| Total Complexity | 103 |
| Total Lines | 2481 |
| Duplicated Lines | 2.82 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.power_plants.pv_rooftop_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 2 | Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate |
||
| 3 | new PV rooftop generators for scenarios eGon2035 and eGon100RE. |
||
| 4 | |||
| 5 | See documentation section :ref:`pv-rooftop-ref` for more information. |
||
| 6 | |||
| 7 | """ |
||
| 8 | from __future__ import annotations |
||
| 9 | |||
| 10 | from collections import Counter |
||
| 11 | from functools import wraps |
||
| 12 | from time import perf_counter |
||
| 13 | import datetime |
||
| 14 | import json |
||
| 15 | |||
| 16 | from geoalchemy2 import Geometry |
||
| 17 | from loguru import logger |
||
| 18 | from numpy.random import RandomState, default_rng |
||
| 19 | from omi.dialects import get_dialect |
||
| 20 | from pyproj.crs.crs import CRS |
||
| 21 | from sqlalchemy import BigInteger, Column, Float, Integer, String |
||
| 22 | from sqlalchemy.dialects.postgresql import HSTORE |
||
| 23 | from sqlalchemy.ext.declarative import declarative_base |
||
| 24 | import geopandas as gpd |
||
| 25 | import numpy as np |
||
| 26 | import pandas as pd |
||
| 27 | |||
| 28 | from egon.data import config, db |
||
| 29 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
| 30 | OsmBuildingsSynthetic, |
||
| 31 | ) |
||
| 32 | from egon.data.datasets.power_plants.mastr_db_classes import EgonPowerPlantsPv |
||
| 33 | from egon.data.datasets.scenario_capacities import EgonScenarioCapacities |
||
| 34 | from egon.data.datasets.scenario_parameters import get_scenario_year |
||
| 35 | from egon.data.datasets.zensus_vg250 import Vg250Gem |
||
| 36 | from egon.data.metadata import ( |
||
| 37 | context, |
||
| 38 | contributors, |
||
| 39 | generate_resource_fields_from_db_table, |
||
| 40 | license_dedl, |
||
| 41 | license_odbl, |
||
| 42 | meta_metadata, |
||
| 43 | meta_metadata, |
||
| 44 | sources, |
||
| 45 | ) |
||
| 46 | |||
| 47 | engine = db.engine() |
||
| 48 | Base = declarative_base() |
||
| 49 | SEED = int(config.settings()["egon-data"]["--random-seed"]) |
||
| 50 | |||
| 51 | # TODO: move to yml |
||
| 52 | MASTR_INDEX_COL = "gens_id" |
||
| 53 | |||
| 54 | EPSG = 4326 |
||
| 55 | SRID = 3035 |
||
| 56 | |||
| 57 | # data cleaning |
||
| 58 | MAX_REALISTIC_PV_CAP = 23500 / 10**3 |
||
| 59 | MIN_REALISTIC_PV_CAP = 0.1 / 10**3 |
||
| 60 | |||
| 61 | # show additional logging information |
||
| 62 | VERBOSE = False |
||
| 63 | |||
| 64 | # Number of quantiles |
||
| 65 | Q = 5 |
||
| 66 | |||
| 67 | # Scenario Data |
||
| 68 | SCENARIOS = config.settings()["egon-data"]["--scenarios"] |
||
| 69 | SCENARIO_TIMESTAMP = { |
||
| 70 | "status2019": pd.Timestamp("2020-01-01", tz="UTC"), |
||
| 71 | "status2023": pd.Timestamp("2024-01-01", tz="UTC"), |
||
| 72 | "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"), |
||
| 73 | "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"), |
||
| 74 | } |
||
| 75 | PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D") |
||
| 76 | |||
| 77 | # Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp |
||
| 78 | # https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf |
||
| 79 | MODUL_CAP = 0.4 / 10**3 # MWp |
||
| 80 | MODUL_SIZE = 1.096 * 1.754 # m² |
||
| 81 | PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE |
||
| 82 | |||
| 83 | # Estimation of usable roof area |
||
| 84 | # Factor for the conversion of building area to roof area |
||
| 85 | # estimation mean roof pitch: 35° |
||
| 86 | # estimation usable roof share: 80% |
||
| 87 | # estimation that only the south side of the building is used for pv |
||
| 88 | # see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf |
||
| 89 | # AREA_FACTOR = 1.221 |
||
| 90 | # USABLE_ROOF_SHARE = 0.8 |
||
| 91 | # SOUTH_SHARE = 0.5 |
||
| 92 | # ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE |
||
| 93 | ROOF_FACTOR = 0.5 |
||
| 94 | |||
| 95 | CAP_RANGES = [ |
||
| 96 | (0, 30 / 10**3), |
||
| 97 | (30 / 10**3, 100 / 10**3), |
||
| 98 | (100 / 10**3, float("inf")), |
||
| 99 | ] |
||
| 100 | |||
| 101 | MIN_BUILDING_SIZE = 10.0 |
||
| 102 | UPPER_QUANTILE = 0.95 |
||
| 103 | LOWER_QUANTILE = 0.05 |
||
| 104 | |||
| 105 | COLS_TO_EXPORT = [ |
||
| 106 | "scenario", |
||
| 107 | "bus_id", |
||
| 108 | "building_id", |
||
| 109 | "gens_id", |
||
| 110 | "capacity", |
||
| 111 | "orientation_uniform", |
||
| 112 | "orientation_primary", |
||
| 113 | "orientation_primary_angle", |
||
| 114 | "voltage_level", |
||
| 115 | "weather_cell_id", |
||
| 116 | ] |
||
| 117 | |||
| 118 | # TODO |
||
| 119 | INCLUDE_SYNTHETIC_BUILDINGS = True |
||
| 120 | ONLY_BUILDINGS_WITH_DEMAND = True |
||
| 121 | TEST_RUN = False |
||
| 122 | |||
| 123 | |||
| 124 | def timer_func(func): |
||
| 125 | @wraps(func) |
||
| 126 | def timeit_wrapper(*args, **kwargs): |
||
| 127 | start_time = perf_counter() |
||
| 128 | result = func(*args, **kwargs) |
||
| 129 | end_time = perf_counter() |
||
| 130 | total_time = end_time - start_time |
||
| 131 | logger.debug( |
||
| 132 | f"Function {func.__name__} took {total_time:.4f} seconds." |
||
| 133 | ) |
||
| 134 | return result |
||
| 135 | |||
| 136 | return timeit_wrapper |
||
| 137 | |||
| 138 | |||
| 139 | @timer_func |
||
| 140 | def mastr_data( |
||
| 141 | index_col: str | int | list[str] | list[int], |
||
| 142 | ) -> gpd.GeoDataFrame: |
||
| 143 | """ |
||
| 144 | Read MaStR data from database. |
||
| 145 | |||
| 146 | Parameters |
||
| 147 | ----------- |
||
| 148 | index_col : str, int or list of str or int |
||
| 149 | Column(s) to use as the row labels of the DataFrame. |
||
| 150 | Returns |
||
| 151 | ------- |
||
| 152 | pandas.DataFrame |
||
| 153 | DataFrame containing MaStR data. |
||
| 154 | """ |
||
| 155 | with db.session_scope() as session: |
||
| 156 | query = session.query(EgonPowerPlantsPv).filter( |
||
| 157 | EgonPowerPlantsPv.status == "InBetrieb", |
||
| 158 | EgonPowerPlantsPv.site_type |
||
| 159 | == ("Bauliche Anlagen (Hausdach, Gebäude und Fassade)"), |
||
| 160 | ) |
||
| 161 | |||
| 162 | gdf = gpd.read_postgis( |
||
| 163 | query.statement, query.session.bind, index_col=index_col |
||
| 164 | ).drop(columns="id") |
||
| 165 | |||
| 166 | logger.debug("MaStR data loaded.") |
||
| 167 | |||
| 168 | return gdf |
||
| 169 | |||
| 170 | |||
| 171 | @timer_func |
||
| 172 | def clean_mastr_data( |
||
| 173 | mastr_gdf: gpd.GeoDataFrame, |
||
| 174 | max_realistic_pv_cap: int | float, |
||
| 175 | min_realistic_pv_cap: int | float, |
||
| 176 | seed: int, |
||
| 177 | ) -> gpd.GeoDataFrame: |
||
| 178 | """ |
||
| 179 | Clean the MaStR data from implausible data. |
||
| 180 | |||
| 181 | * Drop MaStR ID duplicates. |
||
| 182 | * Drop generators with implausible capacities. |
||
| 183 | |||
| 184 | Parameters |
||
| 185 | ----------- |
||
| 186 | mastr_gdf : pandas.DataFrame |
||
| 187 | DataFrame containing MaStR data. |
||
| 188 | max_realistic_pv_cap : int or float |
||
| 189 | Maximum capacity, which is considered to be realistic. |
||
| 190 | min_realistic_pv_cap : int or float |
||
| 191 | Minimum capacity, which is considered to be realistic. |
||
| 192 | seed : int |
||
| 193 | Seed to use for random operations with NumPy and pandas. |
||
| 194 | Returns |
||
| 195 | ------- |
||
| 196 | pandas.DataFrame |
||
| 197 | DataFrame containing cleaned MaStR data. |
||
| 198 | """ |
||
| 199 | init_len = len(mastr_gdf) |
||
| 200 | |||
| 201 | # drop duplicates |
||
| 202 | mastr_gdf = mastr_gdf.loc[~mastr_gdf.index.duplicated()] |
||
| 203 | |||
| 204 | # drop generators without any capacity info |
||
| 205 | # and capacity of zero |
||
| 206 | # and if the capacity is > 23.5 MW, because |
||
| 207 | # Germanies largest rooftop PV is 23 MW |
||
| 208 | # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379 |
||
| 209 | mastr_gdf = mastr_gdf.loc[ |
||
| 210 | ~mastr_gdf.capacity.isna() |
||
| 211 | & (mastr_gdf.capacity <= max_realistic_pv_cap) |
||
| 212 | & (mastr_gdf.capacity > min_realistic_pv_cap) |
||
| 213 | ] |
||
| 214 | |||
| 215 | # get consistent start-up date |
||
| 216 | # randomly and weighted fill missing start-up dates |
||
| 217 | pool = mastr_gdf.loc[ |
||
| 218 | ~mastr_gdf.commissioning_date.isna() |
||
| 219 | ].commissioning_date.to_numpy() |
||
| 220 | |||
| 221 | size = len(mastr_gdf) - len(pool) |
||
| 222 | |||
| 223 | if size > 0: |
||
| 224 | rng = default_rng(seed=seed) |
||
| 225 | |||
| 226 | choice = rng.choice( |
||
| 227 | pool, |
||
| 228 | size=size, |
||
| 229 | replace=False, |
||
| 230 | ) |
||
| 231 | |||
| 232 | mastr_gdf.loc[mastr_gdf.commissioning_date.isna()] = mastr_gdf.loc[ |
||
| 233 | mastr_gdf.commissioning_date.isna() |
||
| 234 | ].assign(commissioning_date=choice) |
||
| 235 | |||
| 236 | logger.info( |
||
| 237 | f"Randomly and weigthed added start-up date to {size} generators." |
||
| 238 | ) |
||
| 239 | |||
| 240 | mastr_gdf = mastr_gdf.assign( |
||
| 241 | commissioning_date=pd.to_datetime( |
||
| 242 | mastr_gdf.commissioning_date, utc=True |
||
| 243 | ) |
||
| 244 | ) |
||
| 245 | |||
| 246 | end_len = len(mastr_gdf) |
||
| 247 | logger.debug( |
||
| 248 | f"Dropped {init_len - end_len} " |
||
| 249 | f"({((init_len - end_len) / init_len) * 100:g}%)" |
||
| 250 | f" of {init_len} rows from MaStR DataFrame." |
||
| 251 | ) |
||
| 252 | |||
| 253 | return mastr_gdf |
||
| 254 | |||
| 255 | |||
| 256 | @timer_func |
||
| 257 | def municipality_data() -> gpd.GeoDataFrame: |
||
| 258 | """ |
||
| 259 | Get municipality data from eGo^n Database. |
||
| 260 | Returns |
||
| 261 | ------- |
||
| 262 | gepandas.GeoDataFrame |
||
| 263 | GeoDataFrame with municipality data. |
||
| 264 | """ |
||
| 265 | with db.session_scope() as session: |
||
| 266 | query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom")) |
||
| 267 | |||
| 268 | return gpd.read_postgis( |
||
| 269 | query.statement, query.session.bind, index_col="ags" |
||
| 270 | ) |
||
| 271 | |||
| 272 | |||
| 273 | @timer_func |
||
| 274 | def add_ags_to_gens( |
||
| 275 | mastr_gdf: gpd.GeoDataFrame, |
||
| 276 | municipalities_gdf: gpd.GeoDataFrame, |
||
| 277 | ) -> gpd.GeoDataFrame: |
||
| 278 | """ |
||
| 279 | Add information about AGS ID to generators. |
||
| 280 | |||
| 281 | Parameters |
||
| 282 | ----------- |
||
| 283 | mastr_gdf : geopandas.GeoDataFrame |
||
| 284 | GeoDataFrame with valid and cleaned MaStR data. |
||
| 285 | municipalities_gdf : geopandas.GeoDataFrame |
||
| 286 | GeoDataFrame with municipality data. |
||
| 287 | Returns |
||
| 288 | ------- |
||
| 289 | gepandas.GeoDataFrame |
||
| 290 | GeoDataFrame with valid and cleaned MaStR data |
||
| 291 | with AGS ID added. |
||
| 292 | """ |
||
| 293 | return mastr_gdf.sjoin( |
||
| 294 | municipalities_gdf, |
||
| 295 | how="left", |
||
| 296 | predicate="intersects", |
||
| 297 | ).rename(columns={"index_right": "ags"}) |
||
| 298 | |||
| 299 | |||
| 300 | def drop_gens_outside_muns( |
||
| 301 | mastr_gdf: gpd.GeoDataFrame, |
||
| 302 | ) -> gpd.GeoDataFrame: |
||
| 303 | """ |
||
| 304 | Drop all generators outside of municipalities. |
||
| 305 | |||
| 306 | Parameters |
||
| 307 | ----------- |
||
| 308 | mastr_gdf : geopandas.GeoDataFrame |
||
| 309 | GeoDataFrame with valid and cleaned MaStR data. |
