | the electricity flow, so the capacitiy s_nom is set to the minimum sum |
||
| 470 | of attached AC-lines. |
||
| 471 | The electrical parameters are set according to already inserted |
||
| 472 | transformers in the grid model for Germany. |
||
| 473 | |||
| 474 | Parameters |
||
| 475 | ---------- |
||
| 476 | s_nom : float |
||
| 477 | Minimal sum of nominal power of lines at one side |
||
| 478 | |||
| 479 | Returns |
||
| 480 | ------- |
||
| 481 | int |
||
| 482 | Selected transformer nominal power |
||
| 483 | float |
||
| 484 | Selected transformer nominal impedance |
||
| 485 | |||
| 486 | """ |
||
| 487 | |||
| 488 | if s_nom <= 600: |
||
| 489 | return 600, 0.0002 |
||
| 490 | elif (s_nom > 600) & (s_nom <= 1200): |
||
| 491 | return 1200, 0.0001 |
||
| 492 | elif (s_nom > 1200) & (s_nom <= 1600): |
||
| 493 | return 1600, 0.000075 |
||
| 494 | elif (s_nom > 1600) & (s_nom <= 2100): |
||
| 495 | return 2100, 0.00006667 |
||
| 496 | elif (s_nom > 2100) & (s_nom <= 2600): |
||
| 497 | return 2600, 0.0000461538 |
||
| 498 | elif (s_nom > 2600) & (s_nom <= 4800): |
||
| 499 | return 4800, 0.000025 |
||
| 500 | elif (s_nom > 4800) & (s_nom <= 6000): |
||
| 501 | return 6000, 0.0000225 |
||
| 502 | elif (s_nom > 6000) & (s_nom <= 7200): |
||
| 503 | return 7200, 0.0000194444 |
||
| 504 | elif (s_nom > 7200) & (s_nom <= 8000): |
||
| 505 | return 8000, 0.000016875 |
||
| 506 | elif (s_nom > 8000) & (s_nom <= 9000): |
||
| 507 | return 9000, 0.000015 |
||
| 508 | elif (s_nom > 9000) & (s_nom <= 13000): |
||
| 509 | return 13000, 0.0000103846 |
||
| 510 | elif (s_nom > 13000) & (s_nom <= 20000): |
||
| 511 | return 20000, 0.00000675 |
||
| 512 | elif (s_nom > 20000) & (s_nom <= 33000): |
||
| 513 | return 33000, 0.00000409091 |
||
| 514 | |||
| 515 | |||
| 516 | def central_transformer(scenario, sources, targets, central_buses, new_lines): |
||
| 517 | """Connect central foreign buses with different voltage levels |
||
| 518 | |||
| 519 | Parameters |
||
| 520 | ---------- |
||
| 521 | sources : dict |
||
| 522 | List of dataset sources |
||
| 523 | targets : dict |
||
| 524 | List of dataset targets |
||
| 525 | central_buses : geopandas.GeoDataFrame |
||
| 526 | Buses in the center of foreign countries |
||
| 527 | new_lines : geopandas.GeoDataFrame |
||
| 528 | Lines that connect cross-border lines to central bus per country |
||
| 529 | |||
| 530 | Returns |
||
| 531 | ------- |
||
| 532 | None. |
||
| 533 | |||
| 534 | """ |
||
| 535 | # Delete existing transformers in foreign countries |
||
| 536 | db.execute_sql( |
||
| 537 | f""" |
||
| 538 | DELETE FROM {targets['transformers']['schema']}. |
||
| 539 | {targets['transformers']['table']} |
||
| 540 | WHERE scn_name = '{scenario}' |
||
| 541 | AND trafo_id NOT IN ( |
||
| 542 | SELECT branch_id |
||
| 543 | FROM {sources['osmtgmod_branch']['schema']}. |
||
| 544 | {sources['osmtgmod_branch']['table']} |
||
| 545 | WHERE result_id = 1 and link_type = 'transformer') |
||
| 546 | """ |
||
| 547 | ) |
||
| 548 | |||
| 549 | # Initalize the dataframe for transformers |
||
| 550 | trafo = gpd.GeoDataFrame( |
||
| 551 | columns=["trafo_id", "bus0", "bus1", "s_nom"], dtype=int |
||
| 552 | ) |
||
| 553 | trafo_id = db.next_etrago_id("transformer") |
||
| 554 | |||
| 555 | # Add one transformer per central foreign bus with v_nom != 380 |
||
| 556 | for i, row in central_buses[central_buses.v_nom != 380].iterrows(): |
||
| 557 | s_nom_0 = new_lines[new_lines.bus0 == row.bus_id].s_nom.sum() |
||
| 558 | s_nom_1 = new_lines[new_lines.bus1 == row.bus_id].s_nom.sum() |
||
| 559 | if s_nom_0 == 0.0: |
||
| 560 | s_nom = s_nom_1 |
||
| 561 | elif s_nom_1 == 0.0: |
||
| 562 | s_nom = s_nom_0 |
||
| 563 | else: |
||
| 564 | s_nom = min([s_nom_0, s_nom_1]) |
||
| 565 | |||
| 566 | s_nom, x = choose_transformer(s_nom) |
||
| 567 | |||
| 568 | trafo = pd.concat( |
||
| 569 | [ |
||
| 570 | trafo, |
||
| 571 | pd.DataFrame( |
||
| 572 | index=[trafo.index.max() + 1], |
||
| 573 | data={ |
||
| 574 | "trafo_id": trafo_id, |
||
| 575 | "bus0": row.bus_id, |
||
| 576 | "bus1": central_buses[ |
||
| 577 | (central_buses.v_nom == 380) |
||
| 578 | & (central_buses.country == row.country) |
||
| 579 | ].bus_id.values[0], |
||
| 580 | "s_nom": s_nom, |
||
| 581 | "x": x, |
||
| 582 | }, |
||
| 583 | ), |
||
| 584 | ], |
||
| 585 | ignore_index=True, |
||
| 586 | ) |
||
| 587 | trafo_id += 1 |
||
| 588 | |||
| 589 | # Set data type |
||
| 590 | trafo = trafo.astype({"trafo_id": "int", "bus0": "int", "bus1": "int"}) |
||
| 591 | trafo["scn_name"] = scenario |
||
| 592 | |||
| 593 | # Insert transformers to the database |
||
| 594 | trafo.to_sql( |
||
| 595 | targets["transformers"]["table"], |
||
| 596 | schema=targets["transformers"]["schema"], |
||
| 597 | if_exists="append", |
||
| 598 | con=db.engine(), |
||
| 599 | index=False, |
||
| 600 | ) |
||
| 601 | |||
| 602 | |||
| 603 | def foreign_dc_lines(scenario, sources, targets, central_buses): |
||
| 604 | """Insert DC lines to foreign countries manually |
||
| 605 | |||
| 606 | Parameters |
||
| 607 | ---------- |
||
| 608 | sources : dict |
||
| 609 | List of dataset sources |
||
| 610 | targets : dict |
||
| 611 | List of dataset targets |
||
| 612 | central_buses : geopandas.GeoDataFrame |
||
| 613 | Buses in the center of foreign countries |
||
| 614 | |||
| 615 | Returns |
||
| 616 | ------- |
||
| 617 | None. |
||
| 618 | |||
| 619 | """ |
||
| 620 | # Delete existing dc lines to foreign countries |
||
| 621 | db.execute_sql( |
||
| 622 | f""" |
||
| 623 | DELETE FROM {targets['links']['schema']}. |
||
| 624 | {targets['links']['table']} |
||
| 625 | WHERE scn_name = '{scenario}' |
||
| 626 | AND carrier = 'DC' |
||
| 627 | AND bus0 IN ( |
||
| 628 | SELECT bus_id |
||
| 629 | FROM {sources['electricity_buses']['schema']}. |
||
| 630 | {sources['electricity_buses']['table']} |
||
| 631 | WHERE scn_name = '{scenario}' |
||
| 632 | AND carrier = 'AC' |
||
| 633 | AND country = 'DE') |
||
| 634 | AND bus1 IN ( |
||
| 635 | SELECT bus_id |
||
| 636 | FROM {sources['electricity_buses']['schema']}. |
||
| 637 | {sources['electricity_buses']['table']} |
||
| 638 | WHERE scn_name = '{scenario}' |
||
| 639 | AND carrier = 'AC' |
||
| 640 | AND country != 'DE') |
||
| 641 | """ |
||
| 642 | ) |
||
| 643 | capital_cost = get_sector_parameters("electricity", scenario)[ |
||
| 644 | "capital_cost" |
||
| 645 | ] |
||
| 646 | |||
| 647 | # Add DC line from Lübeck to Sweden |
||
| 648 | converter_luebeck = select_bus_id( |
||
| 649 | 10.802358024202768, |
||
| 650 | 53.897547401787, |
||
| 651 | 380, |
||
| 652 | scenario, |
||
| 653 | "AC", |
||
| 654 | find_closest=True, |
||
| 655 | ) |
||
| 656 | |||
| 657 | foreign_links = pd.DataFrame( |
||
| 658 | index=[0], |
||
| 659 | data={ |
||
| 660 | "link_id": db.next_etrago_id("link"), |
||
| 661 | "bus0": converter_luebeck, |
||
| 662 | "bus1": central_buses[ |
||
| 663 | (central_buses.country == "SE") & (central_buses.v_nom == 380) |
||
| 664 | ] |
||
| 665 | .squeeze() |
||
| 666 | .bus_id, |
||
| 667 | "p_nom": 600, |
||
| 668 | "length": 262, |
||
| 669 | }, |
||
| 670 | ) |
||
| 671 | |||
