| Conditions | 39 |
| Total Lines | 1063 |
| Code Lines | 545 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.DSM_cts_ind.dsm_cts_ind_processing() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | import geopandas as gpd |
||
| 22 | def dsm_cts_ind_processing(): |
||
| 23 | def cts_data_import(con, cts_cool_vent_ac_share): |
||
| 24 | |||
| 25 | """ |
||
| 26 | Import CTS data necessary to identify DSM-potential. |
||
| 27 | ---------- |
||
| 28 | con : |
||
| 29 | Connection to database |
||
| 30 | cts_share: float |
||
| 31 | Share of cooling, ventilation and AC in CTS demand |
||
| 32 | """ |
||
| 33 | |||
| 34 | # import load data |
||
| 35 | |||
| 36 | sources = egon.data.config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 37 | "cts_loadcurves" |
||
| 38 | ] |
||
| 39 | |||
| 40 | ts = db.select_dataframe( |
||
| 41 | f"""SELECT bus_id, scn_name, p_set FROM |
||
| 42 | {sources['schema']}.{sources['table']}""" |
||
| 43 | ) |
||
| 44 | |||
| 45 | # identify relevant columns and prepare df to be returned |
||
| 46 | |||
| 47 | dsm = pd.DataFrame(index=ts.index) |
||
| 48 | |||
| 49 | dsm["bus"] = ts["bus_id"].copy() |
||
| 50 | dsm["scn_name"] = ts["scn_name"].copy() |
||
| 51 | dsm["p_set"] = ts["p_set"].copy() |
||
| 52 | |||
| 53 | # calculate share of timeseries for air conditioning, cooling and ventilation out of CTS-data |
||
| 54 | |||
| 55 | timeseries = dsm["p_set"].copy() |
||
| 56 | for index, liste in timeseries.iteritems(): |
||
| 57 | share = [] |
||
| 58 | for item in liste: |
||
| 59 | share.append(float(item) * cts_cool_vent_ac_share) |
||
| 60 | timeseries.loc[index] = share |
||
| 61 | dsm["p_set"] = timeseries.copy() |
||
| 62 | |||
| 63 | return dsm |
||
| 64 | |||
| 65 | def ind_osm_data_import(con, ind_vent_cool_share): |
||
| 66 | |||
| 67 | """ |
||
| 68 | Import industry data per osm-area necessary to identify DSM-potential. |
||
| 69 | ---------- |
||
| 70 | con : |
||
| 71 | Connection to database |
||
| 72 | ind_share: float |
||
| 73 | Share of considered application in industry demand |
||
| 74 | """ |
||
| 75 | |||
| 76 | # import load data |
||
| 77 | |||
| 78 | sources = egon.data.config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 79 | "ind_osm_loadcurves" |
||
| 80 | ] |
||
| 81 | |||
| 82 | dsm = db.select_dataframe( |
||
| 83 | f"""SELECT bus, scn_name, p_set FROM |
||
| 84 | {sources['schema']}.{sources['table']}""" |
||
| 85 | ) |
||
| 86 | |||
| 87 | # calculate share of timeseries for cooling and ventilation out of industry-data |
||
| 88 | |||
| 89 | timeseries = dsm["p_set"].copy() |
||
| 90 | for index, liste in timeseries.iteritems(): |
||
| 91 | share = [] |
||
| 92 | for item in liste: |
||
| 93 | share.append(float(item) * ind_vent_cool_share) |
||
| 94 | timeseries.loc[index] = share |
||
| 95 | dsm["p_set"] = timeseries.copy() |
||
| 96 | |||
| 97 | return dsm |
||
| 98 | |||
| 99 | def ind_sites_vent_data_import(con, ind_vent_share, wz): |
||
| 100 | |||
| 101 | """ |
||
| 102 | Import industry sites necessary to identify DSM-potential. |
||
| 103 | ---------- |
||
| 104 | con : |
||
| 105 | Connection to database |
||
| 106 | ind_vent_share: float |
||
| 107 | Share of considered application in industry demand |
||
| 108 | wz: int |
||
| 109 | Wirtschaftszweig to be considered within industry sites |
||
| 110 | """ |
||
| 111 | |||
| 112 | # import load data |
||
| 113 | |||
| 114 | sources = egon.data.config.datasets()["DSM_CTS_industry"]["sources"][ |
||
| 115 | "ind_sites_loadcurves" |
||
| 116 | ] |
||
| 117 | |||
| 118 | dsm = db.select_dataframe( |
||
| 119 | f"""SELECT bus, scn_name, p_set, wz FROM |
||
| 120 | {sources['schema']}.{sources['table']}""" |
||
| 121 | ) |
||
| 122 | |||
| 123 | # select load for considered applications |
||
| 124 | |||
| 125 | dsm = dsm[dsm["wz"] == wz] |
||
| 126 | |||
| 127 | # calculate share of timeseries for ventilation |
||
| 128 | |||
| 129 | timeseries = dsm["p_set"].copy() |
||
| 130 | for index, liste in timeseries.iteritems(): |
||
| 131 | share = [] |
||
| 132 | for item in liste: |
||
| 133 | share.append(float(item) * ind_vent_share) |
||
| 134 | timeseries.loc[index] = share |
||
| 135 | dsm["p_set"] = timeseries.copy() |
||
| 136 | |||
| 137 | return dsm |
||
| 138 | |||
| 139 | def ind_sites_data_import(con): |
||
| 140 | |||
| 141 | """ |
||
| 142 | Import industry sites data necessary to identify DSM-potential. |
||
| 143 | ---------- |
||
| 144 | con : |
||
| 145 | Connection to database |
||
| 146 | """ |
||
| 147 | |||
| 148 | def calc_ind_site_timeseries(scenario): |
||
| 149 | |||
| 150 | # calculate timeseries per site |
||
| 151 | # -> using code from egon.data.datasets.industry.temporal: calc_load_curves_ind_sites |
||
| 152 | |||
| 153 | # select demands per industrial site including the subsector information |
||
| 154 | source1 = egon.data.config.datasets()["DSM_CTS_industry"][ |
||
| 155 | "sources" |
||
| 156 | ]["demandregio_ind_sites"] |
||
| 157 | |||
| 158 | demands_ind_sites = db.select_dataframe( |
||
| 159 | f"""SELECT industrial_sites_id, wz, demand |