||
| 310 | Returns |
||
| 311 | ------- |
||
| 312 | gepandas.GeoDataFrame |
||
| 313 | GeoDataFrame with valid and cleaned MaStR data |
||
| 314 | with generatos without an AGS ID dropped. |
||
| 315 | """ |
||
| 316 | gdf = mastr_gdf.loc[~mastr_gdf.ags.isna()] |
||
| 317 | |||
| 318 | logger.debug( |
||
| 319 | f"{len(mastr_gdf) - len(gdf)} (" |
||
| 320 | f"{(len(mastr_gdf) - len(gdf)) / len(mastr_gdf) * 100:g}%)" |
||
| 321 | f" of {len(mastr_gdf)} values are outside of the municipalities" |
||
| 322 | " and are therefore dropped." |
||
| 323 | ) |
||
| 324 | |||
| 325 | return gdf |
||
| 326 | |||
| 327 | |||
| 328 | def load_mastr_data(): |
||
| 329 | """Read PV rooftop data from MaStR CSV |
||
| 330 | Note: the source will be replaced as soon as the MaStR data is available |
||
| 331 | in DB. |
||
| 332 | |||
| 333 | Returns |
||
| 334 | ------- |
||
| 335 | geopandas.GeoDataFrame |
||
| 336 | GeoDataFrame containing MaStR data with geocoded locations. |
||
| 337 | """ |
||
| 338 | mastr_gdf = mastr_data( |
||
| 339 | MASTR_INDEX_COL, |
||
| 340 | ) |
||
| 341 | |||
| 342 | clean_mastr_gdf = clean_mastr_data( |
||
| 343 | mastr_gdf, |
||
| 344 | max_realistic_pv_cap=MAX_REALISTIC_PV_CAP, |
||
| 345 | min_realistic_pv_cap=MIN_REALISTIC_PV_CAP, |
||
| 346 | seed=SEED, |
||
| 347 | ) |
||
| 348 | |||
| 349 | municipalities_gdf = municipality_data() |
||
| 350 | |||
| 351 | clean_mastr_gdf = add_ags_to_gens(clean_mastr_gdf, municipalities_gdf) |
||
| 352 | |||
| 353 | return drop_gens_outside_muns(clean_mastr_gdf) |
||
| 354 | |||
| 355 | |||
| 356 | class OsmBuildingsFiltered(Base): |
||
| 357 | """ |
||
| 358 | Class definition of table openstreetmap.osm_buildings_filtered. |
||
| 359 | |||
| 360 | """ |
||
| 361 | __tablename__ = "osm_buildings_filtered" |
||
| 362 | __table_args__ = {"schema": "openstreetmap"} |
||
| 363 | |||
| 364 | osm_id = Column(BigInteger) |
||
| 365 | amenity = Column(String) |
||
| 366 | building = Column(String) |
||
| 367 | name = Column(String) |
||
| 368 | geom = Column(Geometry(srid=SRID), index=True) |
||
| 369 | area = Column(Float) |
||
| 370 | geom_point = Column(Geometry(srid=SRID), index=True) |
||
| 371 | tags = Column(HSTORE) |
||
| 372 | id = Column(BigInteger, primary_key=True, index=True) |
||
| 373 | |||
| 374 | |||
| 375 | @timer_func |
||
| 376 | def osm_buildings( |
||
| 377 | to_crs: CRS, |
||
| 378 | ) -> gpd.GeoDataFrame: |
||
| 379 | """ |
||
| 380 | Read OSM buildings data from eGo^n Database. |
||
| 381 | |||
| 382 | Parameters |
||
| 383 | ----------- |
||
| 384 | to_crs : pyproj.crs.crs.CRS |
||
| 385 | CRS to transform geometries to. |
||
| 386 | Returns |
||
| 387 | ------- |
||
| 388 | geopandas.GeoDataFrame |
||
| 389 | GeoDataFrame containing OSM buildings data. |
||
| 390 | """ |
||
| 391 | with db.session_scope() as session: |
||
| 392 | query = session.query( |
||
| 393 | OsmBuildingsFiltered.id, |
||
| 394 | OsmBuildingsFiltered.area, |
||
| 395 | OsmBuildingsFiltered.geom_point.label("geom"), |
||
| 396 | ) |
||
| 397 | |||
| 398 | return gpd.read_postgis( |
||
| 399 | query.statement, query.session.bind, index_col="id" |
||
| 400 | ).to_crs(to_crs) |
||
| 401 | |||
| 402 | |||
| 403 | @timer_func |
||
| 404 | def synthetic_buildings( |
||
| 405 | to_crs: CRS, |
||
| 406 | ) -> gpd.GeoDataFrame: |
||
| 407 | """ |
||
| 408 | Read synthetic buildings data from eGo^n Database. |
||
| 409 | |||
| 410 | Parameters |
||
| 411 | ----------- |
||
| 412 | to_crs : pyproj.crs.crs.CRS |
||
| 413 | CRS to transform geometries to. |
||
| 414 | Returns |
||
| 415 | ------- |
||
| 416 | geopandas.GeoDataFrame |
||
| 417 | GeoDataFrame containing OSM buildings data. |
||
| 418 | """ |
||
| 419 | with db.session_scope() as session: |
||
| 420 | query = session.query( |
||
| 421 | OsmBuildingsSynthetic.id, |
||
| 422 | OsmBuildingsSynthetic.area, |
||
| 423 | OsmBuildingsSynthetic.geom_point.label("geom"), |
||
| 424 | ) |
||
| 425 | |||
| 426 | return gpd.read_postgis( |
||
| 427 | query.statement, query.session.bind, index_col="id" |
||
| 428 | ).to_crs(to_crs) |
||
| 429 | |||
| 430 | |||
| 431 | @timer_func |
||
| 432 | def add_ags_to_buildings( |
||
| 433 | buildings_gdf: gpd.GeoDataFrame, |
||
| 434 | municipalities_gdf: gpd.GeoDataFrame, |
||
| 435 | ) -> gpd.GeoDataFrame: |
||
| 436 | """ |
||
| 437 | Add information about AGS ID to buildings. |
||
| 438 | |||
| 439 | Parameters |
||
| 440 | ----------- |
||
| 441 | buildings_gdf : geopandas.GeoDataFrame |
||
| 442 | GeoDataFrame containing OSM buildings data. |
||
| 443 | municipalities_gdf : geopandas.GeoDataFrame |
||
| 444 | GeoDataFrame with municipality data. |
||
| 445 | Returns |
||
| 446 | ------- |
||
| 447 | gepandas.GeoDataFrame |
||
| 448 | GeoDataFrame containing OSM buildings data |
||
| 449 | with AGS ID added. |
||
| 450 | """ |
||
| 451 | return buildings_gdf.sjoin( |
||
| 452 | municipalities_gdf, |
||
| 453 | how="left", |
||
| 454 | predicate="intersects", |
||
| 455 | ).rename(columns={"index_right": "ags"}) |
||
| 456 | |||
| 457 | |||
| 458 | def drop_buildings_outside_muns( |
||
| 459 | buildings_gdf: gpd.GeoDataFrame, |
||
| 460 | ) -> gpd.GeoDataFrame: |
||
| 461 | """ |
||
| 462 | Drop all buildings outside of municipalities. |
||
| 463 | |||
| 464 | Parameters |
||
| 465 | ----------- |
||
| 466 | buildings_gdf : geopandas.GeoDataFrame |
||
| 467 | GeoDataFrame containing OSM buildings data. |
||
| 468 | Returns |
||
| 469 | ------- |
||
| 470 | gepandas.GeoDataFrame |
||
| 471 | GeoDataFrame containing OSM buildings data |
||
| 472 | with buildings without an AGS ID dropped. |
||
| 473 | """ |
||
| 474 | gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()] |
||
| 475 | |||
| 476 | logger.debug( |
||
| 477 | f"{len(buildings_gdf) - len(gdf)} " |
||
| 478 | f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
||
| 479 | f"of {len(buildings_gdf)} values are outside of the municipalities " |
||
| 480 | "and are therefore dropped." |
||
| 481 | ) |
||
| 482 | |||
| 483 | return gdf |
||
| 484 | |||
| 485 | |||
| 486 | def egon_building_peak_loads(): |
||
| 487 | |||
| 488 | # use active scenario wich is closest to today |
||
| 489 | scenario = sorted(SCENARIOS, key=get_scenario_year)[0] |
||
| 490 | |||
| 491 | sql = f""" |
||
| 492 | SELECT building_id |
||
| 493 | FROM demand.egon_building_electricity_peak_loads |
||
| 494 | WHERE scenario = '{scenario}' |
||
| 495 | """ |
||
| 496 | |||
| 497 | return ( |
||
| 498 | db.select_dataframe(sql).building_id.astype(int).sort_values().unique() |
||
| 499 | ) |
||
| 500 | |||
| 501 | |||
| 502 | @timer_func |
||
| 503 | def load_building_data(): |
||
| 504 | """ |
||
| 505 | Read buildings from DB |
||
| 506 | Tables: |
||
| 507 | |||
| 508 | * `openstreetmap.osm_buildings_filtered` (from OSM) |
||
| 509 | * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us) |
||
| 510 | |||
| 511 | Use column `id` for both as it is unique hence you concat both datasets. |
||
| 512 | If INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be |
||
| 513 | loaded. |
||
| 514 | |||
| 515 | Returns |
||
| 516 | ------- |
||
| 517 | gepandas.GeoDataFrame |
||
| 518 | GeoDataFrame containing OSM buildings data with buildings without an |
||
| 519 | AGS ID dropped. |
||
| 520 | """ |
||
| 521 | |||
| 522 | municipalities_gdf = municipality_data() |
||
| 523 | |||
| 524 | osm_buildings_gdf = osm_buildings(municipalities_gdf.crs) |
||
| 525 | |||
| 526 | if INCLUDE_SYNTHETIC_BUILDINGS: |
||
| 527 | synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs) |
||
| 528 | |||
| 529 | buildings_gdf = gpd.GeoDataFrame( |
||
| 530 | pd.concat( |
||
| 531 | [ |
||
| 532 | osm_buildings_gdf, |
||
| 533 | synthetic_buildings_gdf, |
||
| 534 | ] |
||
| 535 | ), |
||
| 536 | geometry="geom", |
||
| 537 | crs=osm_buildings_gdf.crs, |
||
| 538 | ).rename(columns={"area": "building_area"}) |
||
| 539 | |||
| 540 | buildings_gdf.index = buildings_gdf.index.astype(int) |
||
| 541 | |||
| 542 | else: |
||
| 543 | buildings_gdf = osm_buildings_gdf.rename( |
||
| 544 | columns={"area": "building_area"} |
||
| 545 | ) |
||
| 546 | |||
| 547 | if ONLY_BUILDINGS_WITH_DEMAND: |
||
| 548 | building_ids = egon_building_peak_loads() |
||
| 549 | |||
| 550 | init_len = len(building_ids) |
||
| 551 | |||
| 552 | building_ids = np.intersect1d( |
||
| 553 | list(map(int, building_ids)), |
||
| 554 | list(map(int, buildings_gdf.index.to_numpy())), |
||
| 555 | ) |
||
| 556 | |||
| 557 | end_len = len(building_ids) |
||
| 558 | |||
| 559 | logger.debug( |
||
| 560 | f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) " |
||
| 561 | f"of buildings have peak load." |
||
| 562 | ) |
||
| 563 | |||
| 564 | buildings_gdf = buildings_gdf.loc[building_ids] |
||
| 565 | |||
| 566 | buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf) |
||
| 567 | |||
| 568 | buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf) |
||
| 569 | |||
| 570 | grid_districts_gdf = grid_districts(EPSG) |
||
| 571 | |||
| 572 | federal_state_gdf = federal_state_data(grid_districts_gdf.crs) |
||
| 573 | |||
| 574 | grid_federal_state_gdf = overlay_grid_districts_with_counties( |
||
| 575 | grid_districts_gdf, |
||
| 576 | federal_state_gdf, |
||
| 577 | ) |
||
| 578 | |||
| 579 | buildings_overlay_gdf = add_overlay_id_to_buildings( |
||
| 580 | buildings_ags_gdf, |
||
| 581 | grid_federal_state_gdf, |
||
| 582 | ) |
||
| 583 | |||
| 584 | logger.debug("Loaded buildings.") |
||
| 585 | |||
| 586 | buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf) |
||
| 587 | |||
| 588 | # overwrite bus_id with data from new table |
||
| 589 | sql = ( |
||
| 590 | "SELECT building_id, bus_id FROM " |
||
| 591 | "boundaries.egon_map_zensus_mvgd_buildings" |
||
| 592 | ) |
||
| 593 | map_building_bus_df = db.select_dataframe(sql) |
||
| 594 | |||
| 595 | building_ids = np.intersect1d( |
||
| 596 | list(map(int, map_building_bus_df.building_id.unique())), |
||
| 597 | list(map(int, buildings_overlay_gdf.index.to_numpy())), |
||
| 598 | ) |
||
| 599 | |||
| 600 | buildings_within_gdf = buildings_overlay_gdf.loc[building_ids] |
||
| 601 | |||
| 602 | gdf = ( |
||
| 603 | buildings_within_gdf.reset_index() |
||
| 604 | .drop(columns=["bus_id"]) |
||
| 605 | .merge( |
||
| 606 | how="left", |
||
| 607 | right=map_building_bus_df, |
||
| 608 | left_on="id", |
||
| 609 | right_on="building_id", |
||
| 610 | ) |
||
| 611 | .drop(columns=["building_id"]) |
||
| 612 | .set_index("id") |
||
| 613 | .sort_index() |
||
| 614 | ) |
||
| 615 | |||
| 616 | return gdf[~gdf.index.duplicated(keep="first")] |
||
| 617 | |||
| 618 | |||
| 619 | @timer_func |
||
| 620 | def sort_and_qcut_df( |
||
| 621 | df: pd.DataFrame | gpd.GeoDataFrame, |
||
| 622 | col: str, |
||
| 623 | q: int, |
||
| 624 | ) -> pd.DataFrame | gpd.GeoDataFrame: |
||
| 625 | """ |
||
| 626 | Determine the quantile of a given attribute in a (Geo)DataFrame. |
||
| 627 | Sort the (Geo)DataFrame in ascending order for the given attribute. |
||
| 628 | |||
| 629 | Parameters |
||
| 630 | ----------- |
||
| 631 | df : pandas.DataFrame or geopandas.GeoDataFrame |
||
| 632 | (Geo)DataFrame to sort and qcut. |
||
| 633 | col : str |
||
| 634 | Name of the attribute to sort and qcut the (Geo)DataFrame on. |
||
| 635 | q : int |
||
| 636 | Number of quantiles. |
||
| 637 | Returns |