| 672 | # When not in test-mode, add DC line from Bentwisch to Denmark |
||
| 673 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
| 674 | converter_bentwisch = select_bus_id( |
||
| 675 | 12.213671694775988, |
||
| 676 | 54.09974494662279, |
||
| 677 | 380, |
||
| 678 | scenario, |
||
| 679 | "AC", |
||
| 680 | find_closest=True, |
||
| 681 | ) |
||
| 682 | |||
| 683 | foreign_links = pd.concat( |
||
| 684 | [ |
||
| 685 | foreign_links, |
||
| 686 | pd.DataFrame( |
||
| 687 | index=[1], |
||
| 688 | data={ |
||
| 689 | "link_id": db.next_etrago_id("link") + 1, |
||
| 690 | "bus0": converter_bentwisch, |
||
| 691 | "bus1": central_buses[ |
||
| 692 | (central_buses.country == "DK") |
||
| 693 | & (central_buses.v_nom == 380) |
||
| 694 | & (central_buses.x > 10) |
||
| 695 | ] |
||
| 696 | .squeeze() |
||
| 697 | .bus_id, |
||
| 698 | "p_nom": 600, |
||
| 699 | "length": 170, |
||
| 700 | }, |
||
| 701 | ), |
||
| 702 | ] |
||
| 703 | ) |
||
| 704 | |||
| 705 | # Set parameters for all DC lines |
||
| 706 | foreign_links["capital_cost"] = ( |
||
| 707 | capital_cost["dc_cable"] * foreign_links.length |
||
| 708 | + 2 * capital_cost["dc_inverter"] |
||
| 709 | ) |
||
| 710 | foreign_links["p_min_pu"] = -1 |
||
| 711 | foreign_links["p_nom_extendable"] = True |
||
| 712 | foreign_links["p_nom_min"] = foreign_links["p_nom"] |
||
| 713 | foreign_links["scn_name"] = scenario |
||
| 714 | foreign_links["carrier"] = "DC" |
||
| 715 | foreign_links["efficiency"] = 1 |
||
| 716 | |||
| 717 | # Add topology |
||
| 718 | foreign_links = etrago.link_geom_from_buses(foreign_links, scenario) |
||
| 719 | |||
| 720 | # Insert DC lines to the database |
||
| 721 | foreign_links.to_postgis( |
||
| 722 | targets["links"]["table"], |
||
| 723 | schema=targets["links"]["schema"], |
||
| 724 | if_exists="append", |
||
| 725 | con=db.engine(), |
||
| 726 | index=False, |
||
| 727 | ) |
||
| 728 | |||
| 729 | |||
| 730 | def grid(): |
||
| 731 | """Insert electrical grid compoenents for neighbouring countries |
||
| 732 | |||
| 733 | Returns |
||
| 734 | ------- |
||
| 735 | None. |
||
| 736 | |||
| 737 | """ |
||
| 738 | # Select sources and targets from dataset configuration |
||
| 739 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
| 740 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
| 741 | |||
| 742 | for scenario in config.settings()["egon-data"]["--scenarios"]: |
||
| 743 | central_buses = buses(scenario, sources, targets) |
||
| 744 | |||
| 745 | foreign_lines = cross_border_lines( |
||
| 746 | scenario, sources, targets, central_buses |
||
| 747 | ) |
||
| 748 | |||
| 749 | central_transformer( |
||
| 750 | scenario, sources, targets, central_buses, foreign_lines |
||
| 751 | ) |
||
| 752 | |||
| 753 | foreign_dc_lines(scenario, sources, targets, central_buses) |
||
| 754 | |||
| 755 | |||
| 756 | def map_carriers_tyndp(): |
||
| 757 | """Map carriers from TYNDP-data to carriers used in eGon |
||
| 758 | Returns |
||
| 759 | ------- |
||
| 760 | dict |
||
| 761 | Carrier from TYNDP and eGon |
||
| 762 | """ |
||
| 763 | return { |
||
| 764 | "Battery": "battery", |
||
| 765 | "DSR": "demand_side_response", |
||
| 766 | "Gas CCGT new": "gas", |
||
| 767 | "Gas CCGT old 2": "gas", |
||
| 768 | "Gas CCGT present 1": "gas", |
||
| 769 | "Gas CCGT present 2": "gas", |
||
| 770 | "Gas conventional old 1": "gas", |
||
| 771 | "Gas conventional old 2": "gas", |
||
| 772 | "Gas OCGT new": "gas", |
||
| 773 | "Gas OCGT old": "gas", |
||
| 774 | "Gas CCGT old 1": "gas", |
||
| 775 | "Gas CCGT old 2 Bio": "biogas", |
||
| 776 | "Gas conventional old 2 Bio": "biogas", |
||
| 777 | "Hard coal new": "coal", |
||
| 778 | "Hard coal old 1": "coal", |
||
| 779 | "Hard coal old 2": "coal", |
||
| 780 | "Hard coal old 2 Bio": "coal", |
||
| 781 | "Heavy oil old 1": "oil", |
||
| 782 | "Heavy oil old 1 Bio": "oil", |
||
| 783 | "Heavy oil old 2": "oil", |
||
| 784 | "Light oil": "oil", |
||
| 785 | "Lignite new": "lignite", |
||
| 786 | "Lignite old 1": "lignite", |
||
| 787 | "Lignite old 2": "lignite", |
||
| 788 | "Lignite old 1 Bio": "lignite", |
||
| 789 | "Lignite old 2 Bio": "lignite", |
||
| 790 | "Nuclear": "nuclear", |
||
| 791 | "Offshore Wind": "wind_offshore", |
||
| 792 | "Onshore Wind": "wind_onshore", |
||
| 793 | "Other non-RES": "others", |
||
| 794 | "Other RES": "others", |
||
| 795 | "P2G": "power_to_gas", |
||
| 796 | "PS Closed": "pumped_hydro", |
||
| 797 | "PS Open": "reservoir", |
||
| 798 | "Reservoir": "reservoir", |
||
| 799 | "Run-of-River": "run_of_river", |
||
| 800 | "Solar PV": "solar", |
||
| 801 | "Solar Thermal": "others", |
||
| 802 | "Waste": "Other RES", |
||
| 803 | } |
||
| 804 | |||
| 805 | |||
| 806 | View Code Duplication | def get_foreign_bus_id(scenario): |
|
| 807 | """Calculte the etrago bus id from Nodes of TYNDP based on the geometry |
||
| 808 | |||
| 809 | Returns |
||
| 810 | ------- |
||
| 811 | pandas.Series |
||
| 812 | List of mapped node_ids from TYNDP and etragos bus_id |
||
| 813 | |||
| 814 | """ |
||
| 815 | |||
| 816 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
| 817 | |||
| 818 | bus_id = db.select_geodataframe( |
||
| 819 | f"""SELECT bus_id, ST_Buffer(geom, 1) as geom, country |
||
| 820 | FROM grid.egon_etrago_bus |
||
| 821 | WHERE scn_name = '{scenario}' |
||
| 822 | AND carrier = 'AC' |
||
| 823 | AND v_nom = 380. |
||
| 824 | AND country != 'DE' |
||
| 825 | AND bus_id NOT IN ( |
||
| 826 | SELECT bus_i |
||
| 827 | FROM osmtgmod_results.bus_data) |
||
| 828 | """, |
||
| 829 | epsg=3035, |
||
| 830 | ) |
||
| 831 | |||
| 832 | # insert installed capacities |
||
| 833 | file = zipfile.ZipFile(f"tyndp/{sources['tyndp_capacities']}") |
||
| 834 | |||
| 835 | # Select buses in neighbouring countries as geodataframe |
||
| 836 | buses = pd.read_excel( |
||
| 837 | file.open("TYNDP-2020-Scenario-Datafile.xlsx").read(), |
||
| 838 | sheet_name="Nodes - Dict", |
||
| 839 | ).query("longitude==longitude") |
||
| 840 | buses = gpd.GeoDataFrame( |
||
| 841 | buses, |
||
| 842 | crs=4326, |
||
| 843 | geometry=gpd.points_from_xy(buses.longitude, buses.latitude), |
||
| 844 | ).to_crs(3035) |
||
| 845 | |||
| 846 | buses["bus_id"] = 0 |
||
| 847 | |||
| 848 | # Select bus_id from etrago with shortest distance to TYNDP node |
||
| 849 | for i, row in buses.iterrows(): |
||
| 850 | distance = bus_id.set_index("bus_id").geom.distance(row.geometry) |
||
| 851 | buses.loc[i, "bus_id"] = distance[ |
||
| 852 | distance == distance.min() |
||
| 853 | ].index.values[0] |
||
| 854 | |||
| 855 | return buses.set_index("node_id").bus_id |
||
| 856 | |||
| 857 | |||
| 858 | def calc_capacities(): |
||
| 859 | """Calculates installed capacities from TYNDP data |
||
| 860 | |||
| 861 | Returns |
||
| 862 | ------- |
||
| 863 | pandas.DataFrame |
||
| 864 | Installed capacities per foreign node and energy carrier |
||
| 865 | |||
| 866 | """ |
||
| 867 | |||
| 868 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
| 869 | |||
| 870 | countries = [ |
||
| 871 | "AT", |
||
| 872 | "BE", |
||
| 873 | "CH", |
||
| 874 | "CZ", |
||
| 875 | "DK", |
||
| 876 | "FR", |
||
| 877 | "NL", |
||
| 878 | "NO", |
||
| 879 | "SE", |