||
| 160 | FROM {source1['schema']}.{source1['table']} |
||
| 161 | WHERE scenario = '{scenario}' |
||
| 162 | AND demand > 0 |
||
| 163 | """ |
||
| 164 | ).set_index(["industrial_sites_id"]) |
||
| 165 | |||
| 166 | # select industrial sites as demand_areas from database |
||
| 167 | source2 = egon.data.config.datasets()["DSM_CTS_industry"][ |
||
| 168 | "sources" |
||
| 169 | ]["ind_sites"] |
||
| 170 | |||
| 171 | demand_area = db.select_geodataframe( |
||
| 172 | f"""SELECT id, geom, subsector FROM |
||
| 173 | {source2['schema']}.{source2['table']}""", |
||
| 174 | index_col="id", |
||
| 175 | geom_col="geom", |
||
| 176 | epsg=3035, |
||
| 177 | ) |
||
| 178 | |||
| 179 | # replace entries to bring it in line with demandregio's subsector definitions |
||
| 180 | demands_ind_sites.replace(1718, 17, inplace=True) |
||
| 181 | share_wz_sites = demands_ind_sites.copy() |
||
| 182 | |||
| 183 | # create additional df on wz_share per industrial site, which is always set to one |
||
| 184 | # as the industrial demand per site is subsector specific |
||
| 185 | share_wz_sites.demand = 1 |
||
| 186 | share_wz_sites.reset_index(inplace=True) |
||
| 187 | |||
| 188 | share_transpose = pd.DataFrame( |
||
| 189 | index=share_wz_sites.industrial_sites_id.unique(), |
||
| 190 | columns=share_wz_sites.wz.unique(), |
||
| 191 | ) |
||
| 192 | share_transpose.index.rename("industrial_sites_id", inplace=True) |
||
| 193 | for wz in share_transpose.columns: |
||
| 194 | share_transpose[wz] = ( |
||
| 195 | share_wz_sites[share_wz_sites.wz == wz] |
||
| 196 | .set_index("industrial_sites_id") |
||
| 197 | .demand |
||
| 198 | ) |
||
| 199 | |||
| 200 | # calculate load curves |
||
| 201 | load_curves = calc_load_curve( |
||
| 202 | share_transpose, demands_ind_sites["demand"] |
||
| 203 | ) |
||
| 204 | |||
| 205 | # identify bus per industrial site |
||
| 206 | curves_bus = identify_bus(load_curves, demand_area) |
||
| 207 | curves_bus.index = curves_bus["id"].astype(int) |
||
| 208 | |||
| 209 | # initialize dataframe to be returned |
||
| 210 | |||
| 211 | ts = pd.DataFrame( |
||
| 212 | data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
||
| 213 | ) |
||
| 214 | ts["scenario_name"] = scenario |
||
| 215 | curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
||
| 216 | ts["p_set"] = curves_bus.values.tolist() |
||
| 217 | |||
| 218 | # add subsector to relate to Schmidt's tables afterwards |
||
| 219 | ts["application"] = demand_area["subsector"] |
||
| 220 | |||
| 221 | return ts |
||
| 222 | |||
| 223 | def relate_to_Schmidt_sites(dsm): |
||
| 224 | |||
| 225 | # import industrial sites by Schmidt |
||
| 226 | |||
| 227 | source = egon.data.config.datasets()["DSM_CTS_industry"][ |
||
| 228 | "sources" |
||
| 229 | ]["ind_sites_schmidt"] |
||
| 230 | |||
| 231 | schmidt = db.select_dataframe( |
||
| 232 | f"""SELECT application, geom FROM |
||
| 233 | {source['schema']}.{source['table']}""" |
||
| 234 | ) |
||
| 235 | |||
| 236 | # relate calculated timeseries (dsm) to Schmidt's industrial sites |
||
| 237 | |||
| 238 | applications = np.unique(schmidt["application"]) |
||
| 239 | dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
||
| 240 | |||
| 241 | # initialize dataframe to be returned |
||
| 242 | |||
| 243 | dsm.rename( |
||
| 244 | columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
||
| 245 | inplace=True, |
||
| 246 | ) |
||
| 247 | |||
| 248 | return dsm |
||
| 249 | |||
| 250 | # calculate timeseries per site |
||
| 251 | |||
| 252 | # scenario eGon2035 |
||
| 253 | dsm_2035 = calc_ind_site_timeseries("eGon2035") |
||
| 254 | dsm_2035.reset_index(inplace=True) |
||
| 255 | # scenario eGon100RE |
||
| 256 | dsm_100 = calc_ind_site_timeseries("eGon100RE") |
||
| 257 | dsm_100.reset_index(inplace=True) |
||
| 258 | # bring df for both scenarios together |
||
| 259 | dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100)))) |
||
| 260 | dsm = dsm_2035.append(dsm_100) |
||
| 261 | |||
| 262 | # relate calculated timeseries to Schmidt's industrial sites |
||
| 263 | |||
| 264 | dsm = relate_to_Schmidt_sites(dsm) |
||
| 265 | |||
| 266 | return dsm |
||
| 267 | |||
| 268 | def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
||
| 269 | |||
| 270 | """ |
||
| 271 | Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
||
| 272 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
| 273 | Parameters |
||
| 274 | ---------- |
||
| 275 | s_flex: float |
||
| 276 | Feasability factor to account for socio-technical restrictions |
||
| 277 | s_util: float |
||
| 278 | Average annual utilisation rate |
||
| 279 | s_inc: float |
||
| 280 | Shiftable share of installed capacity up to which load can be increased considering technical limitations |
||
| 281 | s_dec: float |
||
| 282 | Shiftable share of installed capacity up to which load can be decreased considering technical limitations |
||
| 283 | delta_t: int |
||
| 284 | Maximum shift duration in hours |
||
| 285 | dsm: DataFrame |
||
| 286 | List of existing buses with DSM-potential including timeseries of loads |
||
| 287 | """ |
||