||
| 638 | ------- |
||
| 639 | pandas.DataFrame or gepandas.GeoDataFrame |
||
| 640 | Sorted and qcut (Geo)DataFrame. |
||
| 641 | """ |
||
| 642 | df = df.sort_values(col, ascending=True) |
||
| 643 | |||
| 644 | return df.assign( |
||
| 645 | quant=pd.qcut( |
||
| 646 | df[col], |
||
| 647 | q=q, |
||
| 648 | labels=range(q), |
||
| 649 | ) |
||
| 650 | ) |
||
| 651 | |||
| 652 | |||
| 653 | @timer_func |
||
| 654 | def allocate_pv( |
||
| 655 | q_mastr_gdf: gpd.GeoDataFrame, |
||
| 656 | q_buildings_gdf: gpd.GeoDataFrame, |
||
| 657 | seed: int, |
||
| 658 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
||
| 659 | """ |
||
| 660 | Allocate the MaStR pv generators to the OSM buildings. |
||
| 661 | This will determine a building for each pv generator if there are more |
||
| 662 | buildings than generators within a given AGS. Primarily generators are |
||
| 663 | distributed with the same qunatile as the buildings. Multiple assignment |
||
| 664 | is excluded. |
||
| 665 | |||
| 666 | Parameters |
||
| 667 | ----------- |
||
| 668 | q_mastr_gdf : geopandas.GeoDataFrame |
||
| 669 | GeoDataFrame containing geocoded and qcut MaStR data. |
||
| 670 | q_buildings_gdf : geopandas.GeoDataFrame |
||
| 671 | GeoDataFrame containing qcut OSM buildings data. |
||
| 672 | seed : int |
||
| 673 | Seed to use for random operations with NumPy and pandas. |
||
| 674 | Returns |
||
| 675 | ------- |
||
| 676 | tuple with two geopandas.GeoDataFrame s |
||
| 677 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 678 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
| 679 | """ |
||
| 680 | rng = default_rng(seed=seed) |
||
| 681 | |||
| 682 | q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan).sort_values( |
||
| 683 | by=["ags", "quant"] |
||
| 684 | ) |
||
| 685 | q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan).sort_values( |
||
| 686 | by=["ags", "quant"] |
||
| 687 | ) |
||
| 688 | |||
| 689 | ags_list = q_buildings_gdf.ags.unique() |
||
| 690 | |||
| 691 | if TEST_RUN: |
||
| 692 | ags_list = ags_list[:250] |
||
| 693 | |||
| 694 | num_ags = len(ags_list) |
||
| 695 | |||
| 696 | t0 = perf_counter() |
||
| 697 | |||
| 698 | for count, ags in enumerate(ags_list): |
||
| 699 | buildings = q_buildings_gdf.loc[q_buildings_gdf.ags == ags] |
||
| 700 | gens = q_mastr_gdf.loc[q_mastr_gdf.ags == ags] |
||
| 701 | |||
| 702 | len_build = len(buildings) |
||
| 703 | len_gens = len(gens) |
||
| 704 | |||
| 705 | if len_build < len_gens: |
||
| 706 | gens = gens.sample(len_build, random_state=RandomState(seed=seed)) |
||
| 707 | logger.error( |
||
| 708 | f"There are {len_gens} generators and only {len_build}" |
||
| 709 | f" buildings in AGS {ags}. {len_gens - len(gens)} " |
||
| 710 | "generators were truncated to match the amount of buildings." |
||
| 711 | ) |
||
| 712 | |||
| 713 | assert len_build == len(gens) |
||
| 714 | |||
| 715 | for quant in gens.quant.unique(): |
||
| 716 | q_buildings = buildings.loc[buildings.quant == quant] |
||
| 717 | q_gens = gens.loc[gens.quant == quant] |
||
| 718 | |||
| 719 | len_build = len(q_buildings) |
||
| 720 | len_gens = len(q_gens) |
||
| 721 | |||
| 722 | if len_build < len_gens: |
||
| 723 | delta = len_gens - len_build |
||
| 724 | |||
| 725 | logger.warning( |
||
| 726 | f"There are {len_gens} generators and only {len_build} " |
||
| 727 | f"buildings in AGS {ags} and quantile {quant}. {delta} " |
||
| 728 | f"buildings from AGS {ags} will be added randomly." |
||
| 729 | ) |
||
| 730 | |||
| 731 | add_buildings = pd.Index( |
||
| 732 | rng.choice( |
||
| 733 | list(set(buildings.index) - set(q_buildings.index)), |
||
| 734 | size=delta, |
||
| 735 | replace=False, |
||
| 736 | ) |
||
| 737 | ) |
||
| 738 | |||
| 739 | chosen_buildings = q_buildings.index.union(add_buildings) |
||
| 740 | |||
| 741 | else: |
||
| 742 | chosen_buildings = rng.choice( |
||
| 743 | q_buildings.index, |
||
| 744 | size=len_gens, |
||
| 745 | replace=False, |
||
| 746 | ) |
||
| 747 | |||
| 748 | q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index |
||
| 749 | buildings = buildings.drop(chosen_buildings) |
||
| 750 | |||
| 751 | if count % 500 == 0: |
||
| 752 | logger.debug( |
||
| 753 | f"Allocation of {count / num_ags * 100:g} % of AGS done. " |
||
| 754 | f"It took {perf_counter() - t0:g} seconds." |
||
| 755 | ) |
||
| 756 | |||
| 757 | t0 = perf_counter() |
||
| 758 | |||
| 759 | assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()] |
||
| 760 | |||
| 761 | assert len(assigned_buildings) == len(assigned_buildings.gens_id.unique()) |
||
| 762 | |||
| 763 | q_mastr_gdf.loc[assigned_buildings.gens_id, "building_id"] = ( |
||
| 764 | assigned_buildings.index |
||
| 765 | ) |
||
| 766 | |||
| 767 | assigned_gens = q_mastr_gdf.loc[~q_mastr_gdf.building_id.isna()] |
||
| 768 | |||
| 769 | assert len(assigned_buildings) == len(assigned_gens) |
||
| 770 | |||
| 771 | logger.debug("Allocated status quo generators to buildings.") |
||
| 772 | |||
| 773 | return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf) |
||
| 774 | |||
| 775 | |||
| 776 | def frame_to_numeric( |
||
| 777 | df: pd.DataFrame | gpd.GeoDataFrame, |
||
| 778 | ) -> pd.DataFrame | gpd.GeoDataFrame: |
||
| 779 | """ |
||
| 780 | Try to convert all columns of a DataFrame to numeric ignoring errors. |
||
| 781 | |||
| 782 | Parameters |
||
| 783 | ---------- |
||
| 784 | df : pandas.DataFrame or geopandas.GeoDataFrame |
||
| 785 | Returns |
||
| 786 | ------- |
||
| 787 | pandas.DataFrame or geopandas.GeoDataFrame |
||
| 788 | """ |
||
| 789 | if str(df.index.dtype) == "object": |
||
| 790 | df.index = pd.to_numeric(df.index, errors="ignore") |
||
| 791 | |||
| 792 | for col in df.columns: |
||
| 793 | if str(df[col].dtype) == "object": |
||
| 794 | df[col] = pd.to_numeric(df[col], errors="ignore") |
||
| 795 | |||
| 796 | return df |
||
| 797 | |||
| 798 | |||
| 799 | def validate_output( |
||
| 800 | desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame, |
||
| 801 | desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame, |
||
| 802 | ) -> None: |
||
| 803 | """ |
||
| 804 | Validate output. |
||
| 805 | |||
| 806 | * Validate that there are exactly as many buildings with a pv system as |
||
| 807 | there are pv systems with a building |
||
| 808 | * Validate that the building IDs with a pv system are the same building |
||
| 809 | IDs as assigned to the pv systems |
||
| 810 | * Validate that the pv system IDs with a building are the same pv system |
||
| 811 | IDs as assigned to the buildings |
||
| 812 | |||
| 813 | Parameters |
||
| 814 | ----------- |
||
| 815 | desagg_mastr_gdf : geopandas.GeoDataFrame |
||
| 816 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 817 | desagg_buildings_gdf : geopandas.GeoDataFrame |
||
| 818 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
| 819 | """ |
||
| 820 | assert len( |
||
| 821 | desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()] |
||
| 822 | ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()]) |
||
| 823 | assert ( |
||
| 824 | np.sort( |
||
| 825 | desagg_mastr_gdf.loc[ |
||
| 826 | ~desagg_mastr_gdf.building_id.isna() |
||
| 827 | ].building_id.unique() |
||
| 828 | ) |
||
| 829 | == np.sort( |
||
| 830 | desagg_buildings_gdf.loc[ |
||
| 831 | ~desagg_buildings_gdf.gens_id.isna() |
||
| 832 | ].index.unique() |
||
| 833 | ) |
||
| 834 | ).all() |
||
| 835 | assert ( |
||
| 836 | np.sort( |
||
| 837 | desagg_mastr_gdf.loc[ |
||
| 838 | ~desagg_mastr_gdf.building_id.isna() |
||
| 839 | ].index.unique() |
||
| 840 | ) |
||
| 841 | == np.sort( |
||
| 842 | desagg_buildings_gdf.loc[ |
||
| 843 | ~desagg_buildings_gdf.gens_id.isna() |
||
| 844 | ].gens_id.unique() |
||
| 845 | ) |
||
| 846 | ).all() |
||
| 847 | |||
| 848 | logger.debug("Validated output.") |
||
| 849 | |||
| 850 | |||
| 851 | def drop_unallocated_gens( |
||
| 852 | gdf: gpd.GeoDataFrame, |
||
| 853 | ) -> gpd.GeoDataFrame: |
||
| 854 | """ |
||
| 855 | Drop generators which did not get allocated. |
||
| 856 | |||
| 857 | Parameters |
||
| 858 | ----------- |
||
| 859 | gdf : geopandas.GeoDataFrame |
||
| 860 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 861 | Returns |
||
| 862 | ------- |
||
| 863 | geopandas.GeoDataFrame |
||
| 864 | GeoDataFrame containing MaStR data with generators dropped which did |
||
| 865 | not get allocated. |
||
| 866 | """ |
||
| 867 | init_len = len(gdf) |
||
| 868 | gdf = gdf.loc[~gdf.building_id.isna()] |
||
| 869 | end_len = len(gdf) |
||
| 870 | |||
| 871 | logger.debug( |
||
| 872 | f"Dropped {init_len - end_len} " |
||
| 873 | f"({((init_len - end_len) / init_len) * 100:g}%)" |
||
| 874 | f" of {init_len} unallocated rows from MaStR DataFrame." |
||
| 875 | ) |
||
| 876 | |||
| 877 | return gdf |
||
| 878 | |||
| 879 | |||
| 880 | @timer_func |
||
| 881 | def allocate_to_buildings( |
||
| 882 | mastr_gdf: gpd.GeoDataFrame, |
||
| 883 | buildings_gdf: gpd.GeoDataFrame, |
||
| 884 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
||
| 885 | """ |
||
| 886 | Allocate status quo pv rooftop generators to buildings. |
||
| 887 | |||
| 888 | Parameters |
||
| 889 | ----------- |
||
| 890 | mastr_gdf : geopandas.GeoDataFrame |
||
| 891 | GeoDataFrame containing MaStR data with geocoded locations. |
||
| 892 | buildings_gdf : geopandas.GeoDataFrame |
||
| 893 | GeoDataFrame containing OSM buildings data with buildings without an |
||
| 894 | AGS ID dropped. |
||
| 895 | Returns |
||
| 896 | ------- |
||
| 897 | tuple with two geopandas.GeoDataFrame s |
||
| 898 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 899 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
| 900 | """ |
||
| 901 | logger.debug("Starting allocation of status quo.") |
||
| 902 | |||
| 903 | q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q) |
||
| 904 | q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q) |
||
| 905 | |||
| 906 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv( |
||
| 907 | q_mastr_gdf, q_buildings_gdf, SEED |
||
| 908 | ) |
||
| 909 | |||
| 910 | validate_output(desagg_mastr_gdf, desagg_buildings_gdf) |
||
| 911 | |||
| 912 | return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf |
||
| 913 | |||
| 914 | |||
| 915 | @timer_func |
||
| 916 | def grid_districts( |
||
| 917 | epsg: int, |
||
| 918 | ) -> gpd.GeoDataFrame: |
||
| 919 | """ |
||
| 920 | Load mv grid district geo data from eGo^n Database as |
||
| 921 | geopandas.GeoDataFrame. |
||
| 922 | |||
| 923 | Parameters |
||
| 924 | ----------- |
||
| 925 | epsg : int |
||
| 926 | EPSG ID to use as CRS. |
||
| 927 | Returns |
||
| 928 | ------- |
||
| 929 | geopandas.GeoDataFrame |
||
| 930 | GeoDataFrame containing mv grid district ID and geo shapes data. |
||
| 931 | """ |
||
| 932 | gdf = db.select_geodataframe( |
||
| 933 | """ |
||
| 934 | SELECT bus_id, geom |
||
| 935 | FROM grid.egon_mv_grid_district |
||
| 936 | ORDER BY bus_id |
||
| 937 | """, |
||
| 938 | index_col="bus_id", |
||
| 939 | geom_col="geom", |
||
| 940 | epsg=epsg, |
||
| 941 | ) |
||
| 942 | |||
| 943 | gdf.index = gdf.index.astype(int) |
||
| 944 | |||
| 945 | logger.debug("Grid districts loaded.") |
||
| 946 | |||
| 947 | return gdf |
||
| 948 | |||
| 949 | |||
| 950 | def scenario_data( |
||
| 951 | carrier: str = "solar_rooftop", |
||
| 952 | scenario: str = "eGon2035", |
||
