| Total Complexity | 88 |
| Total Lines | 1871 |
| Duplicated Lines | 1.28 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """The central module containing all code dealing with |
||
| 2 | individual heat supply. |
||
| 3 | |||
| 4 | """ |
||
| 5 | from pathlib import Path |
||
| 6 | import os |
||
| 7 | import random |
||
| 8 | import time |
||
| 9 | |||
| 10 | from airflow.operators.python_operator import PythonOperator |
||
| 11 | from psycopg2.extensions import AsIs, register_adapter |
||
| 12 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
| 13 | from sqlalchemy.ext.declarative import declarative_base |
||
| 14 | import geopandas as gpd |
||
| 15 | import numpy as np |
||
| 16 | import pandas as pd |
||
| 17 | import saio |
||
| 18 | |||
| 19 | from egon.data import config, db, logger |
||
| 20 | from egon.data.datasets import Dataset |
||
| 21 | from egon.data.datasets.district_heating_areas import ( |
||
| 22 | MapZensusDistrictHeatingAreas, |
||
| 23 | ) |
||
| 24 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
| 25 | calc_cts_building_profiles, |
||
| 26 | ) |
||
| 27 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
| 28 | EgonMapZensusMvgdBuildings, |
||
| 29 | ) |
||
| 30 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
| 31 | write_table_to_postgres, |
||
| 32 | ) |
||
| 33 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
| 34 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
| 35 | EgonDailyHeatDemandPerClimateZone, |
||
| 36 | EgonMapZensusClimateZones, |
||
| 37 | ) |
||
| 38 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
| 39 | EgonHeatTimeseries, |
||
| 40 | ) |
||
| 41 | |||
| 42 | # get zensus cells with district heating |
||
| 43 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
| 44 | |||
| 45 | engine = db.engine() |
||
| 46 | Base = declarative_base() |
||
| 47 | |||
| 48 | |||
| 49 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
| 50 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
| 51 | __table_args__ = {"schema": "demand"} |
||
| 52 | bus_id = Column(Integer, primary_key=True) |
||
| 53 | scenario = Column(String, primary_key=True) |
||
| 54 | carrier = Column(String, primary_key=True) |
||
| 55 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
| 56 | |||
| 57 | |||
| 58 | class EgonHpCapacityBuildings(Base): |
||
| 59 | __tablename__ = "egon_hp_capacity_buildings" |
||
| 60 | __table_args__ = {"schema": "demand"} |
||
| 61 | building_id = Column(Integer, primary_key=True) |
||
| 62 | scenario = Column(String, primary_key=True) |
||
| 63 | hp_capacity = Column(REAL) |
||
| 64 | |||
| 65 | |||
| 66 | class HeatPumpsPypsaEurSec(Dataset): |
||
| 67 | def __init__(self, dependencies): |
||
| 68 | def dyn_parallel_tasks_pypsa_eur_sec(): |
||
| 69 | """Dynamically generate tasks |
||
| 70 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
| 71 | |||
| 72 | The number of parallel tasks is defined via parameter |
||
| 73 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
| 74 | |||
| 75 | Returns |
||
| 76 | ------- |
||
| 77 | set of airflow.PythonOperators |
||
| 78 | The tasks. Each element is of |
||
| 79 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
| 80 | determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec` |
||
| 81 | """ |
||
| 82 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
| 83 | "parallel_tasks", 1 |
||
| 84 | ) |
||
| 85 | |||
| 86 | tasks = set() |
||
| 87 | for i in range(parallel_tasks): |
||
| 88 | tasks.add( |
||
| 89 | PythonOperator( |
||
| 90 | task_id=( |
||
| 91 | f"individual_heating." |
||
| 92 | f"determine-hp-capacity-pypsa-eur-sec-" |
||
| 93 | f"mvgd-bulk{i}" |
||
| 94 | ), |
||
| 95 | python_callable=split_mvgds_into_bulks, |
||
| 96 | op_kwargs={ |
||
| 97 | "n": i, |
||
| 98 | "max_n": parallel_tasks, |
||
| 99 | "func": determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec, # noqa: E501 |
||
| 100 | }, |
||
| 101 | ) |
||
| 102 | ) |
||
| 103 | return tasks |
||
| 104 | |||
| 105 | super().__init__( |
||
| 106 | name="HeatPumpsPypsaEurSec", |
||
| 107 | version="0.0.2", |
||
| 108 | dependencies=dependencies, |
||
| 109 | tasks=(delete_mvgd_ts_100RE, |
||
| 110 | delete_heat_peak_loads_100RE, |
||
| 111 | {*dyn_parallel_tasks_pypsa_eur_sec()},), |
||
| 112 | ) |
||
| 113 | |||
| 114 | |||
| 115 | class HeatPumps2035(Dataset): |
||
| 116 | def __init__(self, dependencies): |
||
| 117 | def dyn_parallel_tasks_2035(): |
||
| 118 | """Dynamically generate tasks |
||
| 119 | |||
| 120 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
| 121 | |||
| 122 | The number of parallel tasks is defined via parameter |
||
| 123 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
| 124 | |||
| 125 | Returns |
||
| 126 | ------- |
||
| 127 | set of airflow.PythonOperators |
||
| 128 | The tasks. Each element is of |
||
| 129 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
| 130 | determine_hp_cap_peak_load_mvgd_ts_2035` |
||
| 131 | """ |
||
| 132 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
| 133 | "parallel_tasks", 1 |
||
| 134 | ) |
||
| 135 | tasks = set() |
||
| 136 | for i in range(parallel_tasks): |
||
| 137 | tasks.add( |
||
| 138 | PythonOperator( |
||
| 139 | task_id=( |
||
| 140 | "individual_heating." |
||
| 141 | f"determine-hp-capacity-2035-" |
||
| 142 | f"mvgd-bulk{i}" |
||
| 143 | ), |
||
| 144 | python_callable=split_mvgds_into_bulks, |
||
| 145 | op_kwargs={ |
||
| 146 | "n": i, |
||
| 147 | "max_n": parallel_tasks, |
||
| 148 | "func": determine_hp_cap_peak_load_mvgd_ts_2035, |
||
| 149 | }, |
||
| 150 | ) |
||
| 151 | ) |
||
| 152 | return tasks |
||
| 153 | |||
| 154 | super().__init__( |
||
| 155 | name="HeatPumps2035", |
||
| 156 | version="0.0.2", |
||
| 157 | dependencies=dependencies, |
||
| 158 | tasks=( |
||
| 159 | delete_heat_peak_loads_2035, |
||
| 160 | delete_hp_capacity_2035, |
||
| 161 | delete_mvgd_ts_2035, |
||
| 162 | {*dyn_parallel_tasks_2035()}, |
||
| 163 | ), |
||
| 164 | ) |
||
| 165 | |||
| 166 | |||
| 167 | class HeatPumps2050(Dataset): |
||
| 168 | def __init__(self, dependencies): |
||
| 169 | super().__init__( |
||
| 170 | name="HeatPumps2050", |
||
| 171 | version="0.0.2", |
||
| 172 | dependencies=dependencies, |
||
| 173 | tasks=( |
||
| 174 | delete_hp_capacity_100RE, |
||
| 175 | determine_hp_cap_buildings_eGon100RE, |
||
| 176 | ), |
||
| 177 | ) |
||
| 178 | |||
| 179 | |||
| 180 | class BuildingHeatPeakLoads(Base): |
||
| 181 | __tablename__ = "egon_building_heat_peak_loads" |
||
| 182 | __table_args__ = {"schema": "demand"} |
||
| 183 | |||
| 184 | building_id = Column(Integer, primary_key=True) |
||
| 185 | scenario = Column(String, primary_key=True) |
||
| 186 | sector = Column(String, primary_key=True) |
||
| 187 | peak_load_in_w = Column(REAL) |
||
| 188 | |||
| 189 | |||
| 190 | def adapt_numpy_float64(numpy_float64): |
||
| 191 | return AsIs(numpy_float64) |
||
| 192 | |||
| 193 | |||
| 194 | def adapt_numpy_int64(numpy_int64): |
||
| 195 | return AsIs(numpy_int64) |
||
| 196 | |||
| 197 | |||