||
| 880 | "PL", |
||
| 881 | "UK", |
||
| 882 | ] |
||
| 883 | |||
| 884 | # insert installed capacities |
||
| 885 | file = zipfile.ZipFile(f"tyndp/{sources['tyndp_capacities']}") |
||
| 886 | df = pd.read_excel( |
||
| 887 | file.open("TYNDP-2020-Scenario-Datafile.xlsx").read(), |
||
| 888 | sheet_name="Capacity", |
||
| 889 | ) |
||
| 890 | |||
| 891 | # differneces between different climate years are very small (<1MW) |
||
| 892 | # choose 1984 because it is the mean value |
||
| 893 | df_2030 = ( |
||
| 894 | df.rename({"Climate Year": "Climate_Year"}, axis="columns") |
||
| 895 | .query( |
||
| 896 | 'Scenario == "Distributed Energy" & Year == 2030 & ' |
||
| 897 | "Climate_Year == 1984" |
||
| 898 | ) |
||
| 899 | .set_index(["Node/Line", "Generator_ID"]) |
||
| 900 | ) |
||
| 901 | |||
| 902 | df_2040 = ( |
||
| 903 | df.rename({"Climate Year": "Climate_Year"}, axis="columns") |
||
| 904 | .query( |
||
| 905 | 'Scenario == "Distributed Energy" & Year == 2040 & ' |
||
| 906 | "Climate_Year == 1984" |
||
| 907 | ) |
||
| 908 | .set_index(["Node/Line", "Generator_ID"]) |
||
| 909 | ) |
||
| 910 | |||
| 911 | # interpolate linear between 2030 and 2040 for 2035 accordning to |
||
| 912 | # scenario report of TSO's and the approval by BNetzA |
||
| 913 | df_2035 = pd.DataFrame(index=df_2030.index) |
||
| 914 | df_2035["cap_2030"] = df_2030.Value |
||
| 915 | df_2035["cap_2040"] = df_2040.Value |
||
| 916 | df_2035.fillna(0.0, inplace=True) |
||
| 917 | df_2035["cap_2035"] = ( |
||
| 918 | df_2035["cap_2030"] + (df_2035["cap_2040"] - df_2035["cap_2030"]) / 2 |
||
| 919 | ) |
||
| 920 | df_2035 = df_2035.reset_index() |
||
| 921 | df_2035["carrier"] = df_2035.Generator_ID.map(map_carriers_tyndp()) |
||
| 922 | |||
| 923 | # group capacities by new carriers |
||
| 924 | grouped_capacities = ( |
||
| 925 | df_2035.groupby(["carrier", "Node/Line"]).cap_2035.sum().reset_index() |
||
| 926 | ) |
||
| 927 | |||
| 928 | # choose capacities for considered countries |
||
| 929 | return grouped_capacities[ |
||
| 930 | grouped_capacities["Node/Line"].str[:2].isin(countries) |
||
| 931 | ] |
||
| 932 | |||
| 933 | |||
| 934 | def insert_generators_tyndp(capacities): |
||
| 935 | """Insert generators for foreign countries based on TYNDP-data |
||
| 936 | |||
| 937 | Parameters |
||
| 938 | ---------- |
||
| 939 | capacities : pandas.DataFrame |
||
| 940 | Installed capacities per foreign node and energy carrier |
||
| 941 | |||
| 942 | Returns |
||
| 943 | ------- |
||
| 944 | None. |
||
| 945 | |||
| 946 | """ |
||
| 947 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
| 948 | map_buses = get_map_buses() |
||
| 949 | |||
| 950 | # Delete existing data |
||
| 951 | db.execute_sql( |
||
| 952 | f""" |
||
| 953 | DELETE FROM |
||
| 954 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 955 | WHERE bus IN ( |
||
| 956 | SELECT bus_id FROM |
||
| 957 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 958 | WHERE country != 'DE' |
||
| 959 | AND scn_name = 'eGon2035') |
||
| 960 | AND scn_name = 'eGon2035' |
||
| 961 | AND carrier != 'CH4' |
||
| 962 | """ |
||
| 963 | ) |
||
| 964 | |||
| 965 | db.execute_sql( |
||
| 966 | f""" |
||
| 967 | DELETE FROM |
||
| 968 | {targets['generators_timeseries']['schema']}. |
||
| 969 | {targets['generators_timeseries']['table']} |
||
| 970 | WHERE generator_id NOT IN ( |
||
| 971 | SELECT generator_id FROM |
||
| 972 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 973 | ) |
||
| 974 | AND scn_name = 'eGon2035' |
||
| 975 | """ |
||
| 976 | ) |
||
| 977 | |||
| 978 | # Select generators from TYNDP capacities |
||
| 979 | gen = capacities[ |
||
| 980 | capacities.carrier.isin( |
||
| 981 | [ |
||
| 982 | "others", |
||
| 983 | "wind_offshore", |
||
| 984 | "wind_onshore", |
||
| 985 | "solar", |
||
| 986 | "reservoir", |
||
| 987 | "run_of_river", |
||
| 988 | "lignite", |
||
| 989 | "coal", |
||
| 990 | "oil", |
||
| 991 | "nuclear", |
||
| 992 | ] |
||
| 993 | ) |
||
| 994 | ] |
||
| 995 | |||
| 996 | # Set bus_id |
||
| 997 | gen.loc[ |
||
| 998 | gen[gen["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
| 999 | ] = gen.loc[ |
||
| 1000 | gen[gen["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
| 1001 | ].map( |
||
| 1002 | map_buses |
||
| 1003 | ) |
||
| 1004 | |||
| 1005 | gen.loc[:, "bus"] = ( |
||
| 1006 | get_foreign_bus_id(scenario="eGon2035") |
||
| 1007 | .loc[gen.loc[:, "Node/Line"]] |
||
| 1008 | .values |
||
| 1009 | ) |
||
| 1010 | |||
| 1011 | # Add scenario column |
||
| 1012 | gen["scenario"] = "eGon2035" |
||
| 1013 | |||
| 1014 | # Add marginal costs |
||
| 1015 | gen = add_marginal_costs(gen) |
||
| 1016 | |||
| 1017 | # insert generators data |
||
| 1018 | session = sessionmaker(bind=db.engine())() |
||
| 1019 | for i, row in gen.iterrows(): |
||
| 1020 | entry = etrago.EgonPfHvGenerator( |
||
| 1021 | scn_name=row.scenario, |
||
| 1022 | generator_id=int(db.next_etrago_id("generator")), |
||
| 1023 | bus=row.bus, |
||
| 1024 | carrier=row.carrier, |
||
| 1025 | p_nom=row.cap_2035, |
||
| 1026 | marginal_cost=row.marginal_cost, |
||
| 1027 | ) |
||
| 1028 | |||
| 1029 | session.add(entry) |
||
| 1030 | session.commit() |
||
| 1031 | |||
| 1032 | # assign generators time-series data |
||
| 1033 | renew_carriers_2035 = ["wind_onshore", "wind_offshore", "solar"] |
||
| 1034 | |||
| 1035 | sql = f"""SELECT * FROM |
||
| 1036 | {targets['generators_timeseries']['schema']}. |
||
| 1037 | {targets['generators_timeseries']['table']} |
||
| 1038 | WHERE scn_name = 'eGon100RE' |
||
| 1039 | """ |
||
| 1040 | series_egon100 = pd.read_sql_query(sql, db.engine()) |
||
| 1041 | |||
| 1042 | sql = f""" SELECT * FROM |
||
| 1043 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1044 | WHERE bus IN ( |
||
| 1045 | SELECT bus_id FROM |
||
| 1046 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 1047 | WHERE country != 'DE' |
||
| 1048 | AND scn_name = 'eGon2035') |
||
| 1049 | AND scn_name = 'eGon2035' |
||
| 1050 | """ |
||
| 1051 | gen_2035 = pd.read_sql_query(sql, db.engine()) |
||
| 1052 | gen_2035 = gen_2035[gen_2035.carrier.isin(renew_carriers_2035)] |
||
| 1053 | |||
| 1054 | sql = f""" SELECT * FROM |
||
| 1055 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1056 | WHERE bus IN ( |
||
| 1057 | SELECT bus_id FROM |
||
| 1058 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 1059 | WHERE country != 'DE' |
||
| 1060 | AND scn_name = 'eGon100RE') |
||
| 1061 | AND scn_name = 'eGon100RE' |
||
| 1062 | """ |
||
| 1063 | gen_100 = pd.read_sql_query(sql, db.engine()) |
||
| 1064 | gen_100 = gen_100[gen_100["carrier"].isin(renew_carriers_2035)] |
||
| 1065 | |||
| 1066 | # egon_2035_to_100 map the timeseries used in the scenario eGon100RE |
||
| 1067 | # to the same bus and carrier for the scenario egon2035 |
||
| 1068 | egon_2035_to_100 = {} |
||
| 1069 | for i, gen in gen_2035.iterrows(): |
||
| 1070 | gen_id_100 = gen_100[ |
||
| 1071 | (gen_100["bus"] == gen["bus"]) |
||
| 1072 | & (gen_100["carrier"] == gen["carrier"]) |
||
| 1073 | ]["generator_id"].values[0] |
||
| 1074 | |||
| 1075 | egon_2035_to_100[gen["generator_id"]] = gen_id_100 |
||
| 1076 | |||