| 953 | ) -> pd.DataFrame: |
||
| 954 | """ |
||
| 955 | Get scenario capacity data from eGo^n Database. |
||
| 956 | |||
| 957 | Parameters |
||
| 958 | ----------- |
||
| 959 | carrier : str |
||
| 960 | Carrier type to filter table by. |
||
| 961 | scenario : str |
||
| 962 | Scenario to filter table by. |
||
| 963 | Returns |
||
| 964 | ------- |
||
| 965 | geopandas.GeoDataFrame |
||
| 966 | GeoDataFrame with scenario capacity data in GW. |
||
| 967 | """ |
||
| 968 | with db.session_scope() as session: |
||
| 969 | query = session.query(EgonScenarioCapacities).filter( |
||
| 970 | EgonScenarioCapacities.carrier == carrier, |
||
| 971 | EgonScenarioCapacities.scenario_name == scenario, |
||
| 972 | ) |
||
| 973 | |||
| 974 | df = pd.read_sql( |
||
| 975 | query.statement, query.session.bind, index_col="index" |
||
| 976 | ).sort_index() |
||
| 977 | |||
| 978 | logger.debug("Scenario capacity data loaded.") |
||
| 979 | |||
| 980 | return df |
||
| 981 | |||
| 982 | |||
| 983 | View Code Duplication | class Vg250Lan(Base): |
|
|
|
|||
| 984 | """ |
||
| 985 | Class definition of table boundaries.vg250_lan. |
||
| 986 | |||
| 987 | """ |
||
| 988 | __tablename__ = "vg250_lan" |
||
| 989 | __table_args__ = {"schema": "boundaries"} |
||
| 990 | |||
| 991 | id = Column(BigInteger, primary_key=True, index=True) |
||
| 992 | ade = Column(BigInteger) |
||
| 993 | gf = Column(BigInteger) |
||
| 994 | bsg = Column(BigInteger) |
||
| 995 | ars = Column(String) |
||
| 996 | ags = Column(String) |
||
| 997 | sdv_ars = Column(String) |
||
| 998 | gen = Column(String) |
||
| 999 | bez = Column(String) |
||
| 1000 | ibz = Column(BigInteger) |
||
| 1001 | bem = Column(String) |
||
| 1002 | nbd = Column(String) |
||
| 1003 | sn_l = Column(String) |
||
| 1004 | sn_r = Column(String) |
||
| 1005 | sn_k = Column(String) |
||
| 1006 | sn_v1 = Column(String) |
||
| 1007 | sn_v2 = Column(String) |
||
| 1008 | sn_g = Column(String) |
||
| 1009 | fk_s3 = Column(String) |
||
| 1010 | nuts = Column(String) |
||
| 1011 | ars_0 = Column(String) |
||
| 1012 | ags_0 = Column(String) |
||
| 1013 | wsk = Column(String) |
||
| 1014 | debkg_id = Column(String) |
||
| 1015 | rs = Column(String) |
||
| 1016 | sdv_rs = Column(String) |
||
| 1017 | rs_0 = Column(String) |
||
| 1018 | geometry = Column(Geometry(srid=EPSG), index=True) |
||
| 1019 | |||
| 1020 | |||
| 1021 | def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame: |
||
| 1022 | """ |
||
| 1023 | Get feder state data from eGo^n Database. |
||
| 1024 | |||
| 1025 | Parameters |
||
| 1026 | ----------- |
||
| 1027 | to_crs : pyproj.crs.crs.CRS |
||
| 1028 | CRS to transform geometries to. |
||
| 1029 | Returns |
||
| 1030 | ------- |
||
| 1031 | geopandas.GeoDataFrame |
||
| 1032 | GeoDataFrame with federal state data. |
||
| 1033 | """ |
||
| 1034 | with db.session_scope() as session: |
||
| 1035 | query = session.query( |
||
| 1036 | Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom") |
||
| 1037 | ) |
||
| 1038 | |||
| 1039 | gdf = gpd.read_postgis( |
||
| 1040 | query.statement, session.connection(), index_col="id" |
||
| 1041 | ).to_crs(to_crs) |
||
| 1042 | |||
| 1043 | logger.debug("Federal State data loaded.") |
||
| 1044 | |||
| 1045 | return gdf |
||
| 1046 | |||
| 1047 | |||
| 1048 | @timer_func |
||
| 1049 | def overlay_grid_districts_with_counties( |
||
| 1050 | mv_grid_district_gdf: gpd.GeoDataFrame, |
||
| 1051 | federal_state_gdf: gpd.GeoDataFrame, |
||
| 1052 | ) -> gpd.GeoDataFrame: |
||
| 1053 | """ |
||
| 1054 | Calculate the intersections of mv grid districts and counties. |
||
| 1055 | |||
| 1056 | Parameters |
||
| 1057 | ----------- |
||
| 1058 | mv_grid_district_gdf : gpd.GeoDataFrame |
||
| 1059 | GeoDataFrame containing mv grid district ID and geo shapes data. |
||
| 1060 | federal_state_gdf : gpd.GeoDataFrame |
||
| 1061 | GeoDataFrame with federal state data. |
||
| 1062 | Returns |
||
| 1063 | ------- |
||
| 1064 | geopandas.GeoDataFrame |
||
| 1065 | GeoDataFrame containing OSM buildings data. |
||
| 1066 | """ |
||
| 1067 | logger.debug( |
||
| 1068 | "Calculating intersection overlay between mv grid districts and " |
||
| 1069 | "counties. This may take a while..." |
||
| 1070 | ) |
||
| 1071 | |||
| 1072 | gdf = gpd.overlay( |
||
| 1073 | federal_state_gdf.to_crs(mv_grid_district_gdf.crs), |
||
| 1074 | mv_grid_district_gdf.reset_index(), |
||
| 1075 | how="intersection", |
||
| 1076 | keep_geom_type=True, |
||
| 1077 | ) |
||
| 1078 | |||
| 1079 | logger.debug("Done!") |
||
| 1080 | |||
| 1081 | return gdf |
||
| 1082 | |||
| 1083 | |||
| 1084 | @timer_func |
||
| 1085 | def add_overlay_id_to_buildings( |
||
| 1086 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1087 | grid_federal_state_gdf: gpd.GeoDataFrame, |
||
| 1088 | ) -> gpd.GeoDataFrame: |
||
| 1089 | """ |
||
| 1090 | Add information about overlay ID to buildings. |
||
| 1091 | |||
| 1092 | Parameters |
||
| 1093 | ----------- |
||
| 1094 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1095 | GeoDataFrame containing OSM buildings data. |
||
| 1096 | grid_federal_state_gdf : geopandas.GeoDataFrame |
||
| 1097 | GeoDataFrame with intersection shapes between counties and grid |
||
| 1098 | districts. |
||
| 1099 | Returns |
||
| 1100 | ------- |
||
| 1101 | geopandas.GeoDataFrame |
||
| 1102 | GeoDataFrame containing OSM buildings data with overlay ID added. |
||
| 1103 | """ |
||
| 1104 | gdf = ( |
||
| 1105 | buildings_gdf.to_crs(grid_federal_state_gdf.crs) |
||
| 1106 | .sjoin( |
||
| 1107 | grid_federal_state_gdf, |
||
| 1108 | how="left", |
||
| 1109 | predicate="intersects", |
||
| 1110 | ) |
||
| 1111 | .rename(columns={"index_right": "overlay_id"}) |
||
| 1112 | ) |
||
| 1113 | |||
| 1114 | logger.debug("Added overlay ID to OSM buildings.") |
||
| 1115 | |||
| 1116 | return gdf |
||
| 1117 | |||
| 1118 | |||
| 1119 | def drop_buildings_outside_grids( |
||
| 1120 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1121 | ) -> gpd.GeoDataFrame: |
||
| 1122 | """ |
||
| 1123 | Drop all buildings outside of grid areas. |
||
| 1124 | |||
| 1125 | Parameters |
||
| 1126 | ----------- |
||
| 1127 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1128 | GeoDataFrame containing OSM buildings data. |
||
| 1129 | Returns |
||
| 1130 | ------- |
||
| 1131 | gepandas.GeoDataFrame |
||
| 1132 | GeoDataFrame containing OSM buildings data |
||
| 1133 | with buildings without an bus ID dropped. |
||
| 1134 | """ |
||
| 1135 | gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()] |
||
| 1136 | |||
| 1137 | logger.debug( |
||
| 1138 | f"{len(buildings_gdf) - len(gdf)} " |
||
| 1139 | f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
||
| 1140 | f"of {len(buildings_gdf)} values are outside of the grid areas " |
||
| 1141 | "and are therefore dropped." |
||
| 1142 | ) |
||
| 1143 | |||
| 1144 | return gdf |
||
| 1145 | |||
| 1146 | |||
| 1147 | def cap_per_bus_id( |
||
| 1148 | scenario: str, |
||
| 1149 | ) -> pd.DataFrame: |
||
| 1150 | """ |
||
| 1151 | Get table with total pv rooftop capacity per grid district. |
||
| 1152 | |||
| 1153 | Parameters |
||
| 1154 | ----------- |
||
| 1155 | scenario : str |
||
| 1156 | Scenario name. |
||
| 1157 | Returns |
||
| 1158 | ------- |
||
| 1159 | pandas.DataFrame |
||
| 1160 | DataFrame with total rooftop capacity per mv grid. |
||
| 1161 | """ |
||
| 1162 | if "status" in scenario: |
||
| 1163 | sources = config.datasets()["solar_rooftop"]["sources"] |
||
| 1164 | |||
| 1165 | sql = f""" |
||
| 1166 | SELECT bus_id, SUM(el_capacity) as capacity |
||
| 1167 | FROM {sources['power_plants']['schema']}.{sources['power_plants']['table']} |
||
| 1168 | WHERE carrier = 'solar_rooftop' |
||
| 1169 | AND scenario = '{scenario}' |
||
| 1170 | GROUP BY bus_id |
||
| 1171 | """ |
||
| 1172 | |||
| 1173 | df = db.select_dataframe(sql, index_col="bus_id") |
||
| 1174 | |||
| 1175 | else: |
||
| 1176 | targets = config.datasets()["solar_rooftop"]["targets"] |
||
| 1177 | |||
| 1178 | sql = f""" |
||
| 1179 | SELECT bus as bus_id, control, p_nom as capacity |
||
| 1180 | FROM {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1181 | WHERE carrier = 'solar_rooftop' |
||
| 1182 | AND scn_name = '{scenario}' |
||
| 1183 | """ |
||
| 1184 | |||
| 1185 | df = db.select_dataframe(sql, index_col="bus_id") |
||
| 1186 | df = df.loc[df.control != "Slack"] |
||
| 1187 | |||
| 1188 | return df |
||
| 1189 | |||
| 1190 | |||
| 1191 | def determine_end_of_life_gens( |
||
| 1192 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1193 | scenario_timestamp: pd.Timestamp, |
||
| 1194 | pv_rooftop_lifetime: pd.Timedelta, |
||
| 1195 | ) -> gpd.GeoDataFrame: |
||
| 1196 | """ |
||
| 1197 | Determine if an old PV system has reached its end of life. |
||
| 1198 | |||
| 1199 | Parameters |
||
| 1200 | ----------- |
||
| 1201 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1202 | GeoDataFrame containing geocoded MaStR data. |
||
| 1203 | scenario_timestamp : pandas.Timestamp |
||
| 1204 | Timestamp at which the scenario takes place. |
||
| 1205 | pv_rooftop_lifetime : pandas.Timedelta |
||
| 1206 | Average expected lifetime of PV rooftop systems. |
||
| 1207 | Returns |
||
| 1208 | ------- |
||
| 1209 | geopandas.GeoDataFrame |
||
| 1210 | GeoDataFrame containing geocoded MaStR data and info if the system |
||
| 1211 | has reached its end of life. |
||
| 1212 | """ |
||
| 1213 | before = mastr_gdf.capacity.sum() |
||
| 1214 | |||
| 1215 | mastr_gdf = mastr_gdf.assign( |
||
| 1216 | age=scenario_timestamp - mastr_gdf.commissioning_date |
||
| 1217 | ) |
||
| 1218 | |||
| 1219 | mastr_gdf = mastr_gdf.assign( |
||
| 1220 | end_of_life=pv_rooftop_lifetime < mastr_gdf.age |
||
| 1221 | ) |
||
| 1222 | |||
| 1223 | after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum() |
||
| 1224 | |||
| 1225 | logger.debug( |
||
| 1226 | f"Determined if pv rooftop systems reached their end of life.\nTotal " |
||
| 1227 | f"capacity: {before}\nActive capacity: {after}" |
||
| 1228 | ) |
||
| 1229 | |||
| 1230 | return mastr_gdf |
||
| 1231 | |||
| 1232 | |||
| 1233 | def calculate_max_pv_cap_per_building( |
||
| 1234 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1235 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1236 | pv_cap_per_sq_m: float | int, |
||
| 1237 | roof_factor: float | int, |
||
| 1238 | ) -> gpd.GeoDataFrame: |
||
| 1239 | """ |
||
| 1240 | Calculate the estimated maximum possible PV capacity per building. |
||
| 1241 | |||
| 1242 | Parameters |
||
| 1243 | ----------- |
||
| 1244 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1245 | GeoDataFrame containing OSM buildings data. |
||
| 1246 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1247 | GeoDataFrame containing geocoded MaStR data. |
||
| 1248 | pv_cap_per_sq_m : float, int |
||
| 1249 | Average expected, installable PV capacity per square meter. |
||
| 1250 | roof_factor : float, int |
||
| 1251 | Average for PV usable roof area share. |
||
| 1252 | Returns |
||
| 1253 | ------- |
||
| 1254 | geopandas.GeoDataFrame |
||
| 1255 | GeoDataFrame containing OSM buildings data with estimated maximum PV |
||
| 1256 | capacity. |
||
| 1257 | """ |
||
| 1258 | gdf = ( |
||
| 1259 | buildings_gdf.reset_index() |
||
| 1260 | .rename(columns={"index": "id"}) |
||
| 1261 | .merge( |
||
| 1262 | mastr_gdf[ |