| 198 | def timeit(func): |
||
| 199 | """ |
||
| 200 | Decorator for measuring function's running time. |
||
| 201 | """ |
||
| 202 | |||
| 203 | def measure_time(*args, **kw): |
||
| 204 | start_time = time.time() |
||
| 205 | result = func(*args, **kw) |
||
| 206 | print( |
||
| 207 | "Processing time of %s(): %.2f seconds." |
||
| 208 | % (func.__qualname__, time.time() - start_time) |
||
| 209 | ) |
||
| 210 | return result |
||
| 211 | |||
| 212 | return measure_time |
||
| 213 | |||
| 214 | |||
| 215 | def cascade_per_technology( |
||
| 216 | heat_per_mv, |
||
| 217 | technologies, |
||
| 218 | scenario, |
||
| 219 | distribution_level, |
||
| 220 | max_size_individual_chp=0.05, |
||
| 221 | ): |
||
| 222 | |||
| 223 | """Add plants for individual heat. |
||
| 224 | Currently only on mv grid district level. |
||
| 225 | |||
| 226 | Parameters |
||
| 227 | ---------- |
||
| 228 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
| 229 | MV grid districts including the heat demand |
||
| 230 | technologies : pandas.DataFrame |
||
| 231 | List of supply technologies and their parameters |
||
| 232 | scenario : str |
||
| 233 | Name of the scenario |
||
| 234 | max_size_individual_chp : float |
||
| 235 | Maximum capacity of an individual chp in MW |
||
| 236 | Returns |
||
| 237 | ------- |
||
| 238 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
| 239 | MV grid district which need additional individual heat supply |
||
| 240 | technologies : pandas.DataFrame |
||
| 241 | List of supply technologies and their parameters |
||
| 242 | append_df : pandas.DataFrame |
||
| 243 | List of plants per mv grid for the selected technology |
||
| 244 | |||
| 245 | """ |
||
| 246 | sources = config.datasets()["heat_supply"]["sources"] |
||
| 247 | |||
| 248 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
| 249 | |||
| 250 | # Distribute heat pumps linear to remaining demand. |
||
| 251 | if tech.index == "heat_pump": |
||
| 252 | |||
| 253 | if distribution_level == "federal_state": |
||
| 254 | # Select target values per federal state |
||
| 255 | target = db.select_dataframe( |
||
| 256 | f""" |
||
| 257 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
| 258 | FROM {sources['scenario_capacities']['schema']}. |
||
| 259 | {sources['scenario_capacities']['table']} a |
||
| 260 | JOIN {sources['federal_states']['schema']}. |
||
| 261 | {sources['federal_states']['table']} b |
||
| 262 | ON a.nuts = b.nuts |
||
| 263 | WHERE scenario_name = '{scenario}' |
||
| 264 | AND carrier = 'residential_rural_heat_pump' |
||
| 265 | """, |
||
| 266 | index_col="state", |
||
| 267 | ) |
||
| 268 | |||
| 269 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
| 270 | "state" |
||
| 271 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
| 272 | |||
| 273 | append_df = ( |
||
| 274 | heat_per_mv["share"] |
||
| 275 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
| 276 | .reset_index() |
||
| 277 | ) |
||
| 278 | else: |
||
| 279 | # Select target value for Germany |
||
| 280 | target = db.select_dataframe( |
||
| 281 | f""" |
||
| 282 | SELECT SUM(capacity) AS capacity |
||
| 283 | FROM {sources['scenario_capacities']['schema']}. |
||
| 284 | {sources['scenario_capacities']['table']} a |
||
| 285 | WHERE scenario_name = '{scenario}' |
||
| 286 | AND carrier = 'residential_rural_heat_pump' |
||
| 287 | """ |
||
| 288 | ) |
||
| 289 | |||
| 290 | heat_per_mv["share"] = ( |
||
| 291 | heat_per_mv.remaining_demand |
||
| 292 | / heat_per_mv.remaining_demand.sum() |
||
| 293 | ) |
||
| 294 | |||
| 295 | append_df = ( |
||
| 296 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
| 297 | ) |
||
| 298 | |||
| 299 | append_df.rename( |
||
| 300 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
| 301 | ) |
||
| 302 | |||
| 303 | elif tech.index == "gas_boiler": |
||
| 304 | |||
| 305 | append_df = pd.DataFrame( |
||
| 306 | data={ |
||
| 307 | "capacity": heat_per_mv.remaining_demand.div( |
||
| 308 | tech.estimated_flh.values[0] |
||
| 309 | ), |
||
| 310 | "carrier": "residential_rural_gas_boiler", |
||
| 311 | "mv_grid_id": heat_per_mv.index, |
||
| 312 | "scenario": scenario, |
||
| 313 | } |
||
| 314 | ) |
||
| 315 | |||
| 316 | if append_df.size > 0: |
||
|
|
|||
| 317 | append_df["carrier"] = tech.index[0] |
||
| 318 | heat_per_mv.loc[ |
||
| 319 | append_df.mv_grid_id, "remaining_demand" |
||
| 320 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
| 321 | tech.estimated_flh.values[0] |
||
| 322 | ) |
||
| 323 | |||
| 324 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
| 325 | |||
| 326 | technologies = technologies.drop(tech.index) |
||
| 327 | |||
| 328 | return heat_per_mv, technologies, append_df |
||
| 329 | |||
| 330 | |||
| 331 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
| 332 | """Assigns supply strategy for individual heating in four steps. |
||
| 333 | |||
| 334 | 1.) all small scale CHP are connected. |
||
| 335 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
| 336 | are attached. This is not implemented yet, since individual |
||
| 337 | solar thermal plants are not considered in eGon2035 scenario. |
||
| 338 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
| 339 | 4.) The last option are individual gas boilers. |
||
| 340 | |||
| 341 | Parameters |
||
| 342 | ---------- |
||
| 343 | scenario : str |
||
| 344 | Name of scenario |
||
| 345 | plotting : bool, optional |
||
| 346 | Choose if individual heating supply is plotted. The default is True. |
||
| 347 | |||
| 348 | Returns |
||
| 349 | ------- |
||
| 350 | resulting_capacities : pandas.DataFrame |
||
| 351 | List of plants per mv grid |
||
| 352 | |||
| 353 | """ |
||
| 354 | |||
| 355 | sources = config.datasets()["heat_supply"]["sources"] |
||
| 356 | |||
| 357 | # Select residential heat demand per mv grid district and federal state |
||
| 358 | heat_per_mv = db.select_geodataframe( |
||
| 359 | f""" |
||
| 360 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
| 361 | c.vg250_lan as state, d.geom |
||
| 362 | FROM {sources['heat_demand']['schema']}. |
||
| 363 | {sources['heat_demand']['table']} a |
||
| 364 | JOIN {sources['map_zensus_grid']['schema']}. |
||
| 365 | {sources['map_zensus_grid']['table']} b |
||
| 366 | ON a.zensus_population_id = b.zensus_population_id |
||
| 367 | JOIN {sources['map_vg250_grid']['schema']}. |
||
| 368 | {sources['map_vg250_grid']['table']} c |
||
| 369 | ON b.bus_id = c.bus_id |
||
| 370 | JOIN {sources['mv_grids']['schema']}. |
||
| 371 | {sources['mv_grids']['table']} d |
||
| 372 | ON d.bus_id = c.bus_id |
||
| 373 | WHERE scenario = '{scenario}' |
||
| 374 | AND a.zensus_population_id NOT IN ( |
||
| 375 | SELECT zensus_population_id |
||
| 376 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
| 377 | WHERE scenario = '{scenario}') |
||
| 378 | GROUP BY d.bus_id, vg250_lan, geom |
||
| 379 | """, |
||
| 380 | index_col="bus_id", |
||
| 381 | ) |
||
| 382 | |||
| 383 | # Store geometry of mv grid |
||
| 384 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
| 385 | |||