| 288 | |||
| 289 | # copy relevant timeseries |
||
| 290 | timeseries = dsm["p_set"].copy() |
||
| 291 | |||
| 292 | # calculate scheduled load L(t) |
||
| 293 | |||
| 294 | scheduled_load = timeseries.copy() |
||
| 295 | |||
| 296 | for index, liste in scheduled_load.iteritems(): |
||
| 297 | share = [] |
||
| 298 | for item in liste: |
||
| 299 | share.append(item * s_flex) |
||
| 300 | scheduled_load.loc[index] = share |
||
| 301 | |||
| 302 | # calculate maximum capacity Lambda |
||
| 303 | |||
| 304 | # calculate energy annual requirement |
||
| 305 | energy_annual = pd.Series(index=timeseries.index, dtype=float) |
||
| 306 | for index, liste in timeseries.iteritems(): |
||
| 307 | energy_annual.loc[index] = sum(liste) |
||
| 308 | |||
| 309 | # calculate Lambda |
||
| 310 | lam = (energy_annual * s_flex) / (8760 * s_util) |
||
| 311 | |||
| 312 | # calculation of P_max and P_min |
||
| 313 | |||
| 314 | # P_max |
||
| 315 | p_max = scheduled_load.copy() |
||
| 316 | for index, liste in scheduled_load.iteritems(): |
||
| 317 | lamb = lam.loc[index] |
||
| 318 | p = [] |
||
| 319 | for item in liste: |
||
| 320 | value = lamb * s_inc - item |
||
| 321 | if value < 0: |
||
| 322 | value = 0 |
||
| 323 | p.append(value) |
||
| 324 | p_max.loc[index] = p |
||
| 325 | |||
| 326 | # P_min |
||
| 327 | p_min = scheduled_load.copy() |
||
| 328 | for index, liste in scheduled_load.iteritems(): |
||
| 329 | lamb = lam.loc[index] |
||
| 330 | p = [] |
||
| 331 | for item in liste: |
||
| 332 | value = -(item - lamb * s_dec) |
||
| 333 | if value > 0: |
||
| 334 | value = 0 |
||
| 335 | p.append(value) |
||
| 336 | p_min.loc[index] = p |
||
| 337 | |||
| 338 | # calculation of E_max and E_min |
||
| 339 | |||
| 340 | e_max = scheduled_load.copy() |
||
| 341 | e_min = scheduled_load.copy() |
||
| 342 | |||
| 343 | for index, liste in scheduled_load.iteritems(): |
||
| 344 | emin = [] |
||
| 345 | emax = [] |
||
| 346 | for i in range(0, len(liste)): |
||
| 347 | if i + delta_t > len(liste): |
||
| 348 | emax.append( |
||
| 349 | sum(liste[i : len(liste)]) |
||
| 350 | + sum(liste[0 : delta_t - (len(liste) - i)]) |
||
| 351 | ) |
||
| 352 | else: |
||
| 353 | emax.append(sum(liste[i : i + delta_t])) |
||
| 354 | if i - delta_t < 0: |
||
| 355 | emin.append( |
||
| 356 | -1 |
||
| 357 | * ( |
||
| 358 | sum(liste[0:i]) |
||
| 359 | + sum(liste[len(liste) - delta_t + i : len(liste)]) |
||
| 360 | ) |
||
| 361 | ) |
||
| 362 | else: |
||
| 363 | emin.append(-1 * sum(liste[i - delta_t : i])) |
||
| 364 | e_max.loc[index] = emax |
||
| 365 | e_min.loc[index] = emin |
||
| 366 | |||
| 367 | return p_max, p_min, e_max, e_min |
||
| 368 | |||
| 369 | def create_dsm_components( |
||
| 370 | con, p_max, p_min, e_max, e_min, dsm, export_aggregated=True |
||
| 371 | ): |
||
| 372 | |||
| 373 | """ |
||
| 374 | Create components representing DSM. |
||
| 375 | Parameters |
||
| 376 | ---------- |
||
| 377 | con : |
||
| 378 | Connection to database |
||
| 379 | p_max: DataFrame |
||
| 380 | Timeseries identifying maximum load increase |
||
| 381 | p_min: DataFrame |
||
| 382 | Timeseries identifying maximum load decrease |
||
| 383 | e_max: DataFrame |
||
| 384 | Timeseries identifying maximum energy amount to be preponed |
||
| 385 | e_min: DataFrame |
||
| 386 | Timeseries identifying maximum energy amount to be postponed |
||
| 387 | dsm: DataFrame |
||
| 388 | List of existing buses with DSM-potential including timeseries of loads |
||
| 389 | """ |
||
| 390 | |||
| 391 | # if components should be exported seperately |
||
| 392 | # and not as aggregated DSM-components: |
||
| 393 | |||
| 394 | if not export_aggregated: |
||
| 395 | |||
| 396 | # calculate P_nom and P per unit |
||
| 397 | p_nom = pd.Series(index=p_max.index, dtype=float) |
||
| 398 | for index, row in p_max.iteritems(): |
||
| 399 | nom = max(max(row), abs(min(p_min.loc[index]))) |
||
| 400 | p_nom.loc[index] = nom |
||
| 401 | new = [element / nom for element in row] |
||
| 402 | p_max.loc[index] = new |
||
| 403 | new = [element / nom for element in p_min.loc[index]] |
||
| 404 | p_min.loc[index] = new |
||
| 405 | |||
| 406 | # calculate E_nom and E per unit |
||
| 407 | e_nom = pd.Series(index=p_min.index, dtype=float) |
||
| 408 | for index, row in e_max.iteritems(): |
||
| 409 | nom = max(max(row), abs(min(e_min.loc[index]))) |
||
| 410 | e_nom.loc[index] = nom |
||
| 411 | new = [element / nom for element in row] |
||
| 412 | e_max.loc[index] = new |
||
| 413 | new = [element / nom for element in e_min.loc[index]] |
||
| 414 | e_min.loc[index] = new |
||
| 415 | |||
| 416 | # add DSM-buses to "original" buses |
||
| 417 | dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
||
| 418 | dsm_buses["original_bus"] = dsm["bus"].copy() |
||
| 419 | dsm_buses["scn_name"] = dsm["scn_name"].copy() |
||
| 420 | |||
| 421 | # get original buses and add copy of relevant information |
||
| 422 | target1 = egon.data.config.datasets()["DSM_CTS_industry"]["targets"][ |
||
| 423 | "bus" |
||
| 424 | ] |
||
| 425 | original_buses = db.select_geodataframe( |
||
