| Conditions | 2 | 
| Total Lines | 79 | 
| Code Lines | 37 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | #!/usr/bin/env python3  | 
            ||
| 107 | def plot_generation(  | 
            ||
| 108 | carrier,scenario, osm = False  | 
            ||
| 109 | ):  | 
            ||
| 110 | """  | 
            ||
| 111 | Plots color maps according to the capacity of different generators  | 
            ||
| 112 | of the two existing scenarios (eGon2035 and eGon100RE)  | 
            ||
| 113 | |||
| 114 | |||
| 115 | Parameters  | 
            ||
| 116 | ----------  | 
            ||
| 117 | carrier : generators  | 
            ||
| 118 | The list of generators: biomass, central_biomass_CHP, central_biomass_CHP_heat,  | 
            ||
| 119 | industrial_biomass_CHP, solar, solar_rooftop, wind_offshore, wind_onshore.  | 
            ||
| 120 | |||
| 121 | scenario: eGon2035, eGon100RE  | 
            ||
| 122 | |||
| 123 | |||
| 124 | """  | 
            ||
| 125 | |||
| 126 | |||
| 127 | con = db.engine()  | 
            ||
| 128 | #imports buses of Germany  | 
            ||
| 129 | SQLBus = "SELECT bus_id, country FROM grid.egon_etrago_bus WHERE country='DE'"  | 
            ||
| 130 | busDE = pd.read_sql(SQLBus,con)  | 
            ||
| 131 |    busDE = busDE.rename({'bus_id': 'bus'},axis=1)  | 
            ||
| 132 | #Imports grid districs  | 
            ||
| 133 | sql = "SELECT bus_id, geom FROM grid.egon_mv_grid_district"  | 
            ||
| 134 | distr = gpd.GeoDataFrame.from_postgis(sql, con)  | 
            ||
| 135 |    distr = distr.rename({'bus_id': 'bus'},axis=1) | 
            ||
| 136 |    distr = distr.set_index("bus") | 
            ||
| 137 | #merges grid districts with buses  | 
            ||
| 138 | distr = pd.merge(busDE, distr, on='bus')  | 
            ||
| 139 | #Imports generator  | 
            ||
| 140 | sqlCarrier = "SELECT carrier, p_nom, bus FROM grid.egon_etrago_generator"  | 
            ||
| 141 | sqlCarrier = "SELECT * FROM grid.egon_etrago_generator"  | 
            ||
| 142 | Carriers = pd.read_sql(sqlCarrier,con)  | 
            ||
| 143 | Carriers = Carriers.loc[Carriers['scn_name'] == scenario]  | 
            ||
| 144 |    Carriers = Carriers.set_index("bus") | 
            ||
| 145 | |||
| 146 | |||
| 147 | CarrierGen = Carriers.loc[Carriers['carrier'] == carrier]  | 
            ||
| 148 | #merges districts with generators  | 
            ||
| 149 | Merge = pd.merge(CarrierGen, distr, on ='bus', how="outer")  | 
            ||
| 150 | |||
| 151 | |||
| 152 | Merge.loc[Merge ['carrier'] != carrier, "p_nom" ] = 0  | 
            ||
| 153 | Merge.loc[Merge ['country'] != "DE", "p_nom" ] = 0  | 
            ||
| 154 | |||
| 155 | gdf = gpd.GeoDataFrame(Merge , geometry='geom')  | 
            ||
| 156 | pnom=gdf['p_nom'] #  | 
            ||
| 157 | #0.95 quantile is used to filter values that are too high and make noise in the plots.  | 
            ||
| 158 | max_pnom=pnom.quantile(0.95)  | 
            ||
| 159 | gdf = gdf.to_crs(epsg=3857)  | 
            ||
| 160 | |||
| 161 | |||
| 162 | # Plot osm map in background  | 
            ||
| 163 | if osm != False:  | 
            ||
| 164 | #if network.srid == 4326:  | 
            ||
| 165 | #set_epsg_network(network)  | 
            ||
| 166 | fig, ax = plot_osm(osm['x'], osm['y'], osm['zoom'])  | 
            ||
| 167 | |||
| 168 | else:  | 
            ||
| 169 | fig, ax = plt.subplots(1, 1)  | 
            ||
| 170 | |||
| 171 | |||
| 172 | |||
| 173 | ax.set_axis_off();  | 
            ||
| 174 |    plt.title(f" {carrier} installed capacity in MW , {scenario}") | 
            ||
| 175 | cmap = mpl.cm.coolwarm  | 
            ||
| 176 | |||
| 177 | |||
| 178 | norm = mpl.colors.Normalize(vmin=0, vmax=max_pnom)  | 
            ||
| 179 |    gdf.plot(column='p_nom', ax=ax, legend=False,  legend_kwds={'label': "p_nom(MW)", | 
            ||
| 180 | |||
| 181 | 'orientation': "vertical"}, cmap=cmap, norm=norm, edgecolor='black', linewidth=0.1,zorder=2)  | 
            ||
| 182 | scatter = ax.collections[0]  | 
            ||
| 183 | cbar=plt.colorbar(scatter, ax=ax, extend='max')  | 
            ||
| 184 |    cbar.set_label('p_nom(MW)', rotation=90) | 
            ||
| 185 | return 0  | 
            ||
| 186 | |||
| 191 |