| 386 | # Initalize Dataframe for results |
||
| 387 | resulting_capacities = pd.DataFrame( |
||
| 388 | columns=["mv_grid_id", "carrier", "capacity"] |
||
| 389 | ) |
||
| 390 | |||
| 391 | # Set technology data according to |
||
| 392 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
| 393 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
| 394 | technologies = pd.DataFrame( |
||
| 395 | index=["heat_pump", "gas_boiler"], |
||
| 396 | columns=["estimated_flh", "priority"], |
||
| 397 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
| 398 | ) |
||
| 399 | |||
| 400 | # In the beginning, the remaining demand equals demand |
||
| 401 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
| 402 | |||
| 403 | # Connect new technologies, if there is still heat demand left |
||
| 404 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
| 405 | # Attach new supply technology |
||
| 406 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
| 407 | heat_per_mv, technologies, scenario, distribution_level |
||
| 408 | ) |
||
| 409 | # Collect resulting capacities |
||
| 410 | resulting_capacities = resulting_capacities.append( |
||
| 411 | append_df, ignore_index=True |
||
| 412 | ) |
||
| 413 | |||
| 414 | if plotting: |
||
| 415 | plot_heat_supply(resulting_capacities) |
||
| 416 | |||
| 417 | return gpd.GeoDataFrame( |
||
| 418 | resulting_capacities, |
||
| 419 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
| 420 | ) |
||
| 421 | |||
| 422 | |||
| 423 | def get_peta_demand(mvgd, scenario): |
||
| 424 | """ |
||
| 425 | Retrieve annual peta heat demand for residential buildings for either |
||
| 426 | eGon2035 or eGon100RE scenario. |
||
| 427 | |||
| 428 | Parameters |
||
| 429 | ---------- |
||
| 430 | mvgd : int |
||
| 431 | MV grid ID. |
||
| 432 | scenario : str |
||
| 433 | Possible options are eGon2035 or eGon100RE |
||
| 434 | |||
| 435 | Returns |
||
| 436 | ------- |
||
| 437 | df_peta_demand : pd.DataFrame |
||
| 438 | Annual residential heat demand per building and scenario. Columns of |
||
| 439 | the dataframe are zensus_population_id and demand. |
||
| 440 | |||
| 441 | """ |
||
| 442 | |||
| 443 | with db.session_scope() as session: |
||
| 444 | query = ( |
||
| 445 | session.query( |
||
| 446 | MapZensusGridDistricts.zensus_population_id, |
||
| 447 | EgonPetaHeat.demand, |
||
| 448 | ) |
||
| 449 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 450 | .filter( |
||
| 451 | MapZensusGridDistricts.zensus_population_id |
||
| 452 | == EgonPetaHeat.zensus_population_id |
||
| 453 | ) |
||
| 454 | .filter( |
||
| 455 | EgonPetaHeat.sector == "residential", |
||
| 456 | EgonPetaHeat.scenario == scenario, |
||
| 457 | ) |
||
| 458 | ) |
||
| 459 | |||
| 460 | df_peta_demand = pd.read_sql( |
||
| 461 | query.statement, query.session.bind, index_col=None |
||
| 462 | ) |
||
| 463 | |||
| 464 | return df_peta_demand |
||
| 465 | |||
| 466 | |||
| 467 | def get_residential_heat_profile_ids(mvgd): |
||
| 468 | """ |
||
| 469 | Retrieve 365 daily heat profiles ids per residential building and selected |
||
| 470 | mvgd. |
||
| 471 | |||
| 472 | Parameters |
||
| 473 | ---------- |
||
| 474 | mvgd : int |
||
| 475 | ID of MVGD |
||
| 476 | |||
| 477 | Returns |
||
| 478 | ------- |
||
| 479 | df_profiles_ids : pd.DataFrame |
||
| 480 | Residential daily heat profile ID's per building. Columns of the |
||
| 481 | dataframe are zensus_population_id, building_id, |
||
| 482 | selected_idp_profiles, buildings and day_of_year. |
||
| 483 | |||
| 484 | """ |
||
| 485 | with db.session_scope() as session: |
||
| 486 | query = ( |
||
| 487 | session.query( |
||
| 488 | MapZensusGridDistricts.zensus_population_id, |
||
| 489 | EgonHeatTimeseries.building_id, |
||
| 490 | EgonHeatTimeseries.selected_idp_profiles, |
||
| 491 | ) |
||
| 492 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 493 | .filter( |
||
| 494 | MapZensusGridDistricts.zensus_population_id |
||
| 495 | == EgonHeatTimeseries.zensus_population_id |
||
| 496 | ) |
||
| 497 | ) |
||
| 498 | |||
| 499 | df_profiles_ids = pd.read_sql( |
||
| 500 | query.statement, query.session.bind, index_col=None |
||
| 501 | ) |
||
| 502 | # Add building count per cell |
||
| 503 | df_profiles_ids = pd.merge( |
||
| 504 | left=df_profiles_ids, |
||
| 505 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
| 506 | .count() |
||
| 507 | .rename("buildings"), |
||
| 508 | left_on="zensus_population_id", |
||
| 509 | right_index=True, |
||
| 510 | ) |
||
| 511 | |||
| 512 | # unnest array of ids per building |
||
| 513 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
| 514 | # add day of year column by order of list |
||
| 515 | df_profiles_ids["day_of_year"] = ( |
||
| 516 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
| 517 | ) |
||
| 518 | return df_profiles_ids |
||
| 519 | |||
| 520 | |||
| 521 | def get_daily_profiles(profile_ids): |
||
| 522 | """ |
||
| 523 | Parameters |
||
| 524 | ---------- |
||
| 525 | profile_ids : list(int) |
||
| 526 | daily heat profile ID's |
||
| 527 | |||
| 528 | Returns |
||
| 529 | ------- |
||
| 530 | df_profiles : pd.DataFrame |
||
| 531 | Residential daily heat profiles. Columns of the dataframe are idp, |
||
| 532 | house, temperature_class and hour. |
||
| 533 | |||
| 534 | """ |
||
| 535 | |||
| 536 | saio.register_schema("demand", db.engine()) |
||
| 537 | from saio.demand import egon_heat_idp_pool |
||
| 538 | |||
| 539 | with db.session_scope() as session: |
||
| 540 | query = session.query(egon_heat_idp_pool).filter( |
||
| 541 | egon_heat_idp_pool.index.in_(profile_ids) |
||
| 542 | ) |
||
| 543 | |||
| 544 | df_profiles = pd.read_sql( |
||
| 545 | query.statement, query.session.bind, index_col="index" |
||
| 546 | ) |
||
| 547 | |||
| 548 | # unnest array of profile values per id |
||
| 549 | df_profiles = df_profiles.explode("idp") |
||
| 550 | # Add column for hour of day |
||
| 551 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
| 552 | |||
| 553 | return df_profiles |
||
| 554 | |||
| 555 | |||
| 556 | def get_daily_demand_share(mvgd): |
||
| 557 | """per census cell |
||
| 558 | Parameters |
||
| 559 | ---------- |
||
| 560 | mvgd : int |
||
| 561 | MVGD id |
||
| 562 | |||
| 563 | Returns |
||
| 564 | ------- |
||
| 565 | df_daily_demand_share : pd.DataFrame |
||
| 566 | Daily annual demand share per cencus cell. Columns of the dataframe |
||
| 567 | are zensus_population_id, day_of_year and daily_demand_share. |
||
| 568 | |||
| 569 | """ |
||
| 570 | |||
| 571 | with db.session_scope() as session: |
||
| 572 | query = session.query( |
||
| 573 | MapZensusGridDistricts.zensus_population_id, |
||
| 574 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
| 575 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
| 576 | ).filter( |
||
| 577 | EgonMapZensusClimateZones.climate_zone |
||
| 578 | == EgonDailyHeatDemandPerClimateZone.climate_zone, |
||
| 579 | MapZensusGridDistricts.zensus_population_id |
||
| 580 | == EgonMapZensusClimateZones.zensus_population_id, |
||
| 581 | MapZensusGridDistricts.bus_id == mvgd, |