||
| 1263 | [ |
||
| 1264 | "capacity", |
||
| 1265 | "end_of_life", |
||
| 1266 | "building_id", |
||
| 1267 | "orientation_uniform", |
||
| 1268 | "orientation_primary", |
||
| 1269 | "orientation_primary_angle", |
||
| 1270 | ] |
||
| 1271 | ], |
||
| 1272 | how="left", |
||
| 1273 | left_on="id", |
||
| 1274 | right_on="building_id", |
||
| 1275 | ) |
||
| 1276 | .set_index("id") |
||
| 1277 | .drop(columns="building_id") |
||
| 1278 | ) |
||
| 1279 | |||
| 1280 | return gdf.assign( |
||
| 1281 | max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m), |
||
| 1282 | end_of_life=gdf.end_of_life.fillna(True).astype(bool), |
||
| 1283 | bus_id=gdf.bus_id.astype(int), |
||
| 1284 | ) |
||
| 1285 | |||
| 1286 | |||
| 1287 | def calculate_building_load_factor( |
||
| 1288 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1289 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1290 | rounding: int = 4, |
||
| 1291 | ) -> gpd.GeoDataFrame: |
||
| 1292 | """ |
||
| 1293 | Calculate the roof load factor from existing PV systems. |
||
| 1294 | |||
| 1295 | Parameters |
||
| 1296 | ----------- |
||
| 1297 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1298 | GeoDataFrame containing geocoded MaStR data. |
||
| 1299 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1300 | GeoDataFrame containing OSM buildings data. |
||
| 1301 | rounding : int |
||
| 1302 | Rounding to use for load factor. |
||
| 1303 | Returns |
||
| 1304 | ------- |
||
| 1305 | geopandas.GeoDataFrame |
||
| 1306 | GeoDataFrame containing geocoded MaStR data with calculated load |
||
| 1307 | factor. |
||
| 1308 | """ |
||
| 1309 | gdf = mastr_gdf.merge( |
||
| 1310 | buildings_gdf[["max_cap", "building_area"]] |
||
| 1311 | .loc[~buildings_gdf["max_cap"].isna()] |
||
| 1312 | .reset_index(), |
||
| 1313 | how="left", |
||
| 1314 | left_on="building_id", |
||
| 1315 | right_on="id", |
||
| 1316 | ).set_index("id") |
||
| 1317 | |||
| 1318 | return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding)) |
||
| 1319 | |||
| 1320 | |||
| 1321 | def get_probability_for_property( |
||
| 1322 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1323 | cap_range: tuple[int | float, int | float], |
||
| 1324 | prop: str, |
||
| 1325 | ) -> tuple[np.array, np.array]: |
||
| 1326 | """ |
||
| 1327 | Calculate the probability of the different options of a property of the |
||
| 1328 | existing PV plants. |
||
| 1329 | |||
| 1330 | Parameters |
||
| 1331 | ----------- |
||
| 1332 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1333 | GeoDataFrame containing geocoded MaStR data. |
||
| 1334 | cap_range : tuple(int, int) |
||
| 1335 | Capacity range of PV plants to look at. |
||
| 1336 | prop : str |
||
| 1337 | Property to calculate probabilities for. String needs to be in columns |
||
| 1338 | of mastr_gdf. |
||
| 1339 | Returns |
||
| 1340 | ------- |
||
| 1341 | tuple |
||
| 1342 | numpy.array |
||
| 1343 | Unique values of property. |
||
| 1344 | numpy.array |
||
| 1345 | Probabilties per unique value. |
||
| 1346 | """ |
||
| 1347 | cap_range_gdf = mastr_gdf.loc[ |
||
| 1348 | (mastr_gdf.capacity > cap_range[0]) |
||
| 1349 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 1350 | ] |
||
| 1351 | |||
| 1352 | if prop == "load_factor": |
||
| 1353 | cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1] |
||
| 1354 | |||
| 1355 | count = Counter( |
||
| 1356 | cap_range_gdf[prop].loc[ |
||
| 1357 | ~cap_range_gdf[prop].isna() |
||
| 1358 | & ~cap_range_gdf[prop].isnull() |
||
| 1359 | & ~(cap_range_gdf[prop] == "None") |
||
| 1360 | ] |
||
| 1361 | ) |
||
| 1362 | |||
| 1363 | values = np.array(list(count.keys())) |
||
| 1364 | probabilities = np.fromiter(count.values(), dtype=float) |
||
| 1365 | probabilities = probabilities / np.sum(probabilities) |
||
| 1366 | |||
| 1367 | return values, probabilities |
||
| 1368 | |||
| 1369 | |||
| 1370 | @timer_func |
||
| 1371 | def probabilities( |
||
| 1372 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1373 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1374 | properties: list[str] | None = None, |
||
| 1375 | ) -> dict: |
||
| 1376 | """ |
||
| 1377 | Calculate the probability of the different options of properties of the |
||
| 1378 | existing PV plants. |
||
| 1379 | |||
| 1380 | Parameters |
||
| 1381 | ----------- |
||
| 1382 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1383 | GeoDataFrame containing geocoded MaStR data. |
||
| 1384 | cap_ranges : list(tuple(int, int)) |
||
| 1385 | List of capacity ranges to distinguish between. The first tuple should |
||
| 1386 | start with a zero and the last one should end with infinite. |
||
| 1387 | properties : list(str) |
||
| 1388 | List of properties to calculate probabilities for. Strings need to be |
||
| 1389 | in columns of mastr_gdf. |
||
| 1390 | Returns |
||
| 1391 | ------- |
||
| 1392 | dict |
||
| 1393 | Dictionary with values and probabilities per capacity range. |
||
| 1394 | """ |
||
| 1395 | if cap_ranges is None: |
||
| 1396 | cap_ranges = [ |
||
| 1397 | (0, 30 / 10**3), |
||
| 1398 | (30 / 10**3, 100 / 10**3), |
||
| 1399 | (100 / 10**3, float("inf")), |
||
| 1400 | ] |
||
| 1401 | if properties is None: |
||
| 1402 | properties = [ |
||
| 1403 | "orientation_uniform", |
||
| 1404 | "orientation_primary", |
||
| 1405 | "orientation_primary_angle", |
||
| 1406 | "load_factor", |
||
| 1407 | ] |
||
| 1408 | |||
| 1409 | prob_dict = {} |
||
| 1410 | |||
| 1411 | for cap_range in cap_ranges: |
||
| 1412 | prob_dict[cap_range] = { |
||
| 1413 | "values": {}, |
||
| 1414 | "probabilities": {}, |
||
| 1415 | } |
||
| 1416 | |||
| 1417 | for prop in properties: |
||
| 1418 | v, p = get_probability_for_property( |
||
| 1419 | mastr_gdf, |
||
| 1420 | cap_range, |
||
| 1421 | prop, |
||
| 1422 | ) |
||
| 1423 | |||
| 1424 | prob_dict[cap_range]["values"][prop] = v |
||
| 1425 | prob_dict[cap_range]["probabilities"][prop] = p |
||
| 1426 | |||
| 1427 | return prob_dict |
||
| 1428 | |||
| 1429 | |||
| 1430 | def cap_share_per_cap_range( |
||
| 1431 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1432 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1433 | ) -> dict[tuple[int | float, int | float], float]: |
||
| 1434 | """ |
||
| 1435 | Calculate the share of PV capacity from the total PV capacity within |
||
| 1436 | capacity ranges. |
||
| 1437 | |||
| 1438 | Parameters |
||
| 1439 | ----------- |
||
| 1440 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1441 | GeoDataFrame containing geocoded MaStR data. |
||
| 1442 | cap_ranges : list(tuple(int, int)) |
||
| 1443 | List of capacity ranges to distinguish between. The first tuple should |
||
| 1444 | start with a zero and the last one should end with infinite. |
||
| 1445 | Returns |
||
| 1446 | ------- |
||
| 1447 | dict |
||
| 1448 | Dictionary with share of PV capacity from the total PV capacity within |
||
| 1449 | capacity ranges. |
||
| 1450 | """ |
||
| 1451 | if cap_ranges is None: |
||
| 1452 | cap_ranges = [ |
||
| 1453 | (0, 30 / 10**3), |
||
| 1454 | (30 / 10**3, 100 / 10**3), |
||
| 1455 | (100 / 10**3, float("inf")), |
||
| 1456 | ] |
||
| 1457 | |||
| 1458 | cap_share_dict = {} |
||
| 1459 | |||
| 1460 | total_cap = mastr_gdf.capacity.sum() |
||
| 1461 | |||
| 1462 | for cap_range in cap_ranges: |
||
| 1463 | cap_share = ( |
||
| 1464 | mastr_gdf.loc[ |
||
| 1465 | (mastr_gdf.capacity > cap_range[0]) |
||
| 1466 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 1467 | ].capacity.sum() |
||
| 1468 | / total_cap |
||
| 1469 | ) |
||
| 1470 | |||
| 1471 | cap_share_dict[cap_range] = cap_share |
||
| 1472 | |||
| 1473 | return cap_share_dict |
||
| 1474 | |||
| 1475 | |||
| 1476 | def mean_load_factor_per_cap_range( |
||
| 1477 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1478 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1479 | ) -> dict[tuple[int | float, int | float], float]: |
||
| 1480 | """ |
||
| 1481 | Calculate the mean roof load factor per capacity range from existing PV |
||
| 1482 | plants. |
||
| 1483 | |||
| 1484 | Parameters |
||
| 1485 | ----------- |
||
| 1486 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1487 | GeoDataFrame containing geocoded MaStR data. |
||
| 1488 | cap_ranges : list(tuple(int, int)) |
||
| 1489 | List of capacity ranges to distinguish between. The first tuple should |
||
| 1490 | start with a zero and the last one should end with infinite. |
||
| 1491 | Returns |
||
| 1492 | ------- |
||
| 1493 | dict |
||
| 1494 | Dictionary with mean roof load factor per capacity range. |
||
| 1495 | """ |
||
| 1496 | if cap_ranges is None: |
||
| 1497 | cap_ranges = [ |
||
| 1498 | (0, 30 / 10**3), |
||
| 1499 | (30 / 10**3, 100 / 10**3), |
||
| 1500 | (100 / 10**3, float("inf")), |
||
| 1501 | ] |
||
| 1502 | |||
| 1503 | load_factor_dict = {} |
||
| 1504 | |||
| 1505 | for cap_range in cap_ranges: |
||
| 1506 | load_factor = mastr_gdf.loc[ |
||
| 1507 | (mastr_gdf.load_factor <= 1) |
||
| 1508 | & (mastr_gdf.capacity > cap_range[0]) |
||
| 1509 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 1510 | ].load_factor.mean() |
||
| 1511 | |||
| 1512 | load_factor_dict[cap_range] = load_factor |
||
| 1513 | |||
| 1514 | return load_factor_dict |
||
| 1515 | |||
| 1516 | |||
| 1517 | def building_area_range_per_cap_range( |
||
| 1518 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1519 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1520 | min_building_size: int | float = 10.0, |
||
| 1521 | upper_quantile: float = 0.95, |
||
| 1522 | lower_quantile: float = 0.05, |
||
| 1523 | ) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]: |
||
| 1524 | """ |
||
| 1525 | Estimate normal building area range per capacity range. |
||
| 1526 | Calculate the mean roof load factor per capacity range from existing PV |
||
| 1527 | plants. |
||
| 1528 | |||
| 1529 | Parameters |
||
| 1530 | ----------- |
||
| 1531 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1532 | GeoDataFrame containing geocoded MaStR data. |
||
| 1533 | cap_ranges : list(tuple(int, int)) |
||
| 1534 | List of capacity ranges to distinguish between. The first tuple should |
||
| 1535 | start with a zero and the last one should end with infinite. |
||
| 1536 | min_building_size : int, float |
||
| 1537 | Minimal building size to consider for PV plants. |
||
| 1538 | upper_quantile : float |
||
| 1539 | Upper quantile to estimate maximum building size per capacity range. |
||
| 1540 | lower_quantile : float |
||
| 1541 | Lower quantile to estimate minimum building size per capacity range. |
||
| 1542 | Returns |
||
| 1543 | ------- |
||
| 1544 | dict |
||
| 1545 | Dictionary with estimated normal building area range per capacity |
||
| 1546 | range. |
||
| 1547 | """ |
||
| 1548 | if cap_ranges is None: |
||
| 1549 | cap_ranges = [ |
||
| 1550 | (0, 30 / 10**3), |
||
| 1551 | (30 / 10**3, 100 / 10**3), |
||
| 1552 | (100 / 10**3, float("inf")), |
||
| 1553 | ] |
||
| 1554 | |||
| 1555 | building_area_range_dict = {} |
||
| 1556 | |||
| 1557 | n_ranges = len(cap_ranges) |
||
| 1558 | |||
| 1559 | for count, cap_range in enumerate(cap_ranges): |
||
| 1560 | cap_range_gdf = mastr_gdf.loc[ |
||
| 1561 | (mastr_gdf.capacity > cap_range[0]) |
||
| 1562 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 1563 | ] |
||
| 1564 | |||