| 1077 | # insert generators_timeseries data |
||
| 1078 | session = sessionmaker(bind=db.engine())() |
||
| 1079 | |||
| 1080 | for gen_id in gen_2035.generator_id: |
||
| 1081 | serie = series_egon100[ |
||
| 1082 | series_egon100.generator_id == egon_2035_to_100[gen_id] |
||
| 1083 | ]["p_max_pu"].values[0] |
||
| 1084 | entry = etrago.EgonPfHvGeneratorTimeseries( |
||
| 1085 | scn_name="eGon2035", generator_id=gen_id, temp_id=1, p_max_pu=serie |
||
| 1086 | ) |
||
| 1087 | |||
| 1088 | session.add(entry) |
||
| 1089 | session.commit() |
||
| 1090 | |||
| 1091 | |||
| 1092 | def insert_storage_tyndp(capacities): |
||
| 1093 | """Insert storage units for foreign countries based on TYNDP-data |
||
| 1094 | |||
| 1095 | Parameters |
||
| 1096 | ---------- |
||
| 1097 | capacities : pandas.DataFrame |
||
| 1098 | Installed capacities per foreign node and energy carrier |
||
| 1099 | |||
| 1100 | |||
| 1101 | Returns |
||
| 1102 | ------- |
||
| 1103 | None. |
||
| 1104 | |||
| 1105 | """ |
||
| 1106 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
| 1107 | map_buses = get_map_buses() |
||
| 1108 | |||
| 1109 | # Delete existing data |
||
| 1110 | db.execute_sql( |
||
| 1111 | f""" |
||
| 1112 | DELETE FROM {targets['storage']['schema']}.{targets['storage']['table']} |
||
| 1113 | WHERE bus IN ( |
||
| 1114 | SELECT bus_id FROM |
||
| 1115 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 1116 | WHERE country != 'DE' |
||
| 1117 | AND scn_name = 'eGon2035') |
||
| 1118 | AND scn_name = 'eGon2035' |
||
| 1119 | """ |
||
| 1120 | ) |
||
| 1121 | |||
| 1122 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
| 1123 | parameters_pumped_hydro = scenario_parameters.electricity("eGon2035")[ |
||
| 1124 | "efficiency" |
||
| 1125 | ]["pumped_hydro"] |
||
| 1126 | |||
| 1127 | parameters_battery = scenario_parameters.electricity("eGon2035")[ |
||
| 1128 | "efficiency" |
||
| 1129 | ]["battery"] |
||
| 1130 | |||
| 1131 | # Select storage capacities from TYNDP-data |
||
| 1132 | store = capacities[capacities.carrier.isin(["battery", "pumped_hydro"])] |
||
| 1133 | |||
| 1134 | # Set bus_id |
||
| 1135 | store.loc[ |
||
| 1136 | store[store["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
| 1137 | ] = store.loc[ |
||
| 1138 | store[store["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
| 1139 | ].map( |
||
| 1140 | map_buses |
||
| 1141 | ) |
||
| 1142 | |||
| 1143 | store.loc[:, "bus"] = ( |
||
| 1144 | get_foreign_bus_id(scenario="eGon2035") |
||
| 1145 | .loc[store.loc[:, "Node/Line"]] |
||
| 1146 | .values |
||
| 1147 | ) |
||
| 1148 | |||
| 1149 | # Add columns for additional parameters to df |
||
| 1150 | ( |
||
| 1151 | store["dispatch"], |
||
| 1152 | store["store"], |
||
| 1153 | store["standing_loss"], |
||
| 1154 | store["max_hours"], |
||
| 1155 | ) = (None, None, None, None) |
||
| 1156 | |||
| 1157 | # Insert carrier specific parameters |
||
| 1158 | |||
| 1159 | parameters = ["dispatch", "store", "standing_loss", "max_hours"] |
||
| 1160 | |||
| 1161 | for x in parameters: |
||
| 1162 | store.loc[store["carrier"] == "battery", x] = parameters_battery[x] |
||
| 1163 | store.loc[store["carrier"] == "pumped_hydro", x] = ( |
||
| 1164 | parameters_pumped_hydro[x] |
||
| 1165 | ) |
||
| 1166 | |||
| 1167 | # insert data |
||
| 1168 | session = sessionmaker(bind=db.engine())() |
||
| 1169 | for i, row in store.iterrows(): |
||
| 1170 | entry = etrago.EgonPfHvStorage( |
||
| 1171 | scn_name="eGon2035", |
||
| 1172 | storage_id=int(db.next_etrago_id("storage")), |
||
| 1173 | bus=row.bus, |
||
| 1174 | max_hours=row.max_hours, |
||
| 1175 | efficiency_store=row.store, |
||
| 1176 | efficiency_dispatch=row.dispatch, |
||
| 1177 | standing_loss=row.standing_loss, |
||
| 1178 | carrier=row.carrier, |
||
| 1179 | p_nom=row.cap_2035, |
||
| 1180 | ) |
||
| 1181 | |||
| 1182 | session.add(entry) |
||
| 1183 | session.commit() |
||
| 1184 | |||
| 1185 | |||
| 1186 | def get_map_buses(): |
||
| 1187 | """Returns a dictonary of foreign regions which are aggregated to another |
||
| 1188 | |||
| 1189 | Returns |
||
| 1190 | ------- |
||
| 1191 | Combination of aggregated regions |
||
| 1192 | |||
| 1193 | |||
| 1194 | """ |
||
| 1195 | return { |
||
| 1196 | "DK00": "DKW1", |
||
| 1197 | "DKKF": "DKE1", |
||
| 1198 | "FR15": "FR00", |
||
| 1199 | "NON1": "NOM1", |
||
| 1200 | "NOS0": "NOM1", |
||
| 1201 | "NOS1": "NOM1", |
||
| 1202 | "PLE0": "PL00", |
||
| 1203 | "PLI0": "PL00", |
||
| 1204 | "SE00": "SE02", |
||
| 1205 | "SE01": "SE02", |
||
| 1206 | "SE03": "SE02", |
||
| 1207 | "SE04": "SE02", |
||
| 1208 | "RU": "RU00", |
||
| 1209 | } |
||
| 1210 | |||
| 1211 | |||
| 1212 | def tyndp_generation(): |
||
| 1213 | """Insert data from TYNDP 2020 accordning to NEP 2021 |
||
| 1214 | Scenario 'Distributed Energy', linear interpolate between 2030 and 2040 |
||
| 1215 | |||
| 1216 | Returns |
||
| 1217 | ------- |
||
| 1218 | None. |
||
| 1219 | """ |
||
| 1220 | |||
| 1221 | capacities = calc_capacities() |
||
| 1222 | |||
| 1223 | insert_generators_tyndp(capacities) |
||
| 1224 | |||
| 1225 | insert_storage_tyndp(capacities) |
||
| 1226 | |||
| 1227 | |||
| 1228 | def tyndp_demand(): |
||
| 1229 | """Copy load timeseries data from TYNDP 2020. |
||
| 1230 | According to NEP 2021, the data for 2030 and 2040 is interpolated linearly. |
||
| 1231 | |||
| 1232 | Returns |
||
| 1233 | ------- |
||
| 1234 | None. |
||
| 1235 | |||
| 1236 | """ |
||
| 1237 | map_buses = get_map_buses() |
||
| 1238 | |||
| 1239 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
| 1240 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
| 1241 | |||
| 1242 | # Delete existing data |
||
| 1243 | db.execute_sql( |
||
| 1244 | f""" |
||
| 1245 | DELETE FROM {targets['loads']['schema']}. |
||
| 1246 | {targets['loads']['table']} |
||
| 1247 | WHERE |
||
| 1248 | scn_name = 'eGon2035' |
||
| 1249 | AND carrier = 'AC' |
||
| 1250 | AND bus NOT IN ( |
||
| 1251 | SELECT bus_i |
||
| 1252 | FROM {sources['osmtgmod_bus']['schema']}. |
||
| 1253 | {sources['osmtgmod_bus']['table']}) |
||
| 1254 | """ |
||
| 1255 | ) |
||
| 1256 | |||
| 1257 | # Connect to database |
||
| 1258 | engine = db.engine() |
||
| 1259 | session = sessionmaker(bind=engine)() |
||
| 1260 | |||
| 1261 | nodes = [ |
||
| 1262 | "AT00", |
||
| 1263 | "BE00", |
||
| 1264 | "CH00", |
||
| 1265 | "CZ00", |
||
| 1266 | "DKE1", |
||
| 1267 | "DKW1", |
||
| 1268 | "FR00", |
||
| 1269 | "NL00", |
||
| 1270 | "LUB1", |
||
| 1271 | "LUF1", |
||
| 1272 | "LUG1", |
||
| 1273 | "NOM1", |
||
| 1274 | "NON1", |
||
| 1275 | "NOS0", |
||
| 1276 | "SE01", |
||
| 1277 | "SE02", |
||
| 1278 | "SE03", |
||
| 1279 | "SE04", |
||
| 1280 | "PL00", |
||
| 1281 | "UK00", |
||
| 1282 | "UKNI", |
||
| 1283 | ] |
||
| 1284 | # Assign etrago bus_id to TYNDP nodes |
||
| 1285 | buses = pd.DataFrame({"nodes": nodes}) |
||
| 1286 | buses.loc[buses[buses.nodes.isin(map_buses.keys())].index, "nodes"] = ( |
||
| 1287 | buses[buses.nodes.isin(map_buses.keys())].nodes.map(map_buses) |
||
| 1288 | ) |
||
| 1289 | buses.loc[:, "bus"] = ( |
||
| 1290 | get_foreign_bus_id(scenario="eGon2035") |
||
| 1291 | .loc[buses.loc[:, "nodes"]] |