||
| 582 | ) |
||
| 583 | |||
| 584 | df_daily_demand_share = pd.read_sql( |
||
| 585 | query.statement, query.session.bind, index_col=None |
||
| 586 | ) |
||
| 587 | return df_daily_demand_share |
||
| 588 | |||
| 589 | |||
| 590 | def calc_residential_heat_profiles_per_mvgd(mvgd, scenario): |
||
| 591 | """ |
||
| 592 | Gets residential heat profiles per building in MV grid for either eGon2035 |
||
| 593 | or eGon100RE scenario. |
||
| 594 | |||
| 595 | Parameters |
||
| 596 | ---------- |
||
| 597 | mvgd : int |
||
| 598 | MV grid ID. |
||
| 599 | scenario : str |
||
| 600 | Possible options are eGon2035 or eGon100RE. |
||
| 601 | |||
| 602 | Returns |
||
| 603 | -------- |
||
| 604 | pd.DataFrame |
||
| 605 | Heat demand profiles of buildings. Columns are: |
||
| 606 | * zensus_population_id : int |
||
| 607 | Zensus cell ID building is in. |
||
| 608 | * building_id : int |
||
| 609 | ID of building. |
||
| 610 | * day_of_year : int |
||
| 611 | Day of the year (1 - 365). |
||
| 612 | * hour : int |
||
| 613 | Hour of the day (1 - 24). |
||
| 614 | * demand_ts : float |
||
| 615 | Building's residential heat demand in MW, for specified hour |
||
| 616 | of the year (specified through columns `day_of_year` and |
||
| 617 | `hour`). |
||
| 618 | """ |
||
| 619 | |||
| 620 | columns = [ |
||
| 621 | "zensus_population_id", |
||
| 622 | "building_id", |
||
| 623 | "day_of_year", |
||
| 624 | "hour", |
||
| 625 | "demand_ts", |
||
| 626 | ] |
||
| 627 | |||
| 628 | df_peta_demand = get_peta_demand(mvgd, scenario) |
||
| 629 | |||
| 630 | # TODO maybe return empty dataframe |
||
| 631 | if df_peta_demand.empty: |
||
| 632 | logger.info(f"No demand for MVGD: {mvgd}") |
||
| 633 | return pd.DataFrame(columns=columns) |
||
| 634 | |||
| 635 | df_profiles_ids = get_residential_heat_profile_ids(mvgd) |
||
| 636 | |||
| 637 | if df_profiles_ids.empty: |
||
| 638 | logger.info(f"No profiles for MVGD: {mvgd}") |
||
| 639 | return pd.DataFrame(columns=columns) |
||
| 640 | |||
| 641 | df_profiles = get_daily_profiles( |
||
| 642 | df_profiles_ids["selected_idp_profiles"].unique() |
||
| 643 | ) |
||
| 644 | |||
| 645 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
| 646 | |||
| 647 | # Merge profile ids to peta demand by zensus_population_id |
||
| 648 | df_profile_merge = pd.merge( |
||
| 649 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
| 650 | ) |
||
| 651 | |||
| 652 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
| 653 | df_profile_merge = pd.merge( |
||
| 654 | left=df_profile_merge, |
||
| 655 | right=df_daily_demand_share, |
||
| 656 | on=["zensus_population_id", "day_of_year"], |
||
| 657 | ) |
||
| 658 | |||
| 659 | # Merge daily profiles by profile id |
||
| 660 | df_profile_merge = pd.merge( |
||
| 661 | left=df_profile_merge, |
||
| 662 | right=df_profiles[["idp", "hour"]], |
||
| 663 | left_on="selected_idp_profiles", |
||
| 664 | right_index=True, |
||
| 665 | ) |
||
| 666 | |||
| 667 | # Scale profiles |
||
| 668 | df_profile_merge["demand_ts"] = ( |
||
| 669 | df_profile_merge["idp"] |
||
| 670 | .mul(df_profile_merge["daily_demand_share"]) |
||
| 671 | .mul(df_profile_merge["demand"]) |
||
| 672 | .div(df_profile_merge["buildings"]) |
||
| 673 | ) |
||
| 674 | |||
| 675 | return df_profile_merge.loc[:, columns] |
||
| 676 | |||
| 677 | |||
| 678 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
| 679 | |||
| 680 | from matplotlib import pyplot as plt |
||
| 681 | |||
| 682 | mv_grids = db.select_geodataframe( |
||
| 683 | """ |
||
| 684 | SELECT * FROM grid.egon_mv_grid_district |
||
| 685 | """, |
||
| 686 | index_col="bus_id", |
||
| 687 | ) |
||
| 688 | |||
| 689 | for c in ["CHP", "heat_pump"]: |
||
| 690 | mv_grids[c] = ( |
||
| 691 | resulting_capacities[resulting_capacities.carrier == c] |
||
| 692 | .set_index("mv_grid_id") |
||
| 693 | .capacity |
||
| 694 | ) |
||
| 695 | |||
| 696 | fig, ax = plt.subplots(1, 1) |
||
| 697 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
| 698 | mv_grids.plot( |
||
| 699 | ax=ax, |
||
| 700 | column=c, |
||
| 701 | cmap="magma_r", |
||
| 702 | legend=True, |
||
| 703 | legend_kwds={ |
||
| 704 | "label": f"Installed {c} in MW", |
||
| 705 | "orientation": "vertical", |
||
| 706 | }, |
||
| 707 | ) |
||
| 708 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
| 709 | |||
| 710 | |||
| 711 | def get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
| 712 | scenario, mv_grid_id |
||
| 713 | ): |
||
| 714 | """ |
||
| 715 | Returns zensus cell IDs with decentral heating systems in given MV grid. |
||
| 716 | |||
| 717 | As cells with district heating differ between scenarios, this is also |
||
| 718 | depending on the scenario. |
||
| 719 | |||
| 720 | Parameters |
||
| 721 | ----------- |
||
| 722 | scenario : str |
||
| 723 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 724 | mv_grid_id : int |
||
| 725 | ID of MV grid. |
||
| 726 | |||
| 727 | Returns |
||
| 728 | -------- |
||
| 729 | pd.Index(int) |
||
| 730 | Zensus cell IDs (as int) of buildings with decentral heating systems in |
||
| 731 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 732 | used in a query. |
||
| 733 | |||
| 734 | """ |
||
| 735 | |||
| 736 | # get zensus cells in grid |
||
| 737 | zensus_population_ids = db.select_dataframe( |
||
| 738 | f""" |
||
| 739 | SELECT zensus_population_id |
||
| 740 | FROM boundaries.egon_map_zensus_grid_districts |
||
| 741 | WHERE bus_id = {mv_grid_id} |
||
| 742 | """, |
||
| 743 | index_col=None, |
||
| 744 | ).zensus_population_id.values |
||
| 745 | |||
| 746 | # maybe use adapter |
||
| 747 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
| 748 | # reason throw an error when used in a query) |
||
| 749 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
| 750 | |||
| 751 | # get zensus cells with district heating |
||
| 752 | with db.session_scope() as session: |
||
| 753 | query = session.query( |
||
| 754 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
| 755 | ).filter( |
||
| 756 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
| 757 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
| 758 | zensus_population_ids |
||
| 759 | ), |
||
| 760 | ) |
||
| 761 | |||
| 762 | cells_with_dh = pd.read_sql( |
||
| 763 | query.statement, query.session.bind, index_col=None |
||
| 764 | ).zensus_population_id.values |
||
| 765 | |||
| 766 | # remove zensus cells with district heating |
||
| 767 | zensus_population_ids = zensus_population_ids.drop( |
||
| 768 | cells_with_dh, errors="ignore" |
||
| 769 | ) |
||
| 770 | return pd.Index(zensus_population_ids) |
||
| 771 | |||
| 772 | |||
| 773 | def get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 774 | scenario, mv_grid_id |
||
| 775 | ): |
||
| 776 | """ |
||
| 777 | Returns building IDs of buildings with decentral residential heat demand in |
||
| 778 | given MV grid. |
||
| 779 | |||
| 780 | As cells with district heating differ between scenarios, this is also |
||
| 781 | depending on the scenario. |
||
| 782 | |||