| 1565 | if count == 0: |
||
| 1566 | building_area_range_dict[cap_range] = ( |
||
| 1567 | min_building_size, |
||
| 1568 | cap_range_gdf.building_area.quantile(upper_quantile), |
||
| 1569 | ) |
||
| 1570 | elif count == n_ranges - 1: |
||
| 1571 | building_area_range_dict[cap_range] = ( |
||
| 1572 | cap_range_gdf.building_area.quantile(lower_quantile), |
||
| 1573 | float("inf"), |
||
| 1574 | ) |
||
| 1575 | else: |
||
| 1576 | building_area_range_dict[cap_range] = ( |
||
| 1577 | cap_range_gdf.building_area.quantile(lower_quantile), |
||
| 1578 | cap_range_gdf.building_area.quantile(upper_quantile), |
||
| 1579 | ) |
||
| 1580 | |||
| 1581 | values = list(building_area_range_dict.values()) |
||
| 1582 | |||
| 1583 | building_area_range_normed_dict = {} |
||
| 1584 | |||
| 1585 | for count, (cap_range, (min_area, max_area)) in enumerate( |
||
| 1586 | building_area_range_dict.items() |
||
| 1587 | ): |
||
| 1588 | if count == 0: |
||
| 1589 | building_area_range_normed_dict[cap_range] = ( |
||
| 1590 | min_area, |
||
| 1591 | np.mean((values[count + 1][0], max_area)), |
||
| 1592 | ) |
||
| 1593 | elif count == n_ranges - 1: |
||
| 1594 | building_area_range_normed_dict[cap_range] = ( |
||
| 1595 | np.mean((values[count - 1][1], min_area)), |
||
| 1596 | max_area, |
||
| 1597 | ) |
||
| 1598 | else: |
||
| 1599 | building_area_range_normed_dict[cap_range] = ( |
||
| 1600 | np.mean((values[count - 1][1], min_area)), |
||
| 1601 | np.mean((values[count + 1][0], max_area)), |
||
| 1602 | ) |
||
| 1603 | |||
| 1604 | return building_area_range_normed_dict |
||
| 1605 | |||
| 1606 | |||
| 1607 | @timer_func |
||
| 1608 | def desaggregate_pv_in_mv_grid( |
||
| 1609 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1610 | pv_cap: float | int, |
||
| 1611 | **kwargs, |
||
| 1612 | ) -> gpd.GeoDataFrame: |
||
| 1613 | """ |
||
| 1614 | Desaggregate PV capacity on buildings within a given grid district. |
||
| 1615 | |||
| 1616 | Parameters |
||
| 1617 | ----------- |
||
| 1618 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1619 | GeoDataFrame containing buildings within the grid district. |
||
| 1620 | pv_cap : float, int |
||
| 1621 | PV capacity to desaggregate. |
||
| 1622 | Other Parameters |
||
| 1623 | ----------- |
||
| 1624 | prob_dict : dict |
||
| 1625 | Dictionary with values and probabilities per capacity range. |
||
| 1626 | cap_share_dict : dict |
||
| 1627 | Dictionary with share of PV capacity from the total PV capacity within |
||
| 1628 | capacity ranges. |
||
| 1629 | building_area_range_dict : dict |
||
| 1630 | Dictionary with estimated normal building area range per capacity |
||
| 1631 | range. |
||
| 1632 | load_factor_dict : dict |
||
| 1633 | Dictionary with mean roof load factor per capacity range. |
||
| 1634 | seed : int |
||
| 1635 | Seed to use for random operations with NumPy and pandas. |
||
| 1636 | pv_cap_per_sq_m : float, int |
||
| 1637 | Average expected, installable PV capacity per square meter. |
||
| 1638 | Returns |
||
| 1639 | ------- |
||
| 1640 | geopandas.GeoDataFrame |
||
| 1641 | GeoDataFrame containing OSM building data with desaggregated PV |
||
| 1642 | plants. |
||
| 1643 | """ |
||
| 1644 | bus_id = int(buildings_gdf.bus_id.iat[0]) |
||
| 1645 | |||
| 1646 | rng = default_rng(seed=kwargs["seed"]) |
||
| 1647 | random_state = RandomState(seed=kwargs["seed"]) |
||
| 1648 | |||
| 1649 | results_df = pd.DataFrame(columns=buildings_gdf.columns) |
||
| 1650 | |||
| 1651 | for cap_range, share in kwargs["cap_share_dict"].items(): |
||
| 1652 | pv_cap_range = pv_cap * share |
||
| 1653 | |||
| 1654 | b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range] |
||
| 1655 | |||
| 1656 | cap_range_buildings_gdf = buildings_gdf.loc[ |
||
| 1657 | ~buildings_gdf.index.isin(results_df.index) |
||
| 1658 | & (buildings_gdf.building_area > b_area_min) |
||
| 1659 | & (buildings_gdf.building_area <= b_area_max) |
||
| 1660 | ] |
||
| 1661 | |||
| 1662 | mean_load_factor = kwargs["load_factor_dict"][cap_range] |
||
| 1663 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
||
| 1664 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
||
| 1665 | load_factor=np.nan, |
||
| 1666 | capacity=np.nan, |
||
| 1667 | ) |
||
| 1668 | |||
| 1669 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
||
| 1670 | |||
| 1671 | if total_mean_cap == 0: |
||
| 1672 | logger.warning( |
||
| 1673 | f"There are no matching roof for capacity range {cap_range} " |
||
| 1674 | f"kW in grid {bus_id}. Using all buildings as fallback." |
||
| 1675 | ) |
||
| 1676 | |||
| 1677 | cap_range_buildings_gdf = buildings_gdf.loc[ |
||
| 1678 | ~buildings_gdf.index.isin(results_df.index) |
||
| 1679 | ] |
||
| 1680 | |||
| 1681 | if len(cap_range_buildings_gdf) == 0: |
||
| 1682 | logger.warning( |
||
| 1683 | "There are no roofes available for capacity range " |
||
| 1684 | f"{cap_range} kW in grid {bus_id}. Allowing dual use." |
||
| 1685 | ) |
||
| 1686 | cap_range_buildings_gdf = buildings_gdf.copy() |
||
| 1687 | |||
| 1688 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
||
| 1689 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
||
| 1690 | load_factor=np.nan, |
||
| 1691 | capacity=np.nan, |
||
| 1692 | ) |
||
| 1693 | |||
| 1694 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
||
| 1695 | |||
| 1696 | elif total_mean_cap < pv_cap_range: |
||
| 1697 | logger.warning( |
||
| 1698 | f"Average roof utilization of the roof area in grid {bus_id} " |
||
| 1699 | f"and capacity range {cap_range} kW is not sufficient. The " |
||
| 1700 | "roof utilization will be above average." |
||
| 1701 | ) |
||
| 1702 | |||
| 1703 | frac = max( |
||
| 1704 | pv_cap_range / total_mean_cap, |
||
| 1705 | 1 / len(cap_range_buildings_gdf), |
||
| 1706 | ) |
||
| 1707 | |||
| 1708 | samples_gdf = cap_range_buildings_gdf.sample( |
||
| 1709 | frac=min(1, frac), |
||
| 1710 | random_state=random_state, |
||
| 1711 | ) |
||
| 1712 | |||
| 1713 | cap_range_dict = kwargs["prob_dict"][cap_range] |
||
| 1714 | |||
| 1715 | values_dict = cap_range_dict["values"] |
||
| 1716 | p_dict = cap_range_dict["probabilities"] |
||
| 1717 | |||
| 1718 | load_factors = rng.choice( |
||
| 1719 | a=values_dict["load_factor"], |
||
| 1720 | size=len(samples_gdf), |
||
| 1721 | p=p_dict["load_factor"], |
||
| 1722 | ) |
||
| 1723 | |||
| 1724 | samples_gdf = samples_gdf.assign( |
||
| 1725 | load_factor=load_factors, |
||
| 1726 | capacity=( |
||
| 1727 | samples_gdf.building_area |
||
| 1728 | * load_factors |
||
| 1729 | * kwargs["pv_cap_per_sq_m"] |
||
| 1730 | ).clip(lower=0.4), |
||
| 1731 | ) |
||
| 1732 | |||
| 1733 | missing_factor = pv_cap_range / samples_gdf.capacity.sum() |
||
| 1734 | |||
| 1735 | samples_gdf = samples_gdf.assign( |
||
| 1736 | capacity=(samples_gdf.capacity * missing_factor), |
||
| 1737 | load_factor=(samples_gdf.load_factor * missing_factor), |
||
| 1738 | ) |
||
| 1739 | |||
| 1740 | assert np.isclose( |
||
| 1741 | samples_gdf.capacity.sum(), |
||
| 1742 | pv_cap_range, |
||
| 1743 | rtol=1e-03, |
||
| 1744 | ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}" |
||
| 1745 | |||
| 1746 | results_df = pd.concat( |
||
| 1747 | [ |
||
| 1748 | results_df, |
||
| 1749 | samples_gdf, |
||
| 1750 | ], |
||
| 1751 | ) |
||
| 1752 | |||
| 1753 | total_missing_factor = pv_cap / results_df.capacity.sum() |
||
| 1754 | |||
| 1755 | results_df = results_df.assign( |
||
| 1756 | capacity=(results_df.capacity * total_missing_factor), |
||
| 1757 | ) |
||
| 1758 | |||
| 1759 | assert np.isclose( |
||
| 1760 | results_df.capacity.sum(), |
||
| 1761 | pv_cap, |
||
| 1762 | rtol=1e-03, |
||
| 1763 | ), f"{results_df.capacity.sum()} != {pv_cap}" |
||
| 1764 | |||
| 1765 | return gpd.GeoDataFrame( |
||
| 1766 | results_df, |
||
| 1767 | crs=samples_gdf.crs, |
||
| 1768 | geometry="geom", |
||
| 1769 | ) |
||
| 1770 | |||
| 1771 | |||
| 1772 | @timer_func |
||
| 1773 | def desaggregate_pv( |
||
| 1774 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1775 | cap_df: pd.DataFrame, |
||
| 1776 | **kwargs, |
||
| 1777 | ) -> gpd.GeoDataFrame: |
||
| 1778 | """ |
||
| 1779 | Desaggregate PV capacity on buildings within a given grid district. |
||
| 1780 | |||
| 1781 | Parameters |
||
| 1782 | ----------- |
||
| 1783 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1784 | GeoDataFrame containing OSM buildings data. |
||
| 1785 | cap_df : pandas.DataFrame |
||
| 1786 | DataFrame with total rooftop capacity per mv grid. |
||
| 1787 | Other Parameters |
||
| 1788 | ----------- |
||
| 1789 | prob_dict : dict |
||
| 1790 | Dictionary with values and probabilities per capacity range. |
||
| 1791 | cap_share_dict : dict |
||
| 1792 | Dictionary with share of PV capacity from the total PV capacity within |
||
| 1793 | capacity ranges. |
||
| 1794 | building_area_range_dict : dict |
||
| 1795 | Dictionary with estimated normal building area range per capacity |
||
| 1796 | range. |
||
| 1797 | load_factor_dict : dict |
||
| 1798 | Dictionary with mean roof load factor per capacity range. |
||
| 1799 | seed : int |
||
| 1800 | Seed to use for random operations with NumPy and pandas. |
||
| 1801 | pv_cap_per_sq_m : float, int |
||
| 1802 | Average expected, installable PV capacity per square meter. |
||
| 1803 | Returns |
||
| 1804 | ------- |
||
| 1805 | geopandas.GeoDataFrame |
||
| 1806 | GeoDataFrame containing OSM building data with desaggregated PV |
||
| 1807 | plants. |
||
| 1808 | """ |
||
| 1809 | allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life] |
||
| 1810 | |||
| 1811 | building_bus_ids = set(buildings_gdf.bus_id) |
||
| 1812 | cap_bus_ids = set(cap_df.index) |
||
| 1813 | |||
| 1814 | logger.debug( |
||
| 1815 | f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from " |
||
| 1816 | f"capacity: {len(cap_bus_ids)}" |
||
| 1817 | ) |
||
| 1818 | |||
| 1819 | if len(building_bus_ids) > len(cap_bus_ids): |
||
| 1820 | missing = building_bus_ids - cap_bus_ids |
||
| 1821 | else: |
||
| 1822 | missing = cap_bus_ids - building_bus_ids |
||
| 1823 | |||
| 1824 | logger.debug(str(missing)) |
||
| 1825 | |||
| 1826 | bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids)) |
||
| 1827 | |||
| 1828 | # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index) |
||
| 1829 | |||
| 1830 | for bus_id in bus_ids: |
||
| 1831 | buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id] |
||
| 1832 | |||
| 1833 | pv_installed_gdf = buildings_grid_gdf.loc[ |
||
| 1834 | ~buildings_grid_gdf.end_of_life |
||
| 1835 | ] |
||
| 1836 | |||
| 1837 | pv_installed = pv_installed_gdf.capacity.sum() |
||
| 1838 | |||
| 1839 | pot_buildings_gdf = buildings_grid_gdf.drop( |
||
| 1840 | index=pv_installed_gdf.index |
||
| 1841 | ) |
||
| 1842 | |||
| 1843 | if len(pot_buildings_gdf) == 0: |
||
| 1844 | logger.error( |
||
| 1845 | f"In grid {bus_id} there are no potential buildings to " |
||
| 1846 | f"allocate PV capacity to. The grid is skipped. This message " |
||
| 1847 | f"should only appear doing test runs with few buildings." |
||
| 1848 | ) |
||
| 1849 | |||
| 1850 | continue |
||
| 1851 | |||
| 1852 | pv_target = cap_df.at[bus_id, "capacity"] |
||
| 1853 | |||
| 1854 | logger.debug(f"pv_target: {pv_target}") |
||
| 1855 | |||
| 1856 | pv_missing = pv_target - pv_installed |
||
| 1857 | |||
| 1858 | if pv_missing <= 0: |
||