||
| 1292 | .values |
||
| 1293 | ) |
||
| 1294 | buses.set_index("nodes", inplace=True) |
||
| 1295 | buses = buses[~buses.index.duplicated(keep="first")] |
||
| 1296 | |||
| 1297 | # Read in data from TYNDP for 2030 and 2040 |
||
| 1298 | dataset_2030 = pd.read_excel( |
||
| 1299 | f"tyndp/{sources['tyndp_demand_2030']}", sheet_name=nodes, skiprows=10 |
||
| 1300 | ) |
||
| 1301 | |||
| 1302 | dataset_2040 = pd.read_excel( |
||
| 1303 | f"tyndp/{sources['tyndp_demand_2040']}", sheet_name=None, skiprows=10 |
||
| 1304 | ) |
||
| 1305 | |||
| 1306 | # Transform map_buses to pandas.Series and select only used values |
||
| 1307 | map_series = pd.Series(map_buses) |
||
| 1308 | map_series = map_series[map_series.index.isin(nodes)] |
||
| 1309 | |||
| 1310 | # Calculate and insert demand timeseries per etrago bus_id |
||
| 1311 | for bus in buses.index: |
||
| 1312 | nodes = [bus] |
||
| 1313 | |||
| 1314 | if bus in map_series.values: |
||
| 1315 | nodes.extend(list(map_series[map_series == bus].index.values)) |
||
| 1316 | |||
| 1317 | load_id = db.next_etrago_id("load") |
||
| 1318 | |||
| 1319 | # Some etrago bus_ids represent multiple TYNDP nodes, |
||
| 1320 | # in this cases the loads are summed |
||
| 1321 | data_2030 = pd.Series(index=range(8760), data=0.0) |
||
| 1322 | for node in nodes: |
||
| 1323 | data_2030 = dataset_2030[node][2011] + data_2030 |
||
| 1324 | |||
| 1325 | try: |
||
| 1326 | data_2040 = pd.Series(index=range(8760), data=0.0) |
||
| 1327 | |||
| 1328 | for node in nodes: |
||
| 1329 | data_2040 = dataset_2040[node][2011] + data_2040 |
||
| 1330 | except: |
||
| 1331 | data_2040 = data_2030 |
||
| 1332 | |||
| 1333 | # According to the NEP, data for 2030 and 2040 is linear interpolated |
||
| 1334 | data_2035 = ((data_2030 + data_2040) / 2)[:8760] |
||
| 1335 | |||
| 1336 | entry = etrago.EgonPfHvLoad( |
||
| 1337 | scn_name="eGon2035", |
||
| 1338 | load_id=int(load_id), |
||
| 1339 | carrier="AC", |
||
| 1340 | bus=int(buses.bus[bus]), |
||
| 1341 | ) |
||
| 1342 | |||
| 1343 | entry_ts = etrago.EgonPfHvLoadTimeseries( |
||
| 1344 | scn_name="eGon2035", |
||
| 1345 | load_id=int(load_id), |
||
| 1346 | temp_id=1, |
||
| 1347 | p_set=list(data_2035.values), |
||
| 1348 | ) |
||
| 1349 | |||
| 1350 | session.add(entry) |
||
| 1351 | session.add(entry_ts) |
||
| 1352 | session.commit() |
||
| 1353 | |||
| 1354 | |||
| 1355 | def get_entsoe_token(): |
||
| 1356 | """Check for token in home dir. If not exists, check in working dir""" |
||
| 1357 | token_path = path.join(path.expanduser("~"), ".entsoe-token") |
||
| 1358 | if not os.path.isfile(token_path): |
||
| 1359 | logger.info( |
||
| 1360 | f"Token file not found at {token_path}. Will check in working directory." |
||
| 1361 | ) |
||
| 1362 | token_path = Path(".entsoe-token") |
||
| 1363 | if os.path.isfile(token_path): |
||
| 1364 | logger.info(f"Token found at {token_path}") |
||
| 1365 | entsoe_token = open(token_path, "r").read(36) |
||
| 1366 | if entsoe_token is None: |
||
| 1367 | raise FileNotFoundError("No entsoe-token found.") |
||
| 1368 | return entsoe_token |
||
| 1369 | |||
| 1370 | |||
| 1371 | def entsoe_historic_generation_capacities( |
||
| 1372 | year_start="20190101", year_end="20200101" |
||
| 1373 | ): |
||
| 1374 | entsoe_token = get_entsoe_token() |
||
| 1375 | client = entsoe.EntsoePandasClient(api_key=entsoe_token) |
||
| 1376 | |||
| 1377 | start = pd.Timestamp(year_start, tz="Europe/Brussels") |
||
| 1378 | end = pd.Timestamp(year_end, tz="Europe/Brussels") |
||
| 1379 | start_gb = pd.Timestamp(year_start, tz="Europe/London") |
||
| 1380 | end_gb = pd.Timestamp(year_end, tz="Europe/London") |
||
| 1381 | countries = [ |
||
| 1382 | "LU", |
||
| 1383 | "AT", |
||
| 1384 | "FR", |
||
| 1385 | "NL", |
||
| 1386 | "CZ", |
||
| 1387 | "DK_1", |
||
| 1388 | "DK_2", |
||
| 1389 | "PL", |
||
| 1390 | "CH", |
||
| 1391 | "NO", |
||
| 1392 | "BE", |
||
| 1393 | "SE", |
||
| 1394 | "GB", |
||
| 1395 | ] |
||
| 1396 | # No GB data after Brexit |
||
| 1397 | if int(year_start[:4]) > 2021: |
||
| 1398 | logger.warning( |
||
| 1399 | "No GB data after Brexit. GB is dropped from entsoe query!" |
||
| 1400 | ) |
||
| 1401 | countries = [c for c in countries if c != "GB"] |
||
| 1402 | # todo: define wanted countries |
||
| 1403 | |||
| 1404 | not_retrieved = [] |
||
| 1405 | dfs = [] |
||
| 1406 | for country in countries: |
||
| 1407 | if country == "GB": |
||
| 1408 | kwargs = dict(start=start_gb, end=end_gb) |
||
| 1409 | else: |
||
| 1410 | kwargs = dict(start=start, end=end) |
||
| 1411 | try: |
||
| 1412 | country_data = client.query_installed_generation_capacity( |
||
| 1413 | country, **kwargs |
||
| 1414 | ) |
||
| 1415 | dfs.append(country_data) |
||
| 1416 | except (entsoe.exceptions.NoMatchingDataError, requests.HTTPError): |
||
| 1417 | logger.warning( |
||
| 1418 | f"Data for country: {country} could not be retrieved." |
||
| 1419 | ) |
||
| 1420 | not_retrieved.append(country) |
||
| 1421 | pass |
||
| 1422 | |||
| 1423 | if dfs: |
||
| 1424 | df = pd.concat(dfs) |
||
| 1425 | df["country"] = [c for c in countries if c not in not_retrieved] |
||
| 1426 | df.set_index("country", inplace=True) |
||
| 1427 | if int(year_start[:4]) == 2023: |
||
| 1428 | # https://www.bmreports.com/bmrs/?q=foregeneration/capacityaggregated |
||
| 1429 | # could probably somehow be automised |
||
| 1430 | # https://www.elexonportal.co.uk/category/view/178 |
||
| 1431 | # in MW |
||
| 1432 | installed_capacity_gb = pd.Series( |
||
| 1433 | { |
||
| 1434 | "Biomass": 4438, |
||
| 1435 | "Fossil Gas": 37047, |
||
| 1436 | "Fossil Hard coal": 1491, |
||
| 1437 | "Hydro Pumped Storage": 5603, |
||
| 1438 | "Hydro Run-of-river and poundage": 2063, |
||
| 1439 | "Nuclear": 4950, |
||
| 1440 | "Other": 3313, |
||
| 1441 | "Other renewable": 1462, |
||
| 1442 | "Solar": 14518, |
||
| 1443 | "Wind Offshore": 13038, |
||
| 1444 | "Wind Onshore": 13907, |
||
| 1445 | }, |
||
| 1446 | name="GB", |
||
| 1447 | ) |
||
| 1448 | df = pd.concat([df.T, installed_capacity_gb], axis=1).T |
||
| 1449 | logger.info("Manually added generation capacities for GB 2023.") |
||
| 1450 | not_retrieved = [c for c in not_retrieved if c != "GB"] |
||
| 1451 | df.fillna(0, inplace=True) |
||
| 1452 | else: |
||
| 1453 | df = pd.DataFrame() |
||
| 1454 | return df, not_retrieved |
||
| 1455 | |||
| 1456 | |||
| 1457 | def entsoe_historic_demand(year_start="20190101", year_end="20200101"): |
||
| 1458 | entsoe_token = get_entsoe_token() |
||
| 1459 | client = entsoe.EntsoePandasClient(api_key=entsoe_token) |
||
| 1460 | |||
| 1461 | start = pd.Timestamp(year_start, tz="Europe/Brussels") |
||
| 1462 | end = pd.Timestamp(year_end, tz="Europe/Brussels") |
||
| 1463 | start_gb = start.tz_convert("Europe/London") |
||
| 1464 | end_gb = end.tz_convert("Europe/London") |
||
| 1465 | |||
| 1466 | countries = [ |
||
| 1467 | "LU", |
||
| 1468 | "AT", |
||
| 1469 | "FR", |
||
| 1470 | "NL", |
||
| 1471 | "CZ", |
||
| 1472 | "DK_1", |
||
| 1473 | "DK_2", |
||
| 1474 | "PL", |
||
| 1475 | "CH", |
||
| 1476 | "NO", |
||
| 1477 | "BE", |
||
| 1478 | "SE", |
||
| 1479 | "GB", |
||
| 1480 | ] |
||