| 783 | Parameters |
||
| 784 | ----------- |
||
| 785 | scenario : str |
||
| 786 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 787 | mv_grid_id : int |
||
| 788 | ID of MV grid. |
||
| 789 | |||
| 790 | Returns |
||
| 791 | -------- |
||
| 792 | pd.Index(int) |
||
| 793 | Building IDs (as int) of buildings with decentral heating system in |
||
| 794 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 795 | used in a query. |
||
| 796 | |||
| 797 | """ |
||
| 798 | # get zensus cells with decentral heating |
||
| 799 | zensus_population_ids = ( |
||
| 800 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
| 801 | scenario, mv_grid_id |
||
| 802 | ) |
||
| 803 | ) |
||
| 804 | |||
| 805 | # get buildings with decentral heat demand |
||
| 806 | saio.register_schema("demand", engine) |
||
| 807 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
| 808 | |||
| 809 | with db.session_scope() as session: |
||
| 810 | query = session.query( |
||
| 811 | egon_heat_timeseries_selected_profiles.building_id, |
||
| 812 | ).filter( |
||
| 813 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
| 814 | zensus_population_ids |
||
| 815 | ) |
||
| 816 | ) |
||
| 817 | |||
| 818 | buildings_with_heat_demand = pd.read_sql( |
||
| 819 | query.statement, query.session.bind, index_col=None |
||
| 820 | ).building_id.values |
||
| 821 | |||
| 822 | return pd.Index(buildings_with_heat_demand) |
||
| 823 | |||
| 824 | |||
| 825 | def get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 826 | scenario, mv_grid_id |
||
| 827 | ): |
||
| 828 | """ |
||
| 829 | Returns building IDs of buildings with decentral CTS heat demand in |
||
| 830 | given MV grid. |
||
| 831 | |||
| 832 | As cells with district heating differ between scenarios, this is also |
||
| 833 | depending on the scenario. |
||
| 834 | |||
| 835 | Parameters |
||
| 836 | ----------- |
||
| 837 | scenario : str |
||
| 838 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 839 | mv_grid_id : int |
||
| 840 | ID of MV grid. |
||
| 841 | |||
| 842 | Returns |
||
| 843 | -------- |
||
| 844 | pd.Index(int) |
||
| 845 | Building IDs (as int) of buildings with decentral heating system in |
||
| 846 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 847 | used in a query. |
||
| 848 | |||
| 849 | """ |
||
| 850 | |||
| 851 | # get zensus cells with decentral heating |
||
| 852 | zensus_population_ids = ( |
||
| 853 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
| 854 | scenario, mv_grid_id |
||
| 855 | ) |
||
| 856 | ) |
||
| 857 | |||
| 858 | # get buildings with decentral heat demand |
||
| 859 | with db.session_scope() as session: |
||
| 860 | query = session.query(EgonMapZensusMvgdBuildings.building_id).filter( |
||
| 861 | EgonMapZensusMvgdBuildings.sector == "cts", |
||
| 862 | EgonMapZensusMvgdBuildings.zensus_population_id.in_( |
||
| 863 | zensus_population_ids |
||
| 864 | ), |
||
| 865 | ) |
||
| 866 | |||
| 867 | buildings_with_heat_demand = pd.read_sql( |
||
| 868 | query.statement, query.session.bind, index_col=None |
||
| 869 | ).building_id.values |
||
| 870 | |||
| 871 | return pd.Index(buildings_with_heat_demand) |
||
| 872 | |||
| 873 | |||
| 874 | def get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd, scenario): |
||
| 875 | """ |
||
| 876 | Returns building IDs of buildings with decentral heat demand in |
||
| 877 | given MV grid. |
||
| 878 | |||
| 879 | As cells with district heating differ between scenarios, this is also |
||
| 880 | depending on the scenario. CTS and residential have to be retrieved |
||
| 881 | seperatly as some residential buildings only have electricity but no |
||
| 882 | heat demand. This does not occure in CTS. |
||
| 883 | |||
| 884 | Parameters |
||
| 885 | ----------- |
||
| 886 | mvgd : int |
||
| 887 | ID of MV grid. |
||
| 888 | scenario : str |
||
| 889 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 890 | |||
| 891 | Returns |
||
| 892 | -------- |
||
| 893 | pd.Index(int) |
||
| 894 | Building IDs (as int) of buildings with decentral heating system in |
||
| 895 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 896 | used in a query. |
||
| 897 | |||
| 898 | """ |
||
| 899 | # get residential buildings with decentral heating systems |
||
| 900 | buildings_decentral_heating_res = ( |
||
| 901 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 902 | scenario, mvgd |
||
| 903 | ) |
||
| 904 | ) |
||
| 905 | |||
| 906 | # get CTS buildings with decentral heating systems |
||
| 907 | buildings_decentral_heating_cts = ( |
||
| 908 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mvgd) |
||
| 909 | ) |
||
| 910 | |||
| 911 | # merge residential and CTS buildings |
||
| 912 | buildings_decentral_heating = buildings_decentral_heating_res.append( |
||
| 913 | buildings_decentral_heating_cts |
||
| 914 | ).unique() |
||
| 915 | |||
| 916 | return buildings_decentral_heating |
||
| 917 | |||
| 918 | |||
| 919 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
| 920 | """ |
||
| 921 | Returns total heat pump capacity per grid that was previously defined |
||
| 922 | (by NEP or pypsa-eur-sec). |
||
| 923 | |||
| 924 | Parameters |
||
| 925 | ----------- |
||
| 926 | scenario : str |
||
| 927 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 928 | mv_grid_id : int |
||
| 929 | ID of MV grid. |
||
| 930 | |||
| 931 | Returns |
||
| 932 | -------- |
||
| 933 | float |
||
| 934 | Total heat pump capacity in MW in given MV grid. |
||
| 935 | |||
| 936 | """ |
||
| 937 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
| 938 | |||
| 939 | with db.session_scope() as session: |
||
| 940 | query = ( |
||
| 941 | session.query( |
||
| 942 | EgonIndividualHeatingSupply.mv_grid_id, |
||
| 943 | EgonIndividualHeatingSupply.capacity, |
||
| 944 | ) |
||
| 945 | .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
| 946 | .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
| 947 | .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
| 948 | ) |
||
| 949 | |||
| 950 | hp_cap_mv_grid = pd.read_sql( |
||
| 951 | query.statement, query.session.bind, index_col="mv_grid_id" |
||
| 952 | ) |
||
| 953 | if hp_cap_mv_grid.empty: |
||
| 954 | return 0.0 |
||
| 955 | else: |
||
| 956 | return hp_cap_mv_grid.capacity.values[0] |
||
| 957 | |||
| 958 | |||
| 959 | def get_heat_peak_demand_per_building(scenario, building_ids): |
||
| 960 | """""" |
||
| 961 | |||
| 962 | with db.session_scope() as session: |
||
| 963 | query = ( |
||
| 964 | session.query( |
||
| 965 | BuildingHeatPeakLoads.building_id, |
||
| 966 | BuildingHeatPeakLoads.peak_load_in_w, |
||
| 967 | ) |
||
| 968 | .filter(BuildingHeatPeakLoads.scenario == scenario) |
||
| 969 | .filter(BuildingHeatPeakLoads.building_id.in_(building_ids)) |
||
| 970 | ) |
||
| 971 | |||
| 972 | df_heat_peak_demand = pd.read_sql( |
||
| 973 | query.statement, query.session.bind, index_col=None |
||
| 974 | ) |
||
| 975 | |||
| 976 | # TODO remove check |
||
| 977 | if df_heat_peak_demand.duplicated("building_id").any(): |
||
| 978 | raise ValueError("Duplicate building_id") |