| 426 | f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
||
| 427 | {target1['schema']}.{target1['table']}""", |
||
| 428 | geom_col="geom", |
||
| 429 | epsg=4326, |
||
| 430 | ) |
||
| 431 | |||
| 432 | # copy relevant information from original buses to DSM-buses |
||
| 433 | dsm_buses["index"] = dsm_buses.index |
||
| 434 | originals = original_buses[ |
||
| 435 | original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
||
| 436 | ] |
||
| 437 | dsm_buses = originals.merge( |
||
| 438 | dsm_buses, |
||
| 439 | left_on=["bus_id", "scn_name"], |
||
| 440 | right_on=["original_bus", "scn_name"], |
||
| 441 | ) |
||
| 442 | dsm_buses.index = dsm_buses["index"] |
||
| 443 | dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
||
| 444 | |||
| 445 | # new bus_ids for DSM-buses |
||
| 446 | max_id = original_buses["bus_id"].max() |
||
| 447 | if np.isnan(max_id): |
||
| 448 | max_id = 0 |
||
| 449 | dsm_id = max_id + 1 |
||
| 450 | bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
| 451 | |||
| 452 | # Get number of DSM buses for both scenarios |
||
| 453 | rows_per_scenario = ( |
||
| 454 | dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
||
| 455 | ) |
||
| 456 | |||
| 457 | # Assignment of DSM ids |
||
| 458 | bus_id.iloc[0 : rows_per_scenario.get("eGon2035", 0)] = range( |
||
| 459 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
| 460 | ) |
||
| 461 | bus_id.iloc[ |
||
| 462 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
| 463 | "eGon2035", 0 |
||
| 464 | ) |
||
| 465 | + rows_per_scenario.get("eGon100RE", 0) |
||
| 466 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
| 467 | |||
| 468 | dsm_buses["bus_id"] = bus_id |
||
| 469 | |||
| 470 | # add links from "orignal" buses to DSM-buses |
||
| 471 | |||
| 472 | dsm_links = pd.DataFrame(index=dsm_buses.index) |
||
| 473 | dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
||
| 474 | dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
||
| 475 | dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
||
| 476 | |||
| 477 | # set link_id |
||
| 478 | target2 = egon.data.config.datasets()["DSM_CTS_industry"]["targets"][ |
||
| 479 | "link" |
||
| 480 | ] |
||
| 481 | sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
||
| 482 | max_id = pd.read_sql_query(sql, con) |
||
| 483 | max_id = max_id["link_id"].max() |
||
| 484 | if np.isnan(max_id): |
||
| 485 | max_id = 0 |
||
| 486 | dsm_id = max_id + 1 |
||
| 487 | link_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
| 488 | |||
| 489 | # Assignment of link ids |
||
| 490 | link_id.iloc[0 : rows_per_scenario.get("eGon2035", 0)] = range( |
||
| 491 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
| 492 | ) |
||
| 493 | link_id.iloc[ |
||
| 494 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
| 495 | "eGon2035", 0 |
||
| 496 | ) |
||
| 497 | + rows_per_scenario.get("eGon100RE", 0) |
||
| 498 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
| 499 | |||
| 500 | dsm_links["link_id"] = link_id |
||
| 501 | |||
| 502 | # add calculated timeseries to df to be returned |
||
| 503 | if not export_aggregated: |
||
| 504 | dsm_links["p_nom"] = p_nom |
||
|
|
|||
| 505 | dsm_links["p_min"] = p_min |
||
| 506 | dsm_links["p_max"] = p_max |
||
| 507 | |||
| 508 | # add DSM-stores |
||
| 509 | |||
| 510 | dsm_stores = pd.DataFrame(index=dsm_buses.index) |
||
| 511 | dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
||
| 512 | dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
||
| 513 | dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
||
| 514 | |||
| 515 | # set store_id |
||
| 516 | target3 = egon.data.config.datasets()["DSM_CTS_industry"]["targets"][ |
||
| 517 | "store" |
||
| 518 | ] |
||
| 519 | sql = ( |
||
| 520 | f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
||
| 521 | ) |
||
| 522 | max_id = pd.read_sql_query(sql, con) |
||
| 523 | max_id = max_id["store_id"].max() |
||
| 524 | if np.isnan(max_id): |
||
| 525 | max_id = 0 |
||
| 526 | dsm_id = max_id + 1 |
||
| 527 | store_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
| 528 | |||
| 529 | # Assignment of store ids |
||
| 530 | store_id.iloc[0 : rows_per_scenario.get("eGon2035", 0)] = range( |
||
| 531 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
| 532 | ) |
||
| 533 | store_id.iloc[ |
||
| 534 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
| 535 | "eGon2035", 0 |
||
| 536 | ) |
||
| 537 | + rows_per_scenario.get("eGon100RE", 0) |
||
| 538 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
| 539 | |||
| 540 | dsm_stores["store_id"] = store_id |
||
| 541 | |||
| 542 | # add calculated timeseries to df to be returned |
||
| 543 | if not export_aggregated: |
||
| 544 | dsm_stores["e_nom"] = e_nom |
||
| 545 | dsm_stores["e_min"] = e_min |
||
| 546 | dsm_stores["e_max"] = e_max |
||
| 547 | |||
| 548 | return dsm_buses, dsm_links, dsm_stores |
||
| 549 | |||
| 550 | def aggregate_components(con, df_dsm_buses, df_dsm_links, df_dsm_stores): |
||
| 551 | |||
| 552 | # aggregate buses |
||
| 553 | |||
| 554 | grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
||