| 1481 | |||
| 1482 | # todo: define wanted countries |
||
| 1483 | |||
| 1484 | not_retrieved = [] |
||
| 1485 | dfs = [] |
||
| 1486 | |||
| 1487 | for country in countries: |
||
| 1488 | if country == "GB": |
||
| 1489 | kwargs = dict(start=start_gb, end=end_gb) |
||
| 1490 | else: |
||
| 1491 | kwargs = dict(start=start, end=end) |
||
| 1492 | try: |
||
| 1493 | country_data = ( |
||
| 1494 | client.query_load(country, **kwargs) |
||
| 1495 | .resample("H")["Actual Load"] |
||
| 1496 | .mean() |
||
| 1497 | ) |
||
| 1498 | if country == "GB": |
||
| 1499 | country_data.index = country_data.index.tz_convert( |
||
| 1500 | "Europe/Brussels" |
||
| 1501 | ) |
||
| 1502 | dfs.append(country_data) |
||
| 1503 | except (entsoe.exceptions.NoMatchingDataError, requests.HTTPError): |
||
| 1504 | not_retrieved.append(country) |
||
| 1505 | logger.warning( |
||
| 1506 | f"Data for country: {country} could not be retrieved." |
||
| 1507 | ) |
||
| 1508 | pass |
||
| 1509 | |||
| 1510 | if dfs: |
||
| 1511 | df = pd.concat(dfs, axis=1) |
||
| 1512 | df.columns = [c for c in countries if c not in not_retrieved] |
||
| 1513 | df.index = pd.date_range(year_start, periods=8760, freq="H") |
||
| 1514 | else: |
||
| 1515 | df = pd.DataFrame() |
||
| 1516 | return df, not_retrieved |
||
| 1517 | |||
| 1518 | |||
| 1519 | def map_carriers_entsoe(): |
||
| 1520 | """Map carriers from entsoe-data to carriers used in eGon |
||
| 1521 | Returns |
||
| 1522 | ------- |
||
| 1523 | dict |
||
| 1524 | Carrier from entsoe to eGon |
||
| 1525 | """ |
||
| 1526 | return { |
||
| 1527 | "Biomass": "biomass", |
||
| 1528 | "Fossil Brown coal/Lignite": "lignite", |
||
| 1529 | "Fossil Coal-derived gas": "coal", |
||
| 1530 | "Fossil Gas": "OCGT", |
||
| 1531 | "Fossil Hard coal": "coal", |
||
| 1532 | "Fossil Oil": "oil", |
||
| 1533 | "Fossil Oil shale": "oil", |
||
| 1534 | "Fossil Peat": "others", |
||
| 1535 | "Geothermal": "geo_thermal", |
||
| 1536 | "Hydro Pumped Storage": "Hydro Pumped Storage", |
||
| 1537 | "Hydro Run-of-river and poundage": "run_of_river", |
||
| 1538 | "Hydro Water Reservoir": "reservoir", |
||
| 1539 | "Marine": "others", |
||
| 1540 | "Nuclear": "nuclear", |
||
| 1541 | "Other": "others", |
||
| 1542 | "Other renewable": "others", |
||
| 1543 | "Solar": "solar", |
||
| 1544 | "Waste": "others", |
||
| 1545 | "Wind Offshore": "wind_offshore", |
||
| 1546 | "Wind Onshore": "wind_onshore", |
||
| 1547 | } |
||
| 1548 | |||
| 1549 | |||
| 1550 | def entsoe_to_bus_etrago(scn_name): |
||
| 1551 | map_entsoe = pd.Series( |
||
| 1552 | { |
||
| 1553 | "LU": "LU00", |
||
| 1554 | "AT": "AT00", |
||
| 1555 | "FR": "FR00", |
||
| 1556 | "NL": "NL00", |
||
| 1557 | "DK_1": "DK00", |
||
| 1558 | "DK_2": "DKE1", |
||
| 1559 | "PL": "PL00", |
||
| 1560 | "CH": "CH00", |
||
| 1561 | "NO": "NO00", |
||
| 1562 | "BE": "BE00", |
||
| 1563 | "SE": "SE00", |
||
| 1564 | "GB": "UK00", |
||
| 1565 | "CZ": "CZ00", |
||
| 1566 | } |
||
| 1567 | ) |
||
| 1568 | |||
| 1569 | for_bus = get_foreign_bus_id(scenario=scn_name) |
||
| 1570 | |||
| 1571 | return map_entsoe.map(for_bus) |
||
| 1572 | |||
| 1573 | |||
| 1574 | def save_entsoe_data(df: pd.DataFrame, file_path: Path): |
||
| 1575 | os.makedirs(file_path.parent, exist_ok=True) |
||
| 1576 | if not df.empty: |
||
| 1577 | df.to_csv(file_path, index_label="Index") |
||
| 1578 | logger.info( |
||
| 1579 | f"Saved entsoe data for {file_path.stem} " |
||
| 1580 | f"to {file_path.parent} for countries: {df.index}" |
||
| 1581 | ) |
||
| 1582 | |||
| 1583 | |||
| 1584 | def fill_by_backup_data_from_former_runs(df_sq, file_path, not_retrieved): |
||
| 1585 | """ |
||
| 1586 | Fills missing data from former runs |
||
| 1587 | Parameters |
||
| 1588 | ---------- |
||
| 1589 | df_sq: pd.DataFrame |
||
| 1590 | file_path: str, Path |
||
| 1591 | not_retrieved: list |
||
| 1592 | |||
| 1593 | Returns |
||
| 1594 | ------- |
||
| 1595 | df_sq, not_retrieved |
||
| 1596 | |||
| 1597 | """ |
||
| 1598 | sq_backup = pd.read_csv(file_path, index_col="Index") |
||
| 1599 | # check for missing columns in backup (former runs) |
||
| 1600 | c_backup = [c for c in sq_backup.columns if c in not_retrieved] |
||
| 1601 | # remove columns, if found in backup |
||
| 1602 | not_retrieved = [c for c in not_retrieved if c not in c_backup] |
||
| 1603 | if c_backup: |
||
| 1604 | df_sq = pd.concat([df_sq, sq_backup.loc[:, c_backup]], axis=1) |
||
| 1605 | logger.info(f"Appended data from former runs for {c_backup}") |
||
| 1606 | return df_sq, not_retrieved |
||
| 1607 | |||
| 1608 | |||
| 1609 | def insert_generators_sq(scn_name="status2019"): |
||
| 1610 | """ |
||
| 1611 | Insert generators for foreign countries based on ENTSO-E data |
||
| 1612 | |||
| 1613 | Parameters |
||
| 1614 | ---------- |
||
| 1615 | gen_sq : pandas dataframe |
||
| 1616 | df with all the foreign generators produced by the function |
||
| 1617 | entsoe_historic_generation_capacities |
||
| 1618 | scn_name : str |
||
| 1619 | The default is "status2019". |
||
| 1620 | |||
| 1621 | Returns |
||
| 1622 | ------- |
||
| 1623 | None. |
||
| 1624 | |||
| 1625 | """ |
||
| 1626 | if "status" in scn_name: |
||
| 1627 | year = int(scn_name.split("status")[-1]) |
||
| 1628 | year_start_end = { |
||
| 1629 | "year_start": f"{year}0101", |
||
| 1630 | "year_end": f"{year+1}0101", |
||
| 1631 | } |
||
| 1632 | else: |
||
| 1633 | raise ValueError("No valid scenario name!") |
||
| 1634 | |||
| 1635 | df_gen_sq, not_retrieved = entsoe_historic_generation_capacities( |
||
| 1636 | **year_start_end |
||
| 1637 | ) |
||
| 1638 | |||
| 1639 | View Code Duplication | if not_retrieved: |
|
| 1640 | logger.warning("Generation data from entsoe could not be retrieved.") |
||
| 1641 | # check for generation backup from former runs |
||
| 1642 | file_path = Path( |
||
| 1643 | "./", "entsoe_data", f"gen_entsoe_{scn_name}.csv" |
||
| 1644 | ).resolve() |
||
| 1645 | if os.path.isfile(file_path): |
||
| 1646 | df_gen_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
| 1647 | df_gen_sq, file_path, not_retrieved |
||
| 1648 | ) |
||
| 1649 | save_entsoe_data(df_gen_sq, file_path=file_path) |
||
| 1650 | |||
| 1651 | if not_retrieved: |
||
| 1652 | logger.warning( |
||
| 1653 | f"Backup data of 2019 is used instead for {not_retrieved}" |
||
| 1654 | ) |
||
| 1655 | df_gen_sq_backup = pd.read_csv( |
||
| 1656 | "data_bundle_egon_data/entsoe/gen_entsoe.csv", index_col="Index" |
||
| 1657 | ) |
||
| 1658 | df_gen_sq = pd.concat( |
||
| 1659 | [df_gen_sq, df_gen_sq_backup.loc[not_retrieved]], axis=1 |
||
| 1660 | ) |
||
| 1661 | |||
| 1662 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
| 1663 | # Delete existing data |
||
| 1664 | db.execute_sql( |
||
| 1665 | f""" |
||
| 1666 | DELETE FROM |
||
| 1667 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1668 | WHERE bus IN ( |
||
| 1669 | SELECT bus_id FROM |
||
| 1670 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 1671 | WHERE country != 'DE' |
||
| 1672 | AND scn_name = '{scn_name}') |
||
| 1673 | AND scn_name = '{scn_name}' |
||
| 1674 | AND carrier != 'CH4' |
||
| 1675 | """ |
||
| 1676 | ) |
||
| 1677 | |||
| 1678 | db.execute_sql( |