||
| 979 | |||
| 980 | # convert to series and from W to MW |
||
| 981 | df_heat_peak_demand = ( |
||
| 982 | df_heat_peak_demand.set_index("building_id").loc[:, "peak_load_in_w"] |
||
| 983 | * 1e6 |
||
| 984 | ) |
||
| 985 | return df_heat_peak_demand |
||
| 986 | |||
| 987 | |||
| 988 | def determine_minimum_hp_capacity_per_building( |
||
| 989 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
| 990 | ): |
||
| 991 | """ |
||
| 992 | Determines minimum required heat pump capacity. |
||
| 993 | |||
| 994 | Parameters |
||
| 995 | ---------- |
||
| 996 | peak_heat_demand : pd.Series |
||
| 997 | Series with peak heat demand per building in MW. Index contains the |
||
| 998 | building ID. |
||
| 999 | flexibility_factor : float |
||
| 1000 | Factor to overdimension the heat pump to allow for some flexible |
||
| 1001 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
| 1002 | is used, to take into account |
||
| 1003 | |||
| 1004 | Returns |
||
| 1005 | ------- |
||
| 1006 | pd.Series |
||
| 1007 | Pandas series with minimum required heat pump capacity per building in |
||
| 1008 | MW. |
||
| 1009 | |||
| 1010 | """ |
||
| 1011 | return peak_heat_demand * flexibility_factor / cop |
||
| 1012 | |||
| 1013 | |||
| 1014 | def determine_buildings_with_hp_in_mv_grid( |
||
| 1015 | hp_cap_mv_grid, min_hp_cap_per_building |
||
| 1016 | ): |
||
| 1017 | """ |
||
| 1018 | Distributes given total heat pump capacity to buildings based on their peak |
||
| 1019 | heat demand. |
||
| 1020 | |||
| 1021 | Parameters |
||
| 1022 | ----------- |
||
| 1023 | hp_cap_mv_grid : float |
||
| 1024 | Total heat pump capacity in MW in given MV grid. |
||
| 1025 | min_hp_cap_per_building : pd.Series |
||
| 1026 | Pandas series with minimum required heat pump capacity per building |
||
| 1027 | in MW. |
||
| 1028 | |||
| 1029 | Returns |
||
| 1030 | ------- |
||
| 1031 | pd.Index(int) |
||
| 1032 | Building IDs (as int) of buildings to get heat demand time series for. |
||
| 1033 | |||
| 1034 | """ |
||
| 1035 | building_ids = min_hp_cap_per_building.index |
||
| 1036 | |||
| 1037 | # get buildings with PV to give them a higher priority when selecting |
||
| 1038 | # buildings a heat pump will be allocated to |
||
| 1039 | saio.register_schema("supply", engine) |
||
| 1040 | from saio.supply import egon_power_plants_pv_roof_building |
||
| 1041 | |||
| 1042 | with db.session_scope() as session: |
||
| 1043 | query = session.query( |
||
| 1044 | egon_power_plants_pv_roof_building.building_id |
||
| 1045 | ).filter( |
||
| 1046 | egon_power_plants_pv_roof_building.building_id.in_(building_ids), |
||
| 1047 | egon_power_plants_pv_roof_building.scenario == "eGon2035", |
||
| 1048 | ) |
||
| 1049 | |||
| 1050 | buildings_with_pv = pd.read_sql( |
||
| 1051 | query.statement, query.session.bind, index_col=None |
||
| 1052 | ).building_id.values |
||
| 1053 | # set different weights for buildings with PV and without PV |
||
| 1054 | weight_with_pv = 1.5 |
||
| 1055 | weight_without_pv = 1.0 |
||
| 1056 | weights = pd.concat( |
||
| 1057 | [ |
||
| 1058 | pd.DataFrame( |
||
| 1059 | {"weight": weight_without_pv}, |
||
| 1060 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
| 1061 | ), |
||
| 1062 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
| 1063 | ] |
||
| 1064 | ) |
||
| 1065 | # normalise weights (probability needs to add up to 1) |
||
| 1066 | weights.weight = weights.weight / weights.weight.sum() |
||
| 1067 | |||
| 1068 | # get random order at which buildings are chosen |
||
| 1069 | np.random.seed(db.credentials()["--random-seed"]) |
||
| 1070 | buildings_with_hp_order = np.random.choice( |
||
| 1071 | weights.index, |
||
| 1072 | size=len(weights), |
||
| 1073 | replace=False, |
||
| 1074 | p=weights.weight.values, |
||
| 1075 | ) |
||
| 1076 | |||
| 1077 | # select buildings until HP capacity in MV grid is reached (some rest |
||
| 1078 | # capacity will remain) |
||
| 1079 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
| 1080 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
| 1081 | |||
| 1082 | # choose random heat pumps until remaining heat pumps are larger than |
||
| 1083 | # remaining heat pump capacity |
||
| 1084 | remaining_hp_cap = ( |
||
| 1085 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
| 1086 | ) |
||
| 1087 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
| 1088 | building_ids.drop(buildings_with_hp) |
||
| 1089 | ] |
||
| 1090 | possible_buildings = min_cap_buildings_wo_hp[ |
||
| 1091 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
| 1092 | ].index |
||
| 1093 | while len(possible_buildings) > 0: |
||
| 1094 | random.seed(db.credentials()["--random-seed"]) |
||
| 1095 | new_hp_building = random.choice(possible_buildings) |
||
| 1096 | # add new building to building with HP |
||
| 1097 | buildings_with_hp = buildings_with_hp.append( |
||
| 1098 | pd.Index([new_hp_building]) |
||
| 1099 | ) |
||
| 1100 | # determine if there are still possible buildings |
||
| 1101 | remaining_hp_cap = ( |
||
| 1102 | hp_cap_mv_grid |
||
| 1103 | - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
| 1104 | ) |
||
| 1105 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
| 1106 | building_ids.drop(buildings_with_hp) |
||
| 1107 | ] |
||
| 1108 | possible_buildings = min_cap_buildings_wo_hp[ |
||
| 1109 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
| 1110 | ].index |
||
| 1111 | |||
| 1112 | return buildings_with_hp |
||
| 1113 | |||
| 1114 | |||
| 1115 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
| 1116 | """ |
||
| 1117 | Desaggregates the required total heat pump capacity to buildings. |
||
| 1118 | |||
| 1119 | All buildings are previously assigned a minimum required heat pump |
||
| 1120 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
| 1121 | are assigned. |
||
| 1122 | |||
| 1123 | Parameters |
||
| 1124 | ------------ |
||
| 1125 | min_hp_cap_per_building : pd.Series |
||
| 1126 | Pandas series with minimum required heat pump capacity per building |
||
| 1127 | in MW. |
||
| 1128 | hp_cap_mv_grid : float |
||
| 1129 | Total heat pump capacity in MW in given MV grid. |
||
| 1130 | |||
| 1131 | Returns |
||
| 1132 | -------- |
||
| 1133 | pd.Series |
||
| 1134 | Pandas series with heat pump capacity per building in MW. |
||
| 1135 | |||
| 1136 | """ |
||
| 1137 | # distribute remaining capacity to all buildings with HP depending on |
||
| 1138 | # installed HP capacity |
||
| 1139 | |||
| 1140 | allocated_cap = min_hp_cap_per_building.sum() |
||
| 1141 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
| 1142 | |||
| 1143 | fac = remaining_cap / allocated_cap |
||
| 1144 | hp_cap_per_building = ( |
||
| 1145 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
| 1146 | ) |
||
| 1147 | hp_cap_per_building.index.name = "building_id" |
||
| 1148 | |||
| 1149 | return hp_cap_per_building |
||
| 1150 | |||
| 1151 | |||
| 1152 | def determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
| 1153 | peak_heat_demand, building_ids |
||
| 1154 | ): |
||