| 555 | df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
||
| 556 | |||
| 557 | df_dsm_buses.reset_index(inplace=True) |
||
| 558 | df_dsm_buses.sort_values("scn_name", inplace=True) |
||
| 559 | |||
| 560 | # aggregate links |
||
| 561 | |||
| 562 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply( |
||
| 563 | lambda x: np.array(x) |
||
| 564 | ) |
||
| 565 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply( |
||
| 566 | lambda x: np.array(x) |
||
| 567 | ) |
||
| 568 | |||
| 569 | grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
||
| 570 | |||
| 571 | p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
||
| 572 | p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
||
| 573 | |||
| 574 | df_dsm_links = df_dsm_links.groupby(grouper).first() |
||
| 575 | df_dsm_links.p_max = p_max |
||
| 576 | df_dsm_links.p_min = p_min |
||
| 577 | |||
| 578 | df_dsm_links.reset_index(inplace=True) |
||
| 579 | df_dsm_links.sort_values("scn_name", inplace=True) |
||
| 580 | |||
| 581 | # calculate P_nom and P per unit |
||
| 582 | for index, row in df_dsm_links.iterrows(): |
||
| 583 | nom = max(max(row.p_max), abs(min(row.p_min))) |
||
| 584 | df_dsm_links.at[index, "p_nom"] = nom |
||
| 585 | df_dsm_links["p_max"] = df_dsm_links["p_max"] / df_dsm_links["p_nom"] |
||
| 586 | df_dsm_links["p_min"] = df_dsm_links["p_min"] / df_dsm_links["p_nom"] |
||
| 587 | |||
| 588 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
||
| 589 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
||
| 590 | |||
| 591 | # aggregate stores |
||
| 592 | |||
| 593 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
||
| 594 | lambda x: np.array(x) |
||
| 595 | ) |
||
| 596 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
||
| 597 | lambda x: np.array(x) |
||
| 598 | ) |
||
| 599 | |||
| 600 | grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
||
| 601 | |||
| 602 | e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
||
| 603 | e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
||
| 604 | |||
| 605 | df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
||
| 606 | df_dsm_stores.e_max = e_max |
||
| 607 | df_dsm_stores.e_min = e_min |
||
| 608 | |||
| 609 | df_dsm_stores.reset_index(inplace=True) |
||
| 610 | df_dsm_stores.sort_values("scn_name", inplace=True) |
||
| 611 | |||
| 612 | # calculate E_nom and E per unit |
||
| 613 | for index, row in df_dsm_stores.iterrows(): |
||
| 614 | nom = max(max(row.e_max), abs(min(row.e_min))) |
||
| 615 | df_dsm_stores.at[index, "e_nom"] = nom |
||
| 616 | |||
| 617 | df_dsm_stores["e_max"] = ( |
||
| 618 | df_dsm_stores["e_max"] / df_dsm_stores["e_nom"] |
||
| 619 | ) |
||
| 620 | df_dsm_stores["e_min"] = ( |
||
| 621 | df_dsm_stores["e_min"] / df_dsm_stores["e_nom"] |
||
| 622 | ) |
||
| 623 | |||
| 624 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
||
| 625 | lambda x: list(x) |
||
| 626 | ) |
||
| 627 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
||
| 628 | lambda x: list(x) |
||
| 629 | ) |
||
| 630 | |||
| 631 | # select new bus_ids for aggregated buses and add to links and stores |
||
| 632 | bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
||
| 633 | |||
| 634 | df_dsm_buses["bus_id"] = bus_id |
||
| 635 | df_dsm_links["dsm_bus"] = bus_id |
||
| 636 | df_dsm_stores["bus"] = bus_id |
||
| 637 | |||
| 638 | # select new link_ids for aggregated links |
||
| 639 | link_id = db.next_etrago_id("Link") + df_dsm_links.index |
||
| 640 | |||
| 641 | df_dsm_links["link_id"] = link_id |
||
| 642 | |||
| 643 | # select new store_ids to aggregated stores |
||
| 644 | |||
| 645 | store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
||
| 646 | |||
| 647 | df_dsm_stores["store_id"] = store_id |
||
| 648 | |||
| 649 | return df_dsm_buses, df_dsm_links, df_dsm_stores |
||
| 650 | |||
| 651 | def data_export(con, dsm_buses, dsm_links, dsm_stores, carrier): |
||
| 652 | |||
| 653 | """ |
||
| 654 | Export new components to database. |
||
| 655 | Parameters |
||
| 656 | ---------- |
||
| 657 | con : |
||
| 658 | Connection to database |
||
| 659 | dsm_buses: DataFrame |
||
| 660 | Buses representing locations of DSM-potential |
||
| 661 | dsm_links: DataFrame |
||
| 662 | Links connecting DSM-buses and DSM-stores |
||
| 663 | dsm_stores: DataFrame |
||
| 664 | Stores representing DSM-potential |
||
| 665 | carrier: String |
||
| 666 | Remark to be filled in column 'carrier' identifying DSM-potential |
||
| 667 | """ |
||
| 668 | |||
| 669 | targets = egon.data.config.datasets()["DSM_CTS_industry"]["targets"] |
||
| 670 | |||
| 671 | # dsm_buses |
||
| 672 | |||
| 673 | insert_buses = gpd.GeoDataFrame( |
||
| 674 | index=dsm_buses.index, |
||
| 675 | data=dsm_buses["geom"], |
||
| 676 | geometry="geom", |
||
| 677 | crs=dsm_buses.crs, |
||
| 678 | ) |
||
| 679 | insert_buses["scn_name"] = dsm_buses["scn_name"] |
||
| 680 | insert_buses["bus_id"] = dsm_buses["bus_id"] |
||
| 681 | insert_buses["v_nom"] = dsm_buses["v_nom"] |
||
| 682 | insert_buses["carrier"] = carrier |
||
| 683 | insert_buses["x"] = dsm_buses["x"] |
||