| 1859 | logger.warning( |
||
| 1860 | f"In grid {bus_id} there is more PV installed " |
||
| 1861 | f"({pv_installed: g} kW) in status Quo than allocated within " |
||
| 1862 | f"the scenario ({pv_target: g} kW). " |
||
| 1863 | f"No new generators are added." |
||
| 1864 | ) |
||
| 1865 | |||
| 1866 | continue |
||
| 1867 | |||
| 1868 | if pot_buildings_gdf.max_cap.sum() < pv_missing: |
||
| 1869 | logger.error( |
||
| 1870 | f"In grid {bus_id} there is less PV potential (" |
||
| 1871 | f"{pot_buildings_gdf.max_cap.sum():g} MW) than allocated PV " |
||
| 1872 | f"capacity ({pv_missing:g} MW). The average roof utilization " |
||
| 1873 | f"will be very high." |
||
| 1874 | ) |
||
| 1875 | |||
| 1876 | gdf = desaggregate_pv_in_mv_grid( |
||
| 1877 | buildings_gdf=pot_buildings_gdf, |
||
| 1878 | pv_cap=pv_missing, |
||
| 1879 | **kwargs, |
||
| 1880 | ) |
||
| 1881 | |||
| 1882 | logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}") |
||
| 1883 | logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}") |
||
| 1884 | logger.debug( |
||
| 1885 | f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}" |
||
| 1886 | ) |
||
| 1887 | |||
| 1888 | if not np.isclose( |
||
| 1889 | gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3 |
||
| 1890 | ): |
||
| 1891 | logger.warning( |
||
| 1892 | f"The desired capacity and actual capacity in grid {bus_id} " |
||
| 1893 | f"differ.\n" |
||
| 1894 | f"Desired cap: {pv_target}\nActual cap: " |
||
| 1895 | f"{gdf.capacity.sum() + pv_installed}" |
||
| 1896 | ) |
||
| 1897 | |||
| 1898 | pre_cap = allocated_buildings_gdf.capacity.sum() |
||
| 1899 | new_cap = gdf.capacity.sum() |
||
| 1900 | |||
| 1901 | allocated_buildings_gdf = pd.concat( |
||
| 1902 | [ |
||
| 1903 | allocated_buildings_gdf, |
||
| 1904 | gdf, |
||
| 1905 | ] |
||
| 1906 | ) |
||
| 1907 | |||
| 1908 | total_cap = allocated_buildings_gdf.capacity.sum() |
||
| 1909 | |||
| 1910 | assert np.isclose(pre_cap + new_cap, total_cap) |
||
| 1911 | |||
| 1912 | logger.debug("Desaggregated scenario.") |
||
| 1913 | logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}") |
||
| 1914 | logger.debug( |
||
| 1915 | f"Generator capacity: " f"{allocated_buildings_gdf.capacity.sum(): g}" |
||
| 1916 | ) |
||
| 1917 | |||
| 1918 | return gpd.GeoDataFrame( |
||
| 1919 | allocated_buildings_gdf, |
||
| 1920 | crs=gdf.crs, |
||
| 1921 | geometry="geom", |
||
| 1922 | ) |
||
| 1923 | |||
| 1924 | |||
| 1925 | @timer_func |
||
| 1926 | def add_buildings_meta_data( |
||
| 1927 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1928 | prob_dict: dict, |
||
| 1929 | seed: int, |
||
| 1930 | ) -> gpd.GeoDataFrame: |
||
| 1931 | """ |
||
| 1932 | Randomly add additional metadata to desaggregated PV plants. |
||
| 1933 | |||
| 1934 | Parameters |
||
| 1935 | ----------- |
||
| 1936 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1937 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
| 1938 | plants. |
||
| 1939 | prob_dict : dict |
||
| 1940 | Dictionary with values and probabilities per capacity range. |
||
| 1941 | seed : int |
||
| 1942 | Seed to use for random operations with NumPy and pandas. |
||
| 1943 | Returns |
||
| 1944 | ------- |
||
| 1945 | geopandas.GeoDataFrame |
||
| 1946 | GeoDataFrame containing OSM building data with desaggregated PV |
||
| 1947 | plants. |
||
| 1948 | """ |
||
| 1949 | rng = default_rng(seed=seed) |
||
| 1950 | buildings_gdf = buildings_gdf.reset_index().rename( |
||
| 1951 | columns={ |
||
| 1952 | "index": "building_id", |
||
| 1953 | } |
||
| 1954 | ) |
||
| 1955 | |||
| 1956 | for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items(): |
||
| 1957 | cap_range_gdf = buildings_gdf.loc[ |
||
| 1958 | (buildings_gdf.capacity >= min_cap) |
||
| 1959 | & (buildings_gdf.capacity < max_cap) |
||
| 1960 | ] |
||
| 1961 | |||
| 1962 | for key, values in cap_range_prob_dict["values"].items(): |
||
| 1963 | if key == "load_factor": |
||
| 1964 | continue |
||
| 1965 | |||
| 1966 | gdf = cap_range_gdf.loc[ |
||
| 1967 | cap_range_gdf[key].isna() |
||
| 1968 | | cap_range_gdf[key].isnull() |
||
| 1969 | | (cap_range_gdf[key] == "None") |
||
| 1970 | ] |
||
| 1971 | |||
| 1972 | key_vals = rng.choice( |
||
| 1973 | a=values, |
||
| 1974 | size=len(gdf), |
||
| 1975 | p=cap_range_prob_dict["probabilities"][key], |
||
| 1976 | ) |
||
| 1977 | |||
| 1978 | buildings_gdf.loc[gdf.index, key] = key_vals |
||
| 1979 | |||
| 1980 | return buildings_gdf |
||
| 1981 | |||
| 1982 | |||
| 1983 | def add_commissioning_date( |
||
| 1984 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1985 | start: pd.Timestamp, |
||
| 1986 | end: pd.Timestamp, |
||
| 1987 | seed: int, |
||
| 1988 | ): |
||
| 1989 | """ |
||
| 1990 | Randomly and linear add start-up date to new pv generators. |
||
| 1991 | |||
| 1992 | Parameters |
||
| 1993 | ---------- |
||
| 1994 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1995 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
| 1996 | plants. |
||
| 1997 | start : pandas.Timestamp |
||
| 1998 | Minimum Timestamp to use. |
||
| 1999 | end : pandas.Timestamp |
||
| 2000 | Maximum Timestamp to use. |
||
| 2001 | seed : int |
||
| 2002 | Seed to use for random operations with NumPy and pandas. |
||
| 2003 | Returns |
||
| 2004 | ------- |
||
| 2005 | geopandas.GeoDataFrame |
||
| 2006 | GeoDataFrame containing OSM buildings data with start-up date added. |
||
| 2007 | """ |
||
| 2008 | rng = default_rng(seed=seed) |
||
| 2009 | |||
| 2010 | date_range = pd.date_range(start=start, end=end, freq="1D") |
||
| 2011 | |||
| 2012 | return buildings_gdf.assign( |
||
| 2013 | commissioning_date=rng.choice(date_range, size=len(buildings_gdf)) |
||
| 2014 | ) |
||
| 2015 | |||
| 2016 | |||
| 2017 | @timer_func |
||
| 2018 | def allocate_scenarios( |
||
| 2019 | mastr_gdf: gpd.GeoDataFrame, |
||
| 2020 | valid_buildings_gdf: gpd.GeoDataFrame, |
||
| 2021 | last_scenario_gdf: gpd.GeoDataFrame, |
||
| 2022 | scenario: str, |
||
| 2023 | ): |
||
| 2024 | """ |
||
| 2025 | Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings. |
||
| 2026 | |||
| 2027 | Parameters |
||
| 2028 | ---------- |
||
| 2029 | mastr_gdf : geopandas.GeoDataFrame |
||
| 2030 | GeoDataFrame containing geocoded MaStR data. |
||
| 2031 | valid_buildings_gdf : geopandas.GeoDataFrame |
||
| 2032 | GeoDataFrame containing OSM buildings data. |
||
| 2033 | last_scenario_gdf : geopandas.GeoDataFrame |
||
| 2034 | GeoDataFrame containing OSM buildings matched with pv generators from |
||
| 2035 | temporally preceding scenario. |
||
| 2036 | scenario : str |
||
| 2037 | Scenario to desaggrgate and allocate. |
||
| 2038 | Returns |
||
| 2039 | ------- |
||
| 2040 | tuple |
||
| 2041 | geopandas.GeoDataFrame |
||
| 2042 | GeoDataFrame containing OSM buildings matched with pv generators. |
||
| 2043 | pandas.DataFrame |
||
| 2044 | DataFrame containing pv rooftop capacity per grid id. |
||
| 2045 | """ |
||
| 2046 | cap_per_bus_id_df = cap_per_bus_id(scenario) |
||
| 2047 | |||
| 2048 | if cap_per_bus_id_df.empty: |
||
| 2049 | print(f"No PV rooftop in scenario {scenario}") |
||
| 2050 | return |
||
| 2051 | |||
| 2052 | logger.debug( |
||
| 2053 | f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}" |
||
| 2054 | ) |
||
| 2055 | |||
| 2056 | last_scenario_gdf = determine_end_of_life_gens( |
||
| 2057 | last_scenario_gdf, |
||
| 2058 | SCENARIO_TIMESTAMP[scenario], |
||
| 2059 | PV_ROOFTOP_LIFETIME, |
||
| 2060 | ) |
||
| 2061 | |||
| 2062 | buildings_gdf = calculate_max_pv_cap_per_building( |
||
| 2063 | valid_buildings_gdf, |
||
| 2064 | last_scenario_gdf, |
||
| 2065 | PV_CAP_PER_SQ_M, |
||
| 2066 | ROOF_FACTOR, |
||
| 2067 | ) |
||
| 2068 | |||
| 2069 | mastr_gdf = calculate_building_load_factor( |
||
| 2070 | mastr_gdf, |
||
| 2071 | buildings_gdf, |
||
| 2072 | ) |
||
| 2073 | |||
| 2074 | probabilities_dict = probabilities( |
||
| 2075 | mastr_gdf, |
||
| 2076 | cap_ranges=CAP_RANGES, |
||
| 2077 | ) |
||
| 2078 | |||
| 2079 | cap_share_dict = cap_share_per_cap_range( |
||
| 2080 | mastr_gdf, |
||
| 2081 | cap_ranges=CAP_RANGES, |
||
| 2082 | ) |
||
| 2083 | |||
| 2084 | load_factor_dict = mean_load_factor_per_cap_range( |
||
| 2085 | mastr_gdf, |
||
| 2086 | cap_ranges=CAP_RANGES, |
||
| 2087 | ) |
||
| 2088 | |||
| 2089 | building_area_range_dict = building_area_range_per_cap_range( |
||
| 2090 | mastr_gdf, |
||
| 2091 | cap_ranges=CAP_RANGES, |
||
| 2092 | min_building_size=MIN_BUILDING_SIZE, |
||
| 2093 | upper_quantile=UPPER_QUANTILE, |
||
| 2094 | lower_quantile=LOWER_QUANTILE, |
||
| 2095 | ) |
||
| 2096 | |||
| 2097 | allocated_buildings_gdf = desaggregate_pv( |
||
| 2098 | buildings_gdf=buildings_gdf, |
||
| 2099 | cap_df=cap_per_bus_id_df, |
||
| 2100 | prob_dict=probabilities_dict, |
||
| 2101 | cap_share_dict=cap_share_dict, |
||
| 2102 | building_area_range_dict=building_area_range_dict, |
||
| 2103 | load_factor_dict=load_factor_dict, |
||
| 2104 | seed=SEED, |
||
| 2105 | pv_cap_per_sq_m=PV_CAP_PER_SQ_M, |
||
| 2106 | ) |
||
| 2107 | |||
| 2108 | allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario) |
||
| 2109 | |||
| 2110 | meta_buildings_gdf = frame_to_numeric( |
||
| 2111 | add_buildings_meta_data( |
||
| 2112 | allocated_buildings_gdf, |
||
| 2113 | probabilities_dict, |
||
| 2114 | SEED, |
||
| 2115 | ) |
||
| 2116 | ) |
||
| 2117 | |||
| 2118 | return ( |
||
| 2119 | add_commissioning_date( |
||
| 2120 | meta_buildings_gdf, |
||
| 2121 | start=last_scenario_gdf.commissioning_date.max(), |
||
| 2122 | end=SCENARIO_TIMESTAMP[scenario], |
||
| 2123 | seed=SEED, |
||
| 2124 | ), |
||
| 2125 | cap_per_bus_id_df, |
||
| 2126 | ) |
||
| 2127 | |||
| 2128 | |||
| 2129 | class EgonPowerPlantPvRoofBuilding(Base): |
||
| 2130 | """ |
||
| 2131 | Class definition of table supply.egon_power_plants_pv_roof_building. |
||
| 2132 | |||
| 2133 | """ |
||
| 2134 | __tablename__ = "egon_power_plants_pv_roof_building" |
||
| 2135 | __table_args__ = {"schema": "supply"} |
||
| 2136 | |||
| 2137 | index = Column(Integer, primary_key=True, index=True) |
||
| 2138 | scenario = Column(String) |
||
| 2139 | bus_id = Column(Integer, nullable=True) |
||
| 2140 | building_id = Column(Integer) |
||
| 2141 | gens_id = Column(String, nullable=True) |
||
| 2142 | capacity = Column(Float) |
||
| 2143 | orientation_uniform = Column(Float) |
||
| 2144 | orientation_primary = Column(String) |
||
| 2145 | orientation_primary_angle = Column(String) |
||
| 2146 | voltage_level = Column(Integer) |
||
| 2147 | weather_cell_id = Column(Integer) |
||
| 2148 | |||
| 2149 | |||
| 2150 | def add_metadata(): |
||
| 2151 | schema = "supply" |
||
| 2152 | table = "egon_power_plants_pv_roof_building" |
||
| 2153 | name = f"{schema}.{table}" |
||
| 2154 | deposit_id_mastr = config.datasets()["mastr_new"]["deposit_id"] |
||
| 2155 | deposit_id_data_bundle = config.datasets()["data-bundle"]["sources"][ |
||
| 2156 | "zenodo" |
||
| 2157 | ]["deposit_id"] |
||
| 2158 | |||
| 2159 | contris = contributors(["kh", "kh"]) |
||
| 2160 | |||
| 2161 | contris[0]["date"] = "2023-03-16" |
||
| 2162 | |||
| 2163 | contris[0]["object"] = "metadata" |
||
| 2164 | contris[1]["object"] = "dataset" |
||
| 2165 | |||
| 2166 | contris[0]["comment"] = "Add metadata to dataset." |
||
| 2167 | contris[1]["comment"] = "Add workflow to generate dataset." |
||