| 1155 | """ |
||
| 1156 | Determines minimum required HP capacity in MV grid in MW as input for |
||
| 1157 | pypsa-eur-sec. |
||
| 1158 | |||
| 1159 | Parameters |
||
| 1160 | ---------- |
||
| 1161 | peak_heat_demand : pd.Series |
||
| 1162 | Series with peak heat demand per building in MW. Index contains the |
||
| 1163 | building ID. |
||
| 1164 | building_ids : pd.Index(int) |
||
| 1165 | Building IDs (as int) of buildings with decentral heating system in |
||
| 1166 | given MV grid. |
||
| 1167 | |||
| 1168 | Returns |
||
| 1169 | -------- |
||
| 1170 | float |
||
| 1171 | Minimum required HP capacity in MV grid in MW. |
||
| 1172 | |||
| 1173 | """ |
||
| 1174 | if len(building_ids) > 0: |
||
| 1175 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
| 1176 | # determine minimum required heat pump capacity per building |
||
| 1177 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 1178 | peak_heat_demand |
||
| 1179 | ) |
||
| 1180 | return min_hp_cap_buildings.sum() |
||
| 1181 | else: |
||
| 1182 | return 0.0 |
||
| 1183 | |||
| 1184 | |||
| 1185 | def determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
| 1186 | mv_grid_id, peak_heat_demand, building_ids |
||
| 1187 | ): |
||
| 1188 | """ |
||
| 1189 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
| 1190 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well |
||
| 1191 | as their respective HP capacity in MW. |
||
| 1192 | |||
| 1193 | Parameters |
||
| 1194 | ----------- |
||
| 1195 | mv_grid_id : int |
||
| 1196 | ID of MV grid. |
||
| 1197 | peak_heat_demand : pd.Series |
||
| 1198 | Series with peak heat demand per building in MW. Index contains the |
||
| 1199 | building ID. |
||
| 1200 | building_ids : pd.Index(int) |
||
| 1201 | Building IDs (as int) of buildings with decentral heating system in |
||
| 1202 | given MV grid. |
||
| 1203 | |||
| 1204 | """ |
||
| 1205 | |||
| 1206 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
| 1207 | "eGon2035", mv_grid_id |
||
| 1208 | ) |
||
| 1209 | |||
| 1210 | if len(building_ids) > 0 and hp_cap_grid > 0.0: |
||
| 1211 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
| 1212 | |||
| 1213 | # determine minimum required heat pump capacity per building |
||
| 1214 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 1215 | peak_heat_demand |
||
| 1216 | ) |
||
| 1217 | |||
| 1218 | # select buildings that will have a heat pump |
||
| 1219 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
| 1220 | hp_cap_grid, min_hp_cap_buildings |
||
| 1221 | ) |
||
| 1222 | |||
| 1223 | # distribute total heat pump capacity to all buildings with HP |
||
| 1224 | hp_cap_per_building = desaggregate_hp_capacity( |
||
| 1225 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
| 1226 | ) |
||
| 1227 | |||
| 1228 | return hp_cap_per_building.rename("hp_capacity") |
||
| 1229 | |||
| 1230 | else: |
||
| 1231 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
| 1232 | |||
| 1233 | |||
| 1234 | def determine_hp_cap_buildings_eGon100RE_per_mvgd(mv_grid_id): |
||
| 1235 | """ |
||
| 1236 | Determines HP capacity per building in eGon100RE scenario. |
||
| 1237 | |||
| 1238 | In eGon100RE scenario all buildings without district heating get a heat |
||
| 1239 | pump. |
||
| 1240 | |||
| 1241 | Returns |
||
| 1242 | -------- |
||
| 1243 | pd.Series |
||
| 1244 | Pandas series with heat pump capacity per building in MW. |
||
| 1245 | |||
| 1246 | """ |
||
| 1247 | |||
| 1248 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
| 1249 | "eGon100RE", mv_grid_id |
||
| 1250 | ) |
||
| 1251 | |||
| 1252 | if hp_cap_grid > 0.0: |
||
| 1253 | |||
| 1254 | # get buildings with decentral heating systems |
||
| 1255 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 1256 | mv_grid_id, scenario="eGon100RE" |
||
| 1257 | ) |
||
| 1258 | |||
| 1259 | logger.info(f"MVGD={mv_grid_id} | Get peak loads from DB") |
||
| 1260 | df_peak_heat_demand = get_heat_peak_demand_per_building( |
||
| 1261 | "eGon100RE", building_ids |
||
| 1262 | ) |
||
| 1263 | |||
| 1264 | logger.info(f"MVGD={mv_grid_id} | Determine HP capacities.") |
||
| 1265 | # determine minimum required heat pump capacity per building |
||
| 1266 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 1267 | df_peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
| 1268 | ) |
||
| 1269 | |||
| 1270 | logger.info(f"MVGD={mv_grid_id} | Desaggregate HP capacities.") |
||
| 1271 | # distribute total heat pump capacity to all buildings with HP |
||
| 1272 | hp_cap_per_building = desaggregate_hp_capacity( |
||
| 1273 | min_hp_cap_buildings, hp_cap_grid |
||
| 1274 | ) |
||
| 1275 | |||
| 1276 | return hp_cap_per_building.rename("hp_capacity") |
||
| 1277 | else: |
||
| 1278 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
| 1279 | |||
| 1280 | |||
| 1281 | def determine_hp_cap_buildings_eGon100RE(): |
||
| 1282 | """ |
||
| 1283 | Main function to determine HP capacity per building in eGon100RE scenario. |
||
| 1284 | |||
| 1285 | """ |
||
| 1286 | |||
| 1287 | # ========== Register np datatypes with SQLA ========== |
||
| 1288 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 1289 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 1290 | # ===================================================== |
||
| 1291 | |||
| 1292 | with db.session_scope() as session: |
||
| 1293 | query = ( |
||
| 1294 | session.query( |
||
| 1295 | MapZensusGridDistricts.bus_id, |
||
| 1296 | ) |
||
| 1297 | .filter( |
||
| 1298 | MapZensusGridDistricts.zensus_population_id |
||
| 1299 | == EgonPetaHeat.zensus_population_id |
||
| 1300 | ) |
||
| 1301 | .distinct(MapZensusGridDistricts.bus_id) |
||
| 1302 | ) |
||
| 1303 | mvgd_ids = pd.read_sql( |
||
| 1304 | query.statement, query.session.bind, index_col=None |
||
| 1305 | ) |
||
| 1306 | mvgd_ids = mvgd_ids.sort_values("bus_id") |
||
| 1307 | mvgd_ids = mvgd_ids["bus_id"].values |
||
| 1308 | |||
| 1309 | df_hp_cap_per_building_100RE_db = pd.DataFrame( |
||
| 1310 | columns=["building_id", "hp_capacity"] |
||
| 1311 | ) |
||
| 1312 | |||
| 1313 | for mvgd_id in mvgd_ids: |
||
| 1314 | |||
| 1315 | logger.info(f"MVGD={mvgd_id} | Start") |
||
| 1316 | |||
| 1317 | hp_cap_per_building_100RE = ( |
||
| 1318 | determine_hp_cap_buildings_eGon100RE_per_mvgd(mvgd_id) |
||
| 1319 | ) |
||
| 1320 | |||
| 1321 | if not hp_cap_per_building_100RE.empty: |
||
| 1322 | df_hp_cap_per_building_100RE_db = pd.concat( |
||
| 1323 | [ |
||
| 1324 | df_hp_cap_per_building_100RE_db, |
||
| 1325 | hp_cap_per_building_100RE.reset_index(), |
||
| 1326 | ], |
||
| 1327 | axis=0, |
||
| 1328 | ) |
||
| 1329 | |||
| 1330 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
| 1331 | df_hp_cap_per_building_100RE_db["scenario"] = "eGon100RE" |
||
| 1332 | |||
| 1333 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
| 1334 | |||
| 1335 | write_table_to_postgres( |
||
| 1336 | df_hp_cap_per_building_100RE_db, |
||
| 1337 | EgonHpCapacityBuildings, |
||
| 1338 | drop=False, |
||
| 1339 | ) |
||
| 1340 | |||
| 1341 | |||
| 1342 | def aggregate_residential_and_cts_profiles(mvgd, scenario): |