| 684 | insert_buses["y"] = dsm_buses["y"] |
||
| 685 | |||
| 686 | # insert into database |
||
| 687 | insert_buses.to_postgis( |
||
| 688 | targets["bus"]["table"], |
||
| 689 | con=db.engine(), |
||
| 690 | schema=targets["bus"]["schema"], |
||
| 691 | if_exists="append", |
||
| 692 | index=False, |
||
| 693 | dtype={"geom": "geometry"}, |
||
| 694 | ) |
||
| 695 | |||
| 696 | # dsm_links |
||
| 697 | |||
| 698 | insert_links = pd.DataFrame(index=dsm_links.index) |
||
| 699 | insert_links["scn_name"] = dsm_links["scn_name"] |
||
| 700 | insert_links["link_id"] = dsm_links["link_id"] |
||
| 701 | insert_links["bus0"] = dsm_links["original_bus"] |
||
| 702 | insert_links["bus1"] = dsm_links["dsm_bus"] |
||
| 703 | insert_links["carrier"] = carrier |
||
| 704 | insert_links["p_nom"] = dsm_links["p_nom"] |
||
| 705 | |||
| 706 | # insert into database |
||
| 707 | insert_links.to_sql( |
||
| 708 | targets["link"]["table"], |
||
| 709 | con=db.engine(), |
||
| 710 | schema=targets["link"]["schema"], |
||
| 711 | if_exists="append", |
||
| 712 | index=False, |
||
| 713 | ) |
||
| 714 | |||
| 715 | insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
||
| 716 | insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
||
| 717 | insert_links_timeseries["link_id"] = dsm_links["link_id"] |
||
| 718 | insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
||
| 719 | insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
||
| 720 | insert_links_timeseries["temp_id"] = 1 |
||
| 721 | |||
| 722 | # insert into database |
||
| 723 | insert_links_timeseries.to_sql( |
||
| 724 | targets["link_timeseries"]["table"], |
||
| 725 | con=db.engine(), |
||
| 726 | schema=targets["link_timeseries"]["schema"], |
||
| 727 | if_exists="append", |
||
| 728 | index=False, |
||
| 729 | ) |
||
| 730 | |||
| 731 | # dsm_stores |
||
| 732 | |||
| 733 | insert_stores = pd.DataFrame(index=dsm_stores.index) |
||
| 734 | insert_stores["scn_name"] = dsm_stores["scn_name"] |
||
| 735 | insert_stores["store_id"] = dsm_stores["store_id"] |
||
| 736 | insert_stores["bus"] = dsm_stores["bus"] |
||
| 737 | insert_stores["carrier"] = carrier |
||
| 738 | insert_stores["e_nom"] = dsm_stores["e_nom"] |
||
| 739 | |||
| 740 | # insert into database |
||
| 741 | insert_stores.to_sql( |
||
| 742 | targets["store"]["table"], |
||
| 743 | con=db.engine(), |
||
| 744 | schema=targets["store"]["schema"], |
||
| 745 | if_exists="append", |
||
| 746 | index=False, |
||
| 747 | ) |
||
| 748 | |||
| 749 | insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
||
| 750 | insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
||
| 751 | insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
||
| 752 | insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
||
| 753 | insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
||
| 754 | insert_stores_timeseries["temp_id"] = 1 |
||
| 755 | |||
| 756 | # insert into database |
||
| 757 | insert_stores_timeseries.to_sql( |
||
| 758 | targets["store_timeseries"]["table"], |
||
| 759 | con=db.engine(), |
||
| 760 | schema=targets["store_timeseries"]["schema"], |
||
| 761 | if_exists="append", |
||
| 762 | index=False, |
||
| 763 | ) |
||
| 764 | |||
| 765 | def delete_dsm_entries(carrier): |
||
| 766 | |||
| 767 | """ |
||
| 768 | Deletes DSM-components from database if they already exist before creating new ones. |
||
| 769 | Parameters |
||
| 770 | ---------- |
||
| 771 | carrier: String |
||
| 772 | Remark in column 'carrier' identifying DSM-potential |
||
| 773 | """ |
||
| 774 | |||
| 775 | targets = egon.data.config.datasets()["DSM_CTS_industry"]["targets"] |
||
| 776 | |||
| 777 | # buses |
||
| 778 | |||
| 779 | sql = f"""DELETE FROM {targets["bus"]["schema"]}.{targets["bus"]["table"]} b |
||
| 780 | WHERE (b.carrier LIKE '{carrier}');""" |
||
| 781 | db.execute_sql(sql) |
||
| 782 | |||
| 783 | # links |
||
| 784 | |||
| 785 | sql = f"""DELETE FROM {targets["link_timeseries"]["schema"]}.{targets["link_timeseries"]["table"]} t |
||
| 786 | WHERE t.link_id IN |
||
| 787 | (SELECT l.link_id FROM {targets["link"]["schema"]}.{targets["link"]["table"]} l |
||
| 788 | WHERE l.carrier LIKE '{carrier}');""" |
||
| 789 | db.execute_sql(sql) |
||
| 790 | sql = f"""DELETE FROM {targets["link"]["schema"]}.{targets["link"]["table"]} l |
||
| 791 | WHERE (l.carrier LIKE '{carrier}');""" |
||
| 792 | db.execute_sql(sql) |
||
| 793 | |||
| 794 | # stores |
||
| 795 | |||
| 796 | sql = f"""DELETE FROM {targets["store_timeseries"]["schema"]}.{targets["store_timeseries"]["table"]} t |
||
| 797 | WHERE t.store_id IN |
||
| 798 | (SELECT s.store_id FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
||
| 799 | WHERE s.carrier LIKE '{carrier}');""" |
||
| 800 | db.execute_sql(sql) |
||
| 801 | sql = f"""DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
||
| 802 | WHERE (s.carrier LIKE '{carrier}');""" |
||
| 803 | db.execute_sql(sql) |
||
| 804 | |||
| 805 | def dsm_cts_ind( |
||
| 806 | con=db.engine(), |
||
| 807 | cts_cool_vent_ac_share=0.22, |
||
| 808 | ind_cool_vent_share=0.039, |
||
| 809 | ind_vent_share=0.017, |
||
| 810 | ): |
