| Conditions | 9 | 
| Total Lines | 265 | 
| Code Lines | 152 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | """The central module containing all code dealing with power plant data.  | 
            ||
| 317 | def allocate_storage_units_sq(scn_name, storage_types):  | 
            ||
| 318 | """  | 
            ||
| 319 | Allocate storage units by mastr data only. Capacities outside  | 
            ||
| 320 | germany are assigned to foreign buses.  | 
            ||
| 321 | |||
| 322 | Parameters  | 
            ||
| 323 | ----------  | 
            ||
| 324 | scn_name: str  | 
            ||
| 325 | Scenario name  | 
            ||
| 326 | storage_types: list  | 
            ||
| 327 | contains all the required storage units carriers to be imported  | 
            ||
| 328 | |||
| 329 | Returns  | 
            ||
| 330 | -------  | 
            ||
| 331 | |||
| 332 | """  | 
            ||
| 333 | sources = config.datasets()["power_plants"]["sources"]  | 
            ||
| 334 |     scn_parameters = get_sector_parameters("global", scn_name) | 
            ||
| 335 | scenario_date_max = str(scn_parameters["weather_year"]) + "-12-31 23:59:00"  | 
            ||
| 336 | |||
| 337 |     map_storage = { | 
            ||
| 338 | "battery": "Batterie",  | 
            ||
| 339 | "pumped_hydro": "Pumpspeicher",  | 
            ||
| 340 | "compressed_air": "Druckluft",  | 
            ||
| 341 | "flywheel": "Schwungrad",  | 
            ||
| 342 | "other": "Sonstige",  | 
            ||
| 343 | }  | 
            ||
| 344 | |||
| 345 | for storage_type in storage_types:  | 
            ||
| 346 | # Read-in data from MaStR  | 
            ||
| 347 | mastr_ph = pd.read_csv(  | 
            ||
| 348 | WORKING_DIR_MASTR_NEW / sources["mastr_storage"],  | 
            ||
| 349 | delimiter=",",  | 
            ||
| 350 | usecols=[  | 
            ||
| 351 | "Nettonennleistung",  | 
            ||
| 352 | "EinheitMastrNummer",  | 
            ||
| 353 | "Kraftwerksnummer",  | 
            ||
| 354 | "Technologie",  | 
            ||
| 355 | "Postleitzahl",  | 
            ||
| 356 | "Laengengrad",  | 
            ||
| 357 | "Breitengrad",  | 
            ||
| 358 | "EinheitBetriebsstatus",  | 
            ||
| 359 | "LokationMastrNummer",  | 
            ||
| 360 | "Ort",  | 
            ||
| 361 | "Bundesland",  | 
            ||
| 362 | "DatumEndgueltigeStilllegung",  | 
            ||
| 363 | "Inbetriebnahmedatum",  | 
            ||
| 364 | ],  | 
            ||
| 365 |             dtype={"Postleitzahl": str}, | 
            ||
| 366 | )  | 
            ||
| 367 | |||
| 368 | # Rename columns  | 
            ||
| 369 | mastr_ph = mastr_ph.rename(  | 
            ||
| 370 |             columns={ | 
            ||
| 371 | "Kraftwerksnummer": "bnetza_id",  | 
            ||
| 372 | "Technologie": "carrier",  | 
            ||
| 373 | "Postleitzahl": "plz",  | 
            ||
| 374 | "Ort": "city",  | 
            ||
| 375 | "Bundesland": "federal_state",  | 
            ||
| 376 | "Nettonennleistung": "el_capacity",  | 
            ||
| 377 | "DatumEndgueltigeStilllegung": "decommissioning_date",  | 
            ||
| 378 | }  | 
            ||
| 379 | )  | 
            ||
| 380 | |||
| 381 | # Select only the required type of storage  | 
            ||
| 382 | mastr_ph = mastr_ph.loc[mastr_ph.carrier == map_storage[storage_type]]  | 