||
| 1679 | f""" |
||
| 1680 | DELETE FROM |
||
| 1681 | {targets['generators_timeseries']['schema']}. |
||
| 1682 | {targets['generators_timeseries']['table']} |
||
| 1683 | WHERE generator_id NOT IN ( |
||
| 1684 | SELECT generator_id FROM |
||
| 1685 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1686 | ) |
||
| 1687 | AND scn_name = '{scn_name}' |
||
| 1688 | """ |
||
| 1689 | ) |
||
| 1690 | entsoe_to_bus = entsoe_to_bus_etrago(scn_name) |
||
| 1691 | carrier_entsoe = map_carriers_entsoe() |
||
| 1692 | df_gen_sq = df_gen_sq.groupby(axis=1, by=carrier_entsoe).sum() |
||
| 1693 | |||
| 1694 | # Filter generators modeled as storage and geothermal |
||
| 1695 | df_gen_sq = df_gen_sq.loc[ |
||
| 1696 | :, ~df_gen_sq.columns.isin(["Hydro Pumped Storage", "geo_thermal"]) |
||
| 1697 | ] |
||
| 1698 | |||
| 1699 | list_gen_sq = pd.DataFrame( |
||
| 1700 | dtype=int, columns=["carrier", "country", "capacity"] |
||
| 1701 | ) |
||
| 1702 | for carrier in df_gen_sq.columns: |
||
| 1703 | gen_carry = df_gen_sq[carrier] |
||
| 1704 | for country, cap in gen_carry.items(): |
||
| 1705 | gen = pd.DataFrame( |
||
| 1706 | {"carrier": carrier, "country": country, "capacity": cap}, |
||
| 1707 | index=[1], |
||
| 1708 | ) |
||
| 1709 | # print(gen) |
||
| 1710 | list_gen_sq = pd.concat([list_gen_sq, gen], ignore_index=True) |
||
| 1711 | |||
| 1712 | list_gen_sq = list_gen_sq[list_gen_sq.capacity > 0] |
||
| 1713 | list_gen_sq["scenario"] = scn_name |
||
| 1714 | |||
| 1715 | # Add marginal costs |
||
| 1716 | list_gen_sq = add_marginal_costs(list_gen_sq) |
||
| 1717 | |||
| 1718 | # Find foreign bus to assign the generator |
||
| 1719 | list_gen_sq["bus"] = list_gen_sq.country.map(entsoe_to_bus) |
||
| 1720 | |||
| 1721 | # insert generators data |
||
| 1722 | session = sessionmaker(bind=db.engine())() |
||
| 1723 | for i, row in list_gen_sq.iterrows(): |
||
| 1724 | entry = etrago.EgonPfHvGenerator( |
||
| 1725 | scn_name=row.scenario, |
||
| 1726 | generator_id=int(db.next_etrago_id("generator")), |
||
| 1727 | bus=row.bus, |
||
| 1728 | carrier=row.carrier, |
||
| 1729 | p_nom=row.capacity, |
||
| 1730 | marginal_cost=row.marginal_cost, |
||
| 1731 | ) |
||
| 1732 | |||
| 1733 | session.add(entry) |
||
| 1734 | session.commit() |
||
| 1735 | |||
| 1736 | # assign generators time-series data |
||
| 1737 | renew_carriers_sq = ["wind_onshore", "wind_offshore", "solar"] |
||
| 1738 | |||
| 1739 | sql = f"""SELECT * FROM |
||
| 1740 | {targets['generators_timeseries']['schema']}. |
||
| 1741 | {targets['generators_timeseries']['table']} |
||
| 1742 | WHERE scn_name = 'eGon100RE' |
||
| 1743 | """ |
||
| 1744 | series_egon100 = pd.read_sql_query(sql, db.engine()) |
||
| 1745 | |||
| 1746 | sql = f""" SELECT * FROM |
||
| 1747 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1748 | WHERE bus IN ( |
||
| 1749 | SELECT bus_id FROM |
||
| 1750 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 1751 | WHERE country != 'DE' |
||
| 1752 | AND scn_name = '{scn_name}') |
||
| 1753 | AND scn_name = '{scn_name}' |
||
| 1754 | """ |
||
| 1755 | df_gen_sq = pd.read_sql_query(sql, db.engine()) |
||
| 1756 | df_gen_sq = df_gen_sq[df_gen_sq.carrier.isin(renew_carriers_sq)] |
||
| 1757 | |||
| 1758 | sql = f""" SELECT * FROM |
||
| 1759 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1760 | WHERE bus IN ( |
||
| 1761 | SELECT bus_id FROM |
||
| 1762 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 1763 | WHERE country != 'DE' |
||
| 1764 | AND scn_name = 'eGon100RE') |
||
| 1765 | AND scn_name = 'eGon100RE' |
||
| 1766 | """ |
||
| 1767 | gen_100 = pd.read_sql_query(sql, db.engine()) |
||
| 1768 | gen_100 = gen_100[gen_100["carrier"].isin(renew_carriers_sq)] |
||
| 1769 | |||
| 1770 | # egon_sq_to_100 map the timeseries used in the scenario eGon100RE |
||
| 1771 | # to the same bus and carrier for the status quo scenario |
||
| 1772 | egon_sq_to_100 = {} |
||
| 1773 | for i, gen in df_gen_sq.iterrows(): |
||
| 1774 | gen_id_100 = gen_100[ |
||
| 1775 | (gen_100["bus"] == gen["bus"]) |
||
| 1776 | & (gen_100["carrier"] == gen["carrier"]) |
||
| 1777 | ]["generator_id"].values[0] |
||
| 1778 | |||
| 1779 | egon_sq_to_100[gen["generator_id"]] = gen_id_100 |
||
| 1780 | |||
| 1781 | # insert generators_timeseries data |
||
| 1782 | with session_scope() as session: |
||
| 1783 | for gen_id in df_gen_sq.generator_id: |
||
| 1784 | serie = series_egon100[ |
||
| 1785 | series_egon100.generator_id == egon_sq_to_100[gen_id] |
||
| 1786 | ]["p_max_pu"].values[0] |
||
| 1787 | entry = etrago.EgonPfHvGeneratorTimeseries( |
||
| 1788 | scn_name=scn_name, generator_id=gen_id, temp_id=1, p_max_pu=serie |
||
| 1789 | ) |
||
| 1790 | |||
| 1791 | session.add(entry) |
||
| 1792 | session.commit() |
||
| 1793 | |||
| 1794 | return |
||
| 1795 | |||
| 1796 | |||
| 1797 | def insert_storage_units_sq(scn_name="status2019"): |
||
| 1798 | """ |
||
| 1799 | Insert storage_units for foreign countries based on ENTSO-E data |
||
| 1800 | |||
| 1801 | Parameters |
||
| 1802 | ---------- |
||
| 1803 | scn_name : str |
||
| 1804 | Scenario to which the foreign storage units will be assigned. |
||
| 1805 | The default is "status2019". |
||
| 1806 | |||
| 1807 | Returns |
||
| 1808 | ------- |
||
| 1809 | None. |
||
| 1810 | |||
| 1811 | """ |
||
| 1812 | if "status" in scn_name: |
||
| 1813 | year = int(scn_name.split("status")[-1]) |
||
| 1814 | year_start_end = { |
||
| 1815 | "year_start": f"{year}0101", |
||
| 1816 | "year_end": f"{year+1}0101", |
||
| 1817 | } |
||
| 1818 | else: |
||
| 1819 | raise ValueError("No valid scenario name!") |
||
| 1820 | |||
| 1821 | df_gen_sq, not_retrieved = entsoe_historic_generation_capacities( |
||
| 1822 | **year_start_end |
||
| 1823 | ) |
||
| 1824 | |||
| 1825 | View Code Duplication | if not_retrieved: |
|
| 1826 | logger.warning("Generation data from entsoe could not be retrieved.") |
||
| 1827 | # check for generation backup from former runs |
||
| 1828 | file_path = Path( |
||
| 1829 | "./", "entsoe_data", f"gen_entsoe_{scn_name}.csv" |
||
| 1830 | ).resolve() |
||
| 1831 | if os.path.isfile(file_path): |
||
| 1832 | df_gen_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
| 1833 | df_gen_sq, file_path, not_retrieved |
||
| 1834 | ) |
||
| 1835 | save_entsoe_data(df_gen_sq, file_path=file_path) |
||
| 1836 | |||
| 1837 | if not_retrieved: |
||
| 1838 | logger.warning( |
||
| 1839 | f"Backup data of 2019 is used instead for {not_retrieved}" |
||
| 1840 | ) |
||
| 1841 | df_gen_sq_backup = pd.read_csv( |
||
| 1842 | "data_bundle_egon_data/entsoe/gen_entsoe.csv", index_col="Index" |
||
| 1843 | ) |
||
| 1844 | df_gen_sq = pd.concat( |
||
| 1845 | [df_gen_sq, df_gen_sq_backup.loc[not_retrieved]], axis=1 |
||
| 1846 | ) |
||
| 1847 | |||
| 1848 | sto_sq = df_gen_sq.loc[:, df_gen_sq.columns == "Hydro Pumped Storage"] |
||
| 1849 | sto_sq.rename(columns={"Hydro Pumped Storage": "p_nom"}, inplace=True) |
||
| 1850 | |||
| 1851 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
| 1852 | |||
| 1853 | # Delete existing data |
||
| 1854 | db.execute_sql( |
||
| 1855 | f""" |
||