||
| 811 | |||
| 812 | """ |
||
| 813 | Execute methodology to create and implement components for DSM considering |
||
| 814 | a) CTS per osm-area: combined potentials of cooling, ventilation and air conditioning |
||
| 815 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
| 816 | c) Industrial Sites: potentials of ventilation in sites of "Wirtschaftszweig" (WZ) 23 |
||
| 817 | d) Industrial Sites: potentials of sites specified by subsectors identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
| 818 | Paper, Recycled Paper, Pulp, Cement |
||
| 819 | Modelled using the methods by Heitkoetter et. al.: https://doi.org/10.1016/j.adapen.2020.100001 |
||
| 820 | Parameters |
||
| 821 | ---------- |
||
| 822 | con : |
||
| 823 | Connection to database |
||
| 824 | cts_cool_vent_ac_share: float |
||
| 825 | Share of cooling, ventilation and AC in CTS demand |
||
| 826 | ind_cool_vent_share: float |
||
| 827 | Share of cooling and ventilation in industry demand |
||
| 828 | ind_vent_share: float |
||
| 829 | Share of ventilation in industry demand in sites of WZ 23 |
||
| 830 | |||
| 831 | """ |
||
| 832 | |||
| 833 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
| 834 | |||
| 835 | print(" ") |
||
| 836 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
| 837 | print(" ") |
||
| 838 | |||
| 839 | dsm = cts_data_import(con, cts_cool_vent_ac_share) |
||
| 840 | |||
| 841 | # calculate combined potentials of cooling, ventilation and air conditioning in CTS |
||
| 842 | # using combined parameters by Heitkoetter et. al. |
||
| 843 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 844 | s_flex=0.5, s_util=0.67, s_inc=1, s_dec=0, delta_t=1, dsm=dsm |
||
| 845 | ) |
||
| 846 | |||
| 847 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 848 | con, p_max, p_min, e_max, e_min, dsm |
||
| 849 | ) |
||
| 850 | |||
| 851 | df_dsm_buses = dsm_buses.copy() |
||
| 852 | df_dsm_links = dsm_links.copy() |
||
| 853 | df_dsm_stores = dsm_stores.copy() |
||
| 854 | |||
| 855 | # industry per osm-area: cooling and ventilation |
||
| 856 | |||
| 857 | print(" ") |
||
| 858 | print("industry per osm-area: cooling and ventilation") |
||
| 859 | print(" ") |
||
| 860 | |||
| 861 | dsm = ind_osm_data_import(con, ind_cool_vent_share) |
||
| 862 | |||
| 863 | # calculate combined potentials of cooling and ventilation in industrial sector |
||
| 864 | # using combined parameters by Heitkoetter et. al. |
||
| 865 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 866 | s_flex=0.5, s_util=0.73, s_inc=0.9, s_dec=0.5, delta_t=1, dsm=dsm |
||
| 867 | ) |
||
| 868 | |||
| 869 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 870 | con, p_max, p_min, e_max, e_min, dsm |
||
| 871 | ) |
||
| 872 | |||
| 873 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 874 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 875 | crs="EPSG:4326", |
||
| 876 | ) |
||
| 877 | df_dsm_links = pd.DataFrame( |
||
| 878 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 879 | ) |
||
| 880 | df_dsm_stores = pd.DataFrame( |
||
| 881 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 882 | ) |
||
| 883 | |||
| 884 | # industry sites |
||
| 885 | |||
| 886 | # industry sites: different applications |
||
| 887 | |||
| 888 | dsm = ind_sites_data_import(con) |
||
| 889 | |||
| 890 | print(" ") |
||
| 891 | print("industry sites: paper") |
||
| 892 | print(" ") |
||
| 893 | |||
| 894 | dsm_paper = gpd.GeoDataFrame( |
||
| 895 | dsm[ |
||
| 896 | dsm["application"].isin( |
||
| 897 | [ |
||
| 898 | "Graphic Paper", |
||
| 899 | "Packing Paper and Board", |
||
| 900 | "Hygiene Paper", |
||
| 901 | "Technical/Special Paper and Board", |
||
| 902 | ] |
||
| 903 | ) |
||
| 904 | ] |
||
| 905 | ) |
||
| 906 | |||
| 907 | # calculate potentials of industrial sites with paper-applications |
||
| 908 | # using parameters by Heitkoetter et. al. |
||
| 909 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 910 | s_flex=0.15, |
||
| 911 | s_util=0.86, |
||
| 912 | s_inc=0.95, |
||
| 913 | s_dec=0, |
||
| 914 | delta_t=3, |
||
| 915 | dsm=dsm_paper, |
||
| 916 | ) |
||
| 917 | |||
| 918 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 919 | con, p_max, p_min, e_max, e_min, dsm_paper |
||
| 920 | ) |
||
| 921 | |||
| 922 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 923 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 924 | crs="EPSG:4326", |
||
| 925 | ) |
||
| 926 | df_dsm_links = pd.DataFrame( |
||
| 927 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 928 | ) |
||
| 929 | df_dsm_stores = pd.DataFrame( |
||
| 930 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 931 | ) |
||
| 932 | |||
| 933 | print(" ") |
||
| 934 | print("industry sites: recycled paper") |
||
| 935 | print(" ") |
||
| 936 | |||
| 937 | # calculate potentials of industrial sites with recycled paper-applications |
||
| 938 | # using parameters by Heitkoetter et. al. |
||
| 939 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
| 940 | dsm[dsm["application"] == "Recycled Paper"] |
||
| 941 | ) |
||
| 942 | |||