            ||
| 383 | |||
| 384 | # Select only storage units in operation  | 
            ||
| 385 | mastr_ph.loc[  | 
            ||
| 386 | mastr_ph["decommissioning_date"] > scenario_date_max,  | 
            ||
| 387 | "EinheitBetriebsstatus",  | 
            ||
| 388 | ] = "InBetrieb"  | 
            ||
| 389 | mastr_ph = mastr_ph.loc[  | 
            ||
| 390 | mastr_ph.EinheitBetriebsstatus.isin(  | 
            ||
| 391 | ["InBetrieb", "VoruebergehendStillgelegt"]  | 
            ||
| 392 | )  | 
            ||
| 393 | ]  | 
            ||
| 394 | |||
| 395 | # Select only storage units installed before scenario_date_max  | 
            ||
| 396 | mastr_ph = mastr_ph[  | 
            ||
| 397 | pd.to_datetime(mastr_ph["Inbetriebnahmedatum"]) < scenario_date_max  | 
            ||
| 398 | ]  | 
            ||
| 399 | |||
| 400 | # Calculate power in MW  | 
            ||
| 401 | mastr_ph.loc[:, "el_capacity"] *= 1e-3  | 
            ||
| 402 | |||
| 403 | # Create geodataframe from long, lat  | 
            ||
| 404 | mastr_ph = gpd.GeoDataFrame(  | 
            ||
| 405 | mastr_ph,  | 
            ||
| 406 | geometry=gpd.points_from_xy(  | 
            ||
| 407 | mastr_ph["Laengengrad"], mastr_ph["Breitengrad"]  | 
            ||
| 408 | ),  | 
            ||
| 409 | crs="4326",  | 
            ||
| 410 | )  | 
            ||
| 411 | |||
| 412 | # Identify pp without geocord  | 
            ||
| 413 | mastr_ph_nogeo = mastr_ph.loc[mastr_ph["Laengengrad"].isna()]  | 
            ||
| 414 | |||
| 415 | # Remove all PP without geocord  | 
            ||
| 416 | mastr_ph = mastr_ph.dropna(subset="Laengengrad")  | 
            ||
| 417 | |||
| 418 | # Get geometry of villages/cities with same name of pp with missing geocord  | 
            ||
| 419 | with session_scope() as session:  | 
            ||
| 420 | query = session.query(Vg250GemClean.gen, Vg250GemClean.geometry)  | 
            ||
| 421 | df_cities = gpd.read_postgis(  | 
            ||
| 422 | query.statement,  | 
            ||
| 423 | query.session.bind,  | 
            ||
| 424 | geom_col="geometry",  | 
            ||
| 425 | crs="3035",  | 
            ||
| 426 | )  | 
            ||
| 427 | |||
| 428 | # Keep only useful cities  | 
            ||
| 429 | df_cities = df_cities[df_cities["gen"].isin(mastr_ph_nogeo["city"])]  | 
            ||
| 430 | |||
| 431 | # Just take the first entry, inaccuracy is negligible as centroid is taken afterwards  | 
            ||
| 432 |         df_cities = df_cities.drop_duplicates("gen", keep="first") | 
            ||
| 433 | |||
| 434 | # Use the centroid instead of polygon of region  | 
            ||
| 435 | df_cities.loc[:, "geometry"] = df_cities["geometry"].centroid  | 
            ||
| 436 | |||
| 437 | # Change coordinate system  | 
            ||
| 438 |         df_cities.to_crs("4326", inplace=True) | 
            ||
| 439 | |||
| 440 | # Add centroid geometry to pp without geometry  | 
            ||
| 441 | mastr_ph_nogeo = pd.merge(  | 
            ||
| 442 | left=df_cities,  | 
            ||
| 443 | right=mastr_ph_nogeo,  | 
            ||
| 444 | right_on="city",  | 
            ||
| 445 | left_on="gen",  | 
            ||
| 446 |             suffixes=("", "_no-geo"), | 
            ||
| 447 | how="inner",  | 
            ||
| 448 |         ).drop("gen", axis=1) | 
            ||