| 2168 | |||
| 2169 | meta = { |
||
| 2170 | "name": name, |
||
| 2171 | "title": "eGon power plants rooftop solar", |
||
| 2172 | "id": "WILL_BE_SET_AT_PUBLICATION", |
||
| 2173 | "description": ( |
||
| 2174 | "eGon power plants rooftop solar systems allocated to buildings" |
||
| 2175 | ), |
||
| 2176 | "language": "en-US", |
||
| 2177 | "keywords": ["photovoltaik", "solar", "pv", "mastr", "status quo"], |
||
| 2178 | "publicationDate": datetime.date.today().isoformat(), |
||
| 2179 | "context": context(), |
||
| 2180 | "spatial": { |
||
| 2181 | "location": "none", |
||
| 2182 | "extent": "Germany", |
||
| 2183 | "resolution": "building", |
||
| 2184 | }, |
||
| 2185 | "temporal": { |
||
| 2186 | "referenceDate": ( |
||
| 2187 | config.datasets()["mastr_new"]["egon2021_date_max"].split(" ")[ |
||
| 2188 | 0 |
||
| 2189 | ] |
||
| 2190 | ), |
||
| 2191 | "timeseries": {}, |
||
| 2192 | }, |
||
| 2193 | "sources": [ |
||
| 2194 | { |
||
| 2195 | "title": "Data bundle for egon-data", |
||
| 2196 | "description": ( |
||
| 2197 | "Data bundle for egon-data: A transparent and " |
||
| 2198 | "reproducible data processing pipeline for energy " |
||
| 2199 | "system modeling" |
||
| 2200 | ), |
||
| 2201 | "path": ( |
||
| 2202 | "https://zenodo.org/record/" |
||
| 2203 | f"{deposit_id_data_bundle}#.Y_dWM4CZMVM" |
||
| 2204 | ), |
||
| 2205 | "licenses": [license_dedl(attribution="© Cußmann, Ilka")], |
||
| 2206 | }, |
||
| 2207 | { |
||
| 2208 | "title": ("open-MaStR power unit registry for eGo^n project"), |
||
| 2209 | "description": ( |
||
| 2210 | "Data from Marktstammdatenregister (MaStR) data using " |
||
| 2211 | "the data dump from 2022-11-17 for eGon-data." |
||
| 2212 | ), |
||
| 2213 | "path": ( |
||
| 2214 | f"https://zenodo.org/record/{deposit_id_mastr}" |
||
| 2215 | ), |
||
| 2216 | "licenses": [license_dedl(attribution="© Amme, Jonathan")], |
||
| 2217 | }, |
||
| 2218 | sources()["openstreetmap"], |
||
| 2219 | sources()["era5"], |
||
| 2220 | sources()["vg250"], |
||
| 2221 | sources()["egon-data"], |
||
| 2222 | ], |
||
| 2223 | "licenses": [license_odbl("© eGon development team")], |
||
| 2224 | "contributors": contris, |
||
| 2225 | "resources": [ |
||
| 2226 | { |
||
| 2227 | "profile": "tabular-data-resource", |
||
| 2228 | "name": name, |
||
| 2229 | "path": "None", |
||
| 2230 | "format": "PostgreSQL", |
||
| 2231 | "encoding": "UTF-8", |
||
| 2232 | "schema": { |
||
| 2233 | "fields": generate_resource_fields_from_db_table( |
||
| 2234 | schema, |
||
| 2235 | table, |
||
| 2236 | ), |
||
| 2237 | "primaryKey": "index", |
||
| 2238 | }, |
||
| 2239 | "dialect": {"delimiter": "", "decimalSeparator": ""}, |
||
| 2240 | } |
||
| 2241 | ], |
||
| 2242 | "review": {"path": "", "badge": ""}, |
||
| 2243 | "metaMetadata": meta_metadata(), |
||
| 2244 | "_comment": { |
||
| 2245 | "metadata": ( |
||
| 2246 | "Metadata documentation and explanation (https://github." |
||
| 2247 | "com/OpenEnergyPlatform/oemetadata/blob/master/metadata/" |
||
| 2248 | "v141/metadata_key_description.md)" |
||
| 2249 | ), |
||
| 2250 | "dates": ( |
||
| 2251 | "Dates and time must follow the ISO8601 including time " |
||
| 2252 | "zone (YYYY-MM-DD or YYYY-MM-DDThh:mm:ss±hh)" |
||
| 2253 | ), |
||
| 2254 | "units": "Use a space between numbers and units (100 m)", |
||
| 2255 | "languages": ( |
||
| 2256 | "Languages must follow the IETF (BCP47) format (en-GB, " |
||
| 2257 | "en-US, de-DE)" |
||
| 2258 | ), |
||
| 2259 | "licenses": ( |
||
| 2260 | "License name must follow the SPDX License List " |
||
| 2261 | "(https://spdx.org/licenses/)" |
||
| 2262 | ), |
||
| 2263 | "review": ( |
||
| 2264 | "Following the OEP Data Review (https://github.com/" |
||
| 2265 | "OpenEnergyPlatform/data-preprocessing/wiki)" |
||
| 2266 | ), |
||
| 2267 | "none": "If not applicable use (none)", |
||
| 2268 | }, |
||
| 2269 | } |
||
| 2270 | |||
| 2271 | dialect = get_dialect(f"oep-v{meta_metadata()['metadataVersion'][4:7]}")() |
||
| 2272 | |||
| 2273 | meta = dialect.compile_and_render(dialect.parse(json.dumps(meta))) |
||
| 2274 | |||
| 2275 | db.submit_comment( |
||
| 2276 | f"'{json.dumps(meta)}'", |
||
| 2277 | schema, |
||
| 2278 | table, |
||
| 2279 | ) |
||
| 2280 | |||
| 2281 | |||
| 2282 | def create_scenario_table(buildings_gdf): |
||
| 2283 | """Create mapping table pv_unit <-> building for scenario""" |
||
| 2284 | EgonPowerPlantPvRoofBuilding.__table__.drop(bind=engine, checkfirst=True) |
||
| 2285 | EgonPowerPlantPvRoofBuilding.__table__.create(bind=engine, checkfirst=True) |
||
| 2286 | |||
| 2287 | buildings_gdf[COLS_TO_EXPORT].reset_index().to_sql( |
||
| 2288 | name=EgonPowerPlantPvRoofBuilding.__table__.name, |
||
| 2289 | schema=EgonPowerPlantPvRoofBuilding.__table__.schema, |
||
| 2290 | con=db.engine(), |
||
| 2291 | if_exists="append", |
||
| 2292 | index=False, |
||
| 2293 | ) |
||
| 2294 | |||
| 2295 | add_metadata() |
||
| 2296 | |||
| 2297 | |||
| 2298 | def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: |
||
| 2299 | sql = """ |
||
| 2300 | SELECT building_id, zensus_population_id |
||
| 2301 | FROM boundaries.egon_map_zensus_mvgd_buildings |
||
| 2302 | """ |
||
| 2303 | |||
| 2304 | buildings_gdf = buildings_gdf.merge( |
||
| 2305 | right=db.select_dataframe(sql).drop_duplicates(subset="building_id"), |
||
| 2306 | how="left", |
||
| 2307 | on="building_id", |
||
| 2308 | ) |
||
| 2309 | |||
| 2310 | sql = """ |
||
| 2311 | SELECT zensus_population_id, w_id as weather_cell_id |
||
| 2312 | FROM boundaries.egon_map_zensus_weather_cell |
||
| 2313 | """ |
||
| 2314 | |||
| 2315 | buildings_gdf = buildings_gdf.merge( |
||
| 2316 | right=db.select_dataframe(sql).drop_duplicates( |
||
| 2317 | subset="zensus_population_id" |
||
| 2318 | ), |
||
| 2319 | how="left", |
||
| 2320 | on="zensus_population_id", |
||
| 2321 | ) |
||
| 2322 | |||
| 2323 | if buildings_gdf.weather_cell_id.isna().any(): |
||
| 2324 | missing = buildings_gdf.loc[ |
||
| 2325 | buildings_gdf.weather_cell_id.isna(), "building_id" |
||
| 2326 | ].tolist() |
||
| 2327 | |||
| 2328 | raise ValueError( |
||
| 2329 | f"Following buildings don't have a weather cell id: {missing}" |
||
| 2330 | ) |
||
| 2331 | |||
| 2332 | return buildings_gdf |
||
| 2333 | |||
| 2334 | |||
| 2335 | def add_bus_ids_sq( |
||
| 2336 | buildings_gdf: gpd.GeoDataFrame, |
||
| 2337 | ) -> gpd.GeoDataFrame: |
||
| 2338 | """Add bus ids for status_quo units |
||
| 2339 | |||
| 2340 | Parameters |
||
| 2341 | ----------- |
||
| 2342 | buildings_gdf : geopandas.GeoDataFrame |
||
| 2343 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
| 2344 | plants. |
||
| 2345 | Returns |
||
| 2346 | ------- |
||
| 2347 | geopandas.GeoDataFrame |
||
| 2348 | GeoDataFrame containing OSM building data with bus_id per |
||
| 2349 | generator. |
||
| 2350 | """ |
||
| 2351 | grid_districts_gdf = grid_districts(EPSG) |
||
| 2352 | |||
| 2353 | mask = buildings_gdf.scenario == "status_quo" |
||
| 2354 | |||
| 2355 | buildings_gdf.loc[mask, "bus_id"] = ( |
||
| 2356 | buildings_gdf.loc[mask] |
||
| 2357 | .sjoin(grid_districts_gdf, how="left") |
||
| 2358 | .index_right |
||
| 2359 | ) |
||
| 2360 | |||
| 2361 | return buildings_gdf |
||
| 2362 | |||
| 2363 | |||
| 2364 | View Code Duplication | def infer_voltage_level( |
|
| 2365 | units_gdf: gpd.GeoDataFrame, |
||
| 2366 | ) -> gpd.GeoDataFrame: |
||
| 2367 | """ |
||
| 2368 | Infer nan values in voltage level derived from generator capacity to |
||
| 2369 | the power plants. |
||
| 2370 | |||
| 2371 | Parameters |
||
| 2372 | ----------- |
||
| 2373 | units_gdf : geopandas.GeoDataFrame |
||
| 2374 | GeoDataFrame containing units with voltage levels from MaStR |
||
| 2375 | Returnsunits_gdf: gpd.GeoDataFrame |
||
| 2376 | ------- |
||
| 2377 | geopandas.GeoDataFrame |
||
| 2378 | GeoDataFrame containing units all having assigned a voltage level. |
||
| 2379 | """ |
||
| 2380 | |||
| 2381 | def voltage_levels(p: float) -> int: |
||
| 2382 | if p <= 0.1: |
||
| 2383 | return 7 |
||
| 2384 | elif p <= 0.2: |
||
| 2385 | return 6 |
||
| 2386 | elif p <= 5.5: |
||
| 2387 | return 5 |
||
| 2388 | elif p <= 20: |
||
| 2389 | return 4 |
||
| 2390 | elif p <= 120: |
||
| 2391 | return 3 |
||
| 2392 | return 1 |
||
| 2393 | |||
| 2394 | units_gdf["voltage_level_inferred"] = False |
||
| 2395 | mask = units_gdf.voltage_level.isna() |
||
| 2396 | units_gdf.loc[mask, "voltage_level_inferred"] = True |
||
| 2397 | units_gdf.loc[mask, "voltage_level"] = units_gdf.loc[mask].capacity.apply( |
||
| 2398 | voltage_levels |
||
| 2399 | ) |
||
| 2400 | |||
| 2401 | return units_gdf |
||
| 2402 | |||
| 2403 | |||
| 2404 | def pv_rooftop_to_buildings(): |
||
| 2405 | """Main script, executed as task""" |
||
| 2406 | |||
| 2407 | mastr_gdf = load_mastr_data() |
||
| 2408 | |||
| 2409 | status_quo = "status2023" # FIXME: Hard coded |
||
| 2410 | |||
| 2411 | ts = pd.Timestamp( |
||
| 2412 | config.datasets()["mastr_new"][f"{status_quo}_date_max"], tz="UTC" |
||
| 2413 | ) |
||
| 2414 | |||
| 2415 | mastr_gdf = mastr_gdf.loc[ |
||
| 2416 | mastr_gdf.commissioning_date <= ts |
||
| 2417 | ] |
||
| 2418 | |||
| 2419 | buildings_gdf = load_building_data() |
||
| 2420 | |||
| 2421 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings( |
||
| 2422 | mastr_gdf, buildings_gdf |
||
| 2423 | ) |
||
| 2424 | |||
| 2425 | all_buildings_gdf = ( |
||
| 2426 | desagg_mastr_gdf.assign(scenario=status_quo) |
||
| 2427 | .reset_index() |
||
| 2428 | .rename(columns={"geometry": "geom"}) |
||
| 2429 | .set_geometry("geom") |
||
| 2430 | ) |
||
| 2431 | |||
| 2432 | scenario_buildings_gdf = all_buildings_gdf.copy() |
||
| 2433 | |||
| 2434 | cap_per_bus_id_df = pd.DataFrame() |
||
| 2435 | |||
| 2436 | for scenario in SCENARIOS: |
||
| 2437 | if scenario == status_quo: |
||
| 2438 | continue |
||
| 2439 | elif "status" in scenario: |
||
| 2440 | ts = pd.Timestamp( |
||
| 2441 | config.datasets()["mastr_new"][f"{scenario}_date_max"], tz="UTC" |
||
| 2442 | ) |
||
| 2443 | |||
| 2444 | scenario_buildings_gdf = scenario_buildings_gdf.loc[ |
||
| 2445 | scenario_buildings_gdf.commissioning_date <= ts |
||
| 2446 | ] |
||
| 2447 | |||
| 2448 | else: |
||
| 2449 | logger.debug(f"Desaggregating scenario {scenario}.") |
||
| 2450 | |||
| 2451 | ( |
||
| 2452 | scenario_buildings_gdf, |
||
| 2453 | cap_per_bus_id_scenario_df, |
||
| 2454 | ) = allocate_scenarios( # noqa: F841 |
||
| 2455 | desagg_mastr_gdf, |
||
| 2456 | desagg_buildings_gdf, |
||
| 2457 | scenario_buildings_gdf, |
||
| 2458 | scenario, |
||
| 2459 | ) |
||
| 2460 | |||
| 2461 | cap_per_bus_id_df = pd.concat( |
||
| 2462 | [cap_per_bus_id_df, cap_per_bus_id_scenario_df] |
||
| 2463 | ) |
||
| 2464 | |||
| 2465 | all_buildings_gdf = gpd.GeoDataFrame( |
||
| 2466 | pd.concat( |
||
| 2467 | [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True |
||
| 2468 | ), |
||
| 2469 | crs=scenario_buildings_gdf.crs, |
||
| 2470 | geometry="geom", |
||
| 2471 | ) |
||
| 2472 | |||
| 2473 | # add weather cell |
||
| 2474 | all_buildings_gdf = add_weather_cell_id(all_buildings_gdf) |
||
| 2475 | |||
| 2476 | # add bus IDs for status quo scenario |
||
| 2477 | all_buildings_gdf = add_bus_ids_sq(all_buildings_gdf) |
||
| 2478 | |||
| 2479 | # export scenario |
||
| 2480 | create_scenario_table(infer_voltage_level(all_buildings_gdf)) |
||
| 2481 |