| 943 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 944 | s_flex=0.7, |
||
| 945 | s_util=0.85, |
||
| 946 | s_inc=0.95, |
||
| 947 | s_dec=0, |
||
| 948 | delta_t=3, |
||
| 949 | dsm=dsm_recycled_paper, |
||
| 950 | ) |
||
| 951 | |||
| 952 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 953 | con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
||
| 954 | ) |
||
| 955 | |||
| 956 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 957 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 958 | crs="EPSG:4326", |
||
| 959 | ) |
||
| 960 | df_dsm_links = pd.DataFrame( |
||
| 961 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 962 | ) |
||
| 963 | df_dsm_stores = pd.DataFrame( |
||
| 964 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 965 | ) |
||
| 966 | |||
| 967 | print(" ") |
||
| 968 | print("industry sites: pulp") |
||
| 969 | print(" ") |
||
| 970 | |||
| 971 | dsm_pulp = gpd.GeoDataFrame( |
||
| 972 | dsm[dsm["application"] == "Mechanical Pulp"] |
||
| 973 | ) |
||
| 974 | |||
| 975 | # calculate potentials of industrial sites with pulp-applications |
||
| 976 | # using parameters by Heitkoetter et. al. |
||
| 977 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 978 | s_flex=0.7, |
||
| 979 | s_util=0.83, |
||
| 980 | s_inc=0.95, |
||
| 981 | s_dec=0, |
||
| 982 | delta_t=2, |
||
| 983 | dsm=dsm_pulp, |
||
| 984 | ) |
||
| 985 | |||
| 986 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 987 | con, p_max, p_min, e_max, e_min, dsm_pulp |
||
| 988 | ) |
||
| 989 | |||
| 990 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 991 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 992 | crs="EPSG:4326", |
||
| 993 | ) |
||
| 994 | df_dsm_links = pd.DataFrame( |
||
| 995 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 996 | ) |
||
| 997 | df_dsm_stores = pd.DataFrame( |
||
| 998 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 999 | ) |
||
| 1000 | |||
| 1001 | # industry sites: cement |
||
| 1002 | |||
| 1003 | print(" ") |
||
| 1004 | print("industry sites: cement") |
||
| 1005 | print(" ") |
||
| 1006 | |||
| 1007 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
| 1008 | |||
| 1009 | # calculate potentials of industrial sites with cement-applications |
||
| 1010 | # using parameters by Heitkoetter et. al. |
||
| 1011 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1012 | s_flex=0.61, |
||
| 1013 | s_util=0.65, |
||
| 1014 | s_inc=0.95, |
||
| 1015 | s_dec=0, |
||
| 1016 | delta_t=4, |
||
| 1017 | dsm=dsm_cement, |
||
| 1018 | ) |
||
| 1019 | |||
| 1020 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1021 | con, p_max, p_min, e_max, e_min, dsm_cement |
||
| 1022 | ) |
||
| 1023 | |||
| 1024 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1025 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1026 | crs="EPSG:4326", |
||
| 1027 | ) |
||
| 1028 | df_dsm_links = pd.DataFrame( |
||
| 1029 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1030 | ) |
||
| 1031 | df_dsm_stores = pd.DataFrame( |
||
| 1032 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1033 | ) |
||
| 1034 | |||
| 1035 | # industry sites: ventilation in WZ23 |
||
| 1036 | |||
| 1037 | print(" ") |
||
| 1038 | print("industry sites: ventilation in WZ23") |
||
| 1039 | print(" ") |
||
| 1040 | |||
| 1041 | dsm = ind_sites_vent_data_import(con, ind_vent_share, wz=23) |
||
| 1042 | |||
| 1043 | # drop entries of Cement Mills whose DSM-potentials have already been modelled |
||
| 1044 | cement = np.unique(dsm_cement["bus"].values) |
||
| 1045 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
| 1046 | dsm.drop(index_names, inplace=True) |
||
| 1047 | |||
| 1048 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
| 1049 | # using parameters by Heitkoetter et. al. |
||
| 1050 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
| 1051 | s_flex=0.5, s_util=0.8, s_inc=1, s_dec=0.5, delta_t=1, dsm=dsm |
||
| 1052 | ) |
||
| 1053 | |||
| 1054 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
| 1055 | con, p_max, p_min, e_max, e_min, dsm |
||
| 1056 | ) |
||
| 1057 | |||
| 1058 | df_dsm_buses = gpd.GeoDataFrame( |
||
| 1059 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
| 1060 | crs="EPSG:4326", |
||
| 1061 | ) |
||
| 1062 | df_dsm_links = pd.DataFrame( |
||
| 1063 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
| 1064 | ) |
||
| 1065 | df_dsm_stores = pd.DataFrame( |
||
| 1066 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
| 1067 | ) |
||
| 1068 | |||
| 1069 | # aggregate DSM components per substation |
||
| 1070 | |||
| 1071 | dsm_buses, dsm_links, dsm_stores = aggregate_components( |
||
| 1072 | con, df_dsm_buses, df_dsm_links, df_dsm_stores |
||
| 1073 | ) |
||
| 1074 | |||
| 1075 | # export aggregated DSM components to database |
||
| 1076 | |||
| 1077 | delete_dsm_entries("dsm-cts") |
||
| 1078 | delete_dsm_entries("dsm-ind-osm") |
||
| 1079 | delete_dsm_entries("dsm-ind-sites") |
||
| 1080 | delete_dsm_entries("dsm") |
||
| 1081 | |||
| 1082 | data_export(con, dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
||
| 1083 | |||
| 1084 | dsm_cts_ind() |
||
| 1085 |