| 449 | |||
| 450 | mastr_ph = pd.concat([mastr_ph, mastr_ph_nogeo], axis=0)  | 
            ||
| 451 | |||
| 452 | # aggregate capacity per location  | 
            ||
| 453 |         agg_cap = mastr_ph.groupby("geometry")["el_capacity"].sum() | 
            ||
| 454 | |||
| 455 | # list mastr number by location  | 
            ||
| 456 |         agg_mastr = mastr_ph.groupby("geometry")["EinheitMastrNummer"].apply( | 
            ||
| 457 | list  | 
            ||
| 458 | )  | 
            ||
| 459 | |||
| 460 | # remove duplicates by location  | 
            ||
| 461 | mastr_ph = mastr_ph.drop_duplicates(  | 
            ||
| 462 | subset="geometry", keep="first"  | 
            ||
| 463 | ).drop(["el_capacity", "EinheitMastrNummer"], axis=1)  | 
            ||
| 464 | |||
| 465 | # Adjust capacity  | 
            ||
| 466 | mastr_ph = pd.merge(  | 
            ||
| 467 | left=mastr_ph,  | 
            ||
| 468 | right=agg_cap,  | 
            ||
| 469 | left_on="geometry",  | 
            ||
| 470 | right_on="geometry",  | 
            ||
| 471 | )  | 
            ||
| 472 | |||
| 473 | # Adjust capacity  | 
            ||
| 474 | mastr_ph = pd.merge(  | 
            ||
| 475 | left=mastr_ph,  | 
            ||
| 476 | right=agg_mastr,  | 
            ||
| 477 | left_on="geometry",  | 
            ||
| 478 | right_on="geometry",  | 
            ||
| 479 | )  | 
            ||
| 480 | |||
| 481 | # Drop small pp <= 30 kW  | 
            ||
| 482 | mastr_ph = mastr_ph.loc[mastr_ph["el_capacity"] > 0.03]  | 
            ||
| 483 | |||
| 484 | # Apply voltage level by capacity  | 
            ||
| 485 | mastr_ph = apply_voltage_level_thresholds(mastr_ph)  | 
            ||
| 486 | mastr_ph["voltage_level"] = mastr_ph["voltage_level"].astype(int)  | 
            ||
| 487 | |||
| 488 | # Capacity located outside germany -> will be assigned to foreign buses  | 
            ||
| 489 | mastr_ph_foreign = mastr_ph.loc[mastr_ph["federal_state"].isna()]  | 
            ||
| 490 | |||
| 491 | # Keep only capacities within germany  | 
            ||
| 492 | mastr_ph = mastr_ph.dropna(subset="federal_state")  | 
            ||
| 493 | |||
| 494 | # Asign buses within germany  | 
            ||
| 495 | mastr_ph = assign_bus_id(  | 
            ||
| 496 | mastr_ph, cfg=config.datasets()["power_plants"], drop_missing=True  | 
            ||
| 497 | )  | 
            ||
| 498 | mastr_ph["bus_id"] = mastr_ph["bus_id"].astype(int)  | 
            ||
| 499 | |||
| 500 | # Get foreign central buses  | 
            ||
| 501 | sql = f"""  | 
            ||
| 502 | SELECT * FROM grid.egon_etrago_bus  | 
            ||
| 503 |         WHERE scn_name = '{scn_name}' | 
            ||
| 504 | and country != 'DE'  | 
            ||
| 505 | """  | 
            ||
| 506 | df_foreign_buses = db.select_geodataframe(  | 
            ||
| 507 | sql, geom_col="geom", epsg="4326"  | 
            ||
| 508 | )  | 
            ||
| 509 | central_bus = entsoe_to_bus_etrago(scn_name).to_frame()  | 
            ||
| 510 | central_bus["geom"] = (  | 
            ||
| 511 |             df_foreign_buses.set_index("bus_id") | 
            ||
| 512 | .loc[central_bus[0], "geom"]  | 
            ||
| 513 | .values  | 
            ||
| 514 | )  | 
            ||
| 515 | df_foreign_buses = df_foreign_buses[  | 
            ||
| 516 | df_foreign_buses["geom"].isin(central_bus["geom"])  | 