| 1856 | DELETE FROM {targets['storage']['schema']}.{targets['storage']['table']} |
||
| 1857 | WHERE bus IN ( |
||
| 1858 | SELECT bus_id FROM |
||
| 1859 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
| 1860 | WHERE country != 'DE' |
||
| 1861 | AND scn_name = '{scn_name}') |
||
| 1862 | AND scn_name = '{scn_name}' |
||
| 1863 | """ |
||
| 1864 | ) |
||
| 1865 | |||
| 1866 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
| 1867 | parameters_pumped_hydro = get_sector_parameters(sector="electricity", scenario=scn_name)["efficiency"]["pumped_hydro"] |
||
| 1868 | |||
| 1869 | # Set bus_id |
||
| 1870 | entsoe_to_bus = entsoe_to_bus_etrago(scn_name=scn_name) |
||
| 1871 | sto_sq["bus"] = sto_sq.index.map(entsoe_to_bus) |
||
| 1872 | |||
| 1873 | # Insert carrier specific parameters |
||
| 1874 | sto_sq["carrier"] = "pumped_hydro" |
||
| 1875 | sto_sq["scn_name"] = scn_name |
||
| 1876 | sto_sq["dispatch"] = parameters_pumped_hydro["dispatch"] |
||
| 1877 | sto_sq["store"] = parameters_pumped_hydro["store"] |
||
| 1878 | sto_sq["standing_loss"] = parameters_pumped_hydro["standing_loss"] |
||
| 1879 | sto_sq["max_hours"] = parameters_pumped_hydro["max_hours"] |
||
| 1880 | |||
| 1881 | # Delete entrances without any installed capacity |
||
| 1882 | sto_sq = sto_sq[sto_sq["p_nom"] > 0] |
||
| 1883 | |||
| 1884 | # insert data pumped_hydro storage |
||
| 1885 | |||
| 1886 | with session_scope() as session: |
||
| 1887 | for i, row in sto_sq.iterrows(): |
||
| 1888 | entry = etrago.EgonPfHvStorage( |
||
| 1889 | scn_name=scn_name, |
||
| 1890 | storage_id=int(db.next_etrago_id("storage")), |
||
| 1891 | bus=row.bus, |
||
| 1892 | max_hours=row.max_hours, |
||
| 1893 | efficiency_store=row.store, |
||
| 1894 | efficiency_dispatch=row.dispatch, |
||
| 1895 | standing_loss=row.standing_loss, |
||
| 1896 | carrier=row.carrier, |
||
| 1897 | p_nom=row.p_nom, |
||
| 1898 | ) |
||
| 1899 | |||
| 1900 | session.add(entry) |
||
| 1901 | session.commit() |
||
| 1902 | |||
| 1903 | |||
| 1904 | def insert_loads_sq(scn_name="status2019"): |
||
| 1905 | """ |
||
| 1906 | Copy load timeseries data from entso-e. |
||
| 1907 | |||
| 1908 | Returns |
||
| 1909 | ------- |
||
| 1910 | None. |
||
| 1911 | |||
| 1912 | """ |
||
| 1913 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
| 1914 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
| 1915 | |||
| 1916 | if scn_name == "status2019": |
||
| 1917 | year_start_end = {"year_start": "20190101", "year_end": "20200101"} |
||
| 1918 | elif scn_name == "status2023": |
||
| 1919 | year_start_end = {"year_start": "20230101", "year_end": "20240101"} |
||
| 1920 | else: |
||
| 1921 | raise ValueError("No valid scenario name!") |
||
| 1922 | |||
| 1923 | df_load_sq, not_retrieved = entsoe_historic_demand(**year_start_end) |
||
| 1924 | |||
| 1925 | if not_retrieved: |
||
| 1926 | logger.warning("Demand data from entsoe could not be retrieved.") |
||
| 1927 | # check for generation backup from former runs |
||
| 1928 | file_path = Path( |
||
| 1929 | "./", "entsoe_data", f"load_entsoe_{scn_name}.csv" |
||
| 1930 | ).resolve() |
||
| 1931 | if os.path.isfile(file_path): |
||
| 1932 | df_load_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
| 1933 | df_load_sq, file_path, not_retrieved |
||
| 1934 | ) |
||
| 1935 | save_entsoe_data(df_load_sq, file_path=file_path) |
||
| 1936 | |||
| 1937 | if not_retrieved: |
||
| 1938 | logger.warning( |
||
| 1939 | f"Backup data of 2019 is used instead for {not_retrieved}" |
||
| 1940 | ) |
||
| 1941 | df_load_sq_backup = pd.read_csv( |
||
| 1942 | "data_bundle_egon_data/entsoe/load_entsoe.csv", index_col="Index" |
||
| 1943 | ) |
||
| 1944 | df_load_sq_backup.index = df_load_sq.index |
||
| 1945 | df_load_sq = pd.concat( |
||
| 1946 | [df_load_sq, df_load_sq_backup.loc[:, not_retrieved]], axis=1 |
||
| 1947 | ) |
||
| 1948 | |||
| 1949 | # Delete existing data |
||
| 1950 | db.execute_sql( |
||
| 1951 | f""" |
||
| 1952 | DELETE FROM {targets['load_timeseries']['schema']}. |
||
| 1953 | {targets['load_timeseries']['table']} |
||
| 1954 | WHERE |
||
| 1955 | scn_name = '{scn_name}' |
||
| 1956 | AND load_id IN ( |
||
| 1957 | SELECT load_id FROM {targets['loads']['schema']}. |
||
| 1958 | {targets['loads']['table']} |
||
| 1959 | WHERE |
||
| 1960 | scn_name = '{scn_name}' |
||
| 1961 | AND carrier = 'AC' |
||
| 1962 | AND bus NOT IN ( |
||
| 1963 | SELECT bus_i |
||
| 1964 | FROM {sources['osmtgmod_bus']['schema']}. |
||
| 1965 | {sources['osmtgmod_bus']['table']})) |
||
| 1966 | """ |
||
| 1967 | ) |
||
| 1968 | |||
| 1969 | db.execute_sql( |
||
| 1970 | f""" |
||
| 1971 | DELETE FROM {targets['loads']['schema']}. |
||
| 1972 | {targets['loads']['table']} |
||
| 1973 | WHERE |
||
| 1974 | scn_name = '{scn_name}' |
||
| 1975 | AND carrier = 'AC' |
||
| 1976 | AND bus NOT IN ( |
||
| 1977 | SELECT bus_i |
||
| 1978 | FROM {sources['osmtgmod_bus']['schema']}. |
||
| 1979 | {sources['osmtgmod_bus']['table']}) |
||
| 1980 | """ |
||
| 1981 | ) |
||
| 1982 | |||
| 1983 | # get the corresponding bus per foreign country |
||
| 1984 | entsoe_to_bus = entsoe_to_bus_etrago(scn_name) |
||
| 1985 | |||
| 1986 | # Calculate and insert demand timeseries per etrago bus_id |
||
| 1987 | with session_scope() as session: |
||
| 1988 | for country in df_load_sq.columns: |
||
| 1989 | load_id = db.next_etrago_id("load") |
||
| 1990 | |||
| 1991 | entry = etrago.EgonPfHvLoad( |
||
| 1992 | scn_name=scn_name, |
||
| 1993 | load_id=int(load_id), |
||
| 1994 | carrier="AC", |
||
| 1995 | bus=int(entsoe_to_bus[country]), |
||
| 1996 | ) |
||
| 1997 | |||
| 1998 | entry_ts = etrago.EgonPfHvLoadTimeseries( |
||
| 1999 | scn_name=scn_name, |
||
| 2000 | load_id=int(load_id), |
||
| 2001 | temp_id=1, |
||
| 2002 | p_set=list(df_load_sq[country]), |
||
| 2003 | ) |
||
| 2004 | |||
| 2005 | session.add(entry) |
||
| 2006 | session.add(entry_ts) |
||
| 2007 | session.commit() |
||
| 2008 | |||
| 2009 | |||
| 2010 | tasks = (grid,) |
||
| 2011 | |||
| 2012 | insert_per_scenario = set() |
||
| 2013 | |||
| 2014 | for scn_name in config.settings()["egon-data"]["--scenarios"]: |
||
| 2015 | |||
| 2016 | if scn_name == "eGon2035": |
||
| 2017 | insert_per_scenario.update([tyndp_generation, tyndp_demand]) |
||
| 2018 | |||
| 2019 | if "status" in scn_name: |
||
| 2020 | postfix = f"_{scn_name.split('status')[-1]}" |
||
| 2021 | insert_per_scenario.update( |
||
| 2022 | [ |
||
| 2023 | wrapped_partial( |
||
| 2024 | insert_generators_sq, scn_name=scn_name, postfix=postfix |
||
| 2025 | ), |
||
| 2026 | wrapped_partial( |
||
| 2027 | insert_loads_sq, scn_name=scn_name, postfix=postfix |
||
| 2028 | ), |
||
| 2029 | wrapped_partial( |
||
| 2030 | insert_storage_units_sq, scn_name=scn_name, postfix=postfix |
||
| 2031 | ), |
||
| 2032 | ] |
||
| 2033 | ) |
||
| 2034 | |||
| 2035 | tasks = tasks + (insert_per_scenario,) |
||
| 2036 | |||
| 2037 | |||
| 2038 | class ElectricalNeighbours(Dataset): |
||
| 2039 | def __init__(self, dependencies): |
||
| 2040 | super().__init__( |
||
| 2041 | name="ElectricalNeighbours", |
||
| 2042 | version="0.0.11", |
||
| 2043 | dependencies=dependencies, |
||
| 2044 | tasks=tasks, |
||
| 2045 | ) |
||
| 2046 |