            ||
| 517 | ]  | 
            ||
| 518 | |||
| 519 | if len(mastr_ph_foreign) > 0:  | 
            ||
| 520 | # Assign closest bus at voltage level to foreign pp  | 
            ||
| 521 | nearest_neighbors = []  | 
            ||
| 522 |             for vl, v_nom in {1: 380, 2: 220, 3: 110}.items(): | 
            ||
| 523 | ph = mastr_ph_foreign.loc[  | 
            ||
| 524 | mastr_ph_foreign["voltage_level"] == vl  | 
            ||
| 525 | ]  | 
            ||
| 526 | if ph.empty:  | 
            ||
| 527 | continue  | 
            ||
| 528 | bus = df_foreign_buses.loc[  | 
            ||
| 529 | df_foreign_buses["v_nom"] == v_nom,  | 
            ||
| 530 | ["v_nom", "country", "bus_id", "geom"],  | 
            ||
| 531 | ]  | 
            ||
| 532 | results = gpd.sjoin_nearest(  | 
            ||
| 533 | left_df=ph,  | 
            ||
| 534 | right_df=bus,  | 
            ||
| 535 | how="left",  | 
            ||
| 536 | distance_col="distance",  | 
            ||
| 537 | )  | 
            ||
| 538 | nearest_neighbors.append(results)  | 
            ||
| 539 | mastr_ph_foreign = pd.concat(nearest_neighbors)  | 
            ||
| 540 | |||
| 541 | # Merge foreign pp  | 
            ||
| 542 | mastr_ph = pd.concat([mastr_ph, mastr_ph_foreign])  | 
            ||
| 543 | |||
| 544 | # Reduce to necessary columns  | 
            ||
| 545 | mastr_ph = mastr_ph[  | 
            ||
| 546 | [  | 
            ||
| 547 | "el_capacity",  | 
            ||
| 548 | "voltage_level",  | 
            ||
| 549 | "bus_id",  | 
            ||
| 550 | "geometry",  | 
            ||
| 551 | "EinheitMastrNummer",  | 
            ||
| 552 | ]  | 
            ||
| 553 | ]  | 
            ||
| 554 | |||
| 555 | # Rename and format columns  | 
            ||
| 556 | mastr_ph["carrier"] = storage_type  | 
            ||
| 557 | mastr_ph = mastr_ph.rename(  | 
            ||
| 558 |             columns={"EinheitMastrNummer": "source_id", "geometry": "geom"} | 
            ||
| 559 | )  | 
            ||
| 560 | mastr_ph["source_id"] = mastr_ph["source_id"].apply(  | 
            ||
| 561 |             lambda x: {"MastrNummer": ", ".join(x)} | 
            ||
| 562 | )  | 
            ||
| 563 |         mastr_ph = mastr_ph.set_geometry("geom") | 
            ||
| 564 | mastr_ph["geom"] = mastr_ph["geom"].apply(lambda x: x.wkb_hex)  | 
            ||
| 565 | mastr_ph["scenario"] = scn_name  | 
            ||
| 566 | mastr_ph["sources"] = [  | 
            ||
| 567 |             {"el_capacity": "MaStR aggregated by location"} | 
            ||
| 568 | ] * mastr_ph.shape[0]  | 
            ||
| 569 | |||
| 570 | # Delete existing units in the target table  | 
            ||
| 571 | db.execute_sql(  | 
            ||
| 572 | f""" DELETE FROM supply.egon_storages  | 
            ||
| 573 |             WHERE carrier = '{storage_type}' | 
            ||
| 574 |             AND scenario = '{scn_name}' | 
            ||
| 575 | AND sources ->> 'el_capacity' = 'MaStR aggregated by location';"""  | 
            ||
| 576 | )  | 
            ||
| 577 | |||
| 578 | with db.session_scope() as session:  | 
            ||
| 579 | session.bulk_insert_mappings(  | 
            ||
| 580 | EgonStorages,  | 
            ||
| 581 | mastr_ph.to_dict(orient="records"),  | 
            ||
| 582 | )  | 
            ||
| 765 |