||
| 1343 | """ |
||
| 1344 | Gets residential and CTS heat demand profiles per building and aggregates |
||
| 1345 | them. |
||
| 1346 | |||
| 1347 | Parameters |
||
| 1348 | ---------- |
||
| 1349 | mvgd : int |
||
| 1350 | MV grid ID. |
||
| 1351 | scenario : str |
||
| 1352 | Possible options are eGon2035 or eGon100RE. |
||
| 1353 | |||
| 1354 | Returns |
||
| 1355 | -------- |
||
| 1356 | pd.DataFrame |
||
| 1357 | Table of demand profile per building. Column names are building IDs and |
||
| 1358 | index is hour of the year as int (0-8759). |
||
| 1359 | |||
| 1360 | """ |
||
| 1361 | # ############### get residential heat demand profiles ############### |
||
| 1362 | df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
||
| 1363 | mvgd=mvgd, scenario=scenario |
||
| 1364 | ) |
||
| 1365 | |||
| 1366 | # pivot to allow aggregation with CTS profiles |
||
| 1367 | df_heat_ts = df_heat_ts.pivot( |
||
| 1368 | index=["day_of_year", "hour"], |
||
| 1369 | columns="building_id", |
||
| 1370 | values="demand_ts", |
||
| 1371 | ) |
||
| 1372 | df_heat_ts = df_heat_ts.sort_index().reset_index(drop=True) |
||
| 1373 | |||
| 1374 | # ############### get CTS heat demand profiles ############### |
||
| 1375 | heat_demand_cts_ts = calc_cts_building_profiles( |
||
| 1376 | bus_ids=[mvgd], |
||
| 1377 | scenario=scenario, |
||
| 1378 | sector="heat", |
||
| 1379 | ) |
||
| 1380 | |||
| 1381 | # ############# aggregate residential and CTS demand profiles ############# |
||
| 1382 | df_heat_ts = pd.concat([df_heat_ts, heat_demand_cts_ts], axis=1) |
||
| 1383 | |||
| 1384 | df_heat_ts = df_heat_ts.groupby(axis=1, level=0).sum() |
||
| 1385 | |||
| 1386 | return df_heat_ts |
||
| 1387 | |||
| 1388 | |||
| 1389 | def export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False): |
||
| 1390 | """ |
||
| 1391 | Function to export the collected results of all MVGDs per bulk to DB. |
||
| 1392 | |||
| 1393 | Parameters |
||
| 1394 | ---------- |
||
| 1395 | df_peak_loads_db : pd.DataFrame |
||
| 1396 | Table of building peak loads of all MVGDs per bulk |
||
| 1397 | df_heat_mvgd_ts_db : pd.DataFrame |
||
| 1398 | Table of all aggregated MVGD profiles per bulk |
||
| 1399 | drop : boolean |
||
| 1400 | Drop and recreate table if True |
||
| 1401 | |||
| 1402 | """ |
||
| 1403 | |||
| 1404 | df_peak_loads_db = df_peak_loads_db.melt( |
||
| 1405 | id_vars="building_id", |
||
| 1406 | var_name="scenario", |
||
| 1407 | value_name="peak_load_in_w", |
||
| 1408 | ) |
||
| 1409 | df_peak_loads_db["building_id"] = df_peak_loads_db["building_id"].astype( |
||
| 1410 | int |
||
| 1411 | ) |
||
| 1412 | df_peak_loads_db["sector"] = "residential+cts" |
||
| 1413 | # From MW to W |
||
| 1414 | df_peak_loads_db["peak_load_in_w"] = ( |
||
| 1415 | df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
| 1416 | ) |
||
| 1417 | write_table_to_postgres(df_peak_loads_db, BuildingHeatPeakLoads, drop=drop) |
||
| 1418 | |||
| 1419 | dtypes = { |
||
| 1420 | column.key: column.type |
||
| 1421 | for column in EgonEtragoTimeseriesIndividualHeating.__table__.columns |
||
| 1422 | } |
||
| 1423 | df_heat_mvgd_ts_db = df_heat_mvgd_ts_db.loc[:, dtypes.keys()] |
||
| 1424 | |||
| 1425 | if drop: |
||
| 1426 | logger.info( |
||
| 1427 | f"Drop and recreate table " |
||
| 1428 | f"{EgonEtragoTimeseriesIndividualHeating.__table__.name}." |
||
| 1429 | ) |
||
| 1430 | EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
||
| 1431 | bind=engine, checkfirst=True |
||
| 1432 | ) |
||
| 1433 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
| 1434 | bind=engine, checkfirst=True |
||
| 1435 | ) |
||
| 1436 | |||
| 1437 | with db.session_scope() as session: |
||
| 1438 | df_heat_mvgd_ts_db.to_sql( |
||
| 1439 | name=EgonEtragoTimeseriesIndividualHeating.__table__.name, |
||
| 1440 | schema=EgonEtragoTimeseriesIndividualHeating.__table__.schema, |
||
| 1441 | con=session.connection(), |
||
| 1442 | if_exists="append", |
||
| 1443 | method="multi", |
||
| 1444 | index=False, |
||
| 1445 | dtype=dtypes, |
||
| 1446 | ) |
||
| 1447 | |||
| 1448 | |||
| 1449 | def export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec): |
||
| 1450 | """Export minimum capacity of heat pumps for pypsa eur sec to csv""" |
||
| 1451 | |||
| 1452 | df_hp_min_cap_mv_grid_pypsa_eur_sec.index.name = "mvgd_id" |
||
| 1453 | df_hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
| 1454 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_frame( |
||
| 1455 | name="min_hp_capacity" |
||
| 1456 | ).reset_index() |
||
| 1457 | ) |
||
| 1458 | |||
| 1459 | folder = Path(".") / "input-pypsa-eur-sec" |
||
| 1460 | file = folder / "minimum_hp_capacity_mv_grid_100RE.csv" |
||
| 1461 | # Create the folder, if it does not exist already |
||
| 1462 | if not os.path.exists(folder): |
||
| 1463 | os.mkdir(folder) |
||
| 1464 | if not file.is_file(): |
||
| 1465 | logger.info(f"Create {file}") |
||
| 1466 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
| 1467 | file, mode="w", header=False |
||
| 1468 | ) |
||
| 1469 | else: |
||
| 1470 | logger.info(f"Remove {file}") |
||
| 1471 | os.remove(file) |
||
| 1472 | logger.info(f"Create {file}") |
||
| 1473 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
| 1474 | file, mode="a", header=False |
||
| 1475 | ) |
||
| 1476 | |||
| 1477 | |||
| 1478 | def catch_missing_buidings(buildings_decentral_heating, peak_load): |
||
| 1479 | """ |
||
| 1480 | Check for missing buildings and reduce the list of buildings with |
||
| 1481 | decentral heating if no peak loads available. This should only happen |
||
| 1482 | in case of cutout SH |
||
| 1483 | |||
| 1484 | Parameters |
||
| 1485 | ----------- |
||
| 1486 | buildings_decentral_heating : list(int) |
||
| 1487 | Array or list of buildings with decentral heating |
||
| 1488 | |||
| 1489 | peak_load : pd.Series |
||
| 1490 | Peak loads of all building within the mvgd |
||
| 1491 | |||
| 1492 | """ |
||
| 1493 | # Catch missing buildings key error |
||
| 1494 | # should only happen within cutout SH |
||
| 1495 | if ( |
||
| 1496 | not all(buildings_decentral_heating.isin(peak_load.index)) |
||
| 1497 | and config.settings()["egon-data"]["--dataset-boundary"] |
||
| 1498 | == "Schleswig-Holstein" |
||
| 1499 | ): |
||
| 1500 | diff = buildings_decentral_heating.difference(peak_load.index) |
||
| 1501 | logger.warning( |
||
| 1502 | f"Dropped {len(diff)} building ids due to missing peak " |
||
| 1503 | f"loads. {len(buildings_decentral_heating)} left." |
||
| 1504 | ) |
||
| 1505 | logger.info(f"Dropped buildings: {diff.values}") |
||
| 1506 | buildings_decentral_heating = buildings_decentral_heating.drop(diff) |
||
| 1507 | |||
| 1508 | return buildings_decentral_heating |
||
| 1509 | |||
| 1510 | |||
| 1511 | def determine_hp_cap_peak_load_mvgd_ts_2035(mvgd_ids): |
||
| 1512 | """ |
||
| 1513 | Main function to determine HP capacity per building in eGon2035 scenario. |
||
| 1514 | Further, creates heat demand time series for all buildings with heat pumps |
||
| 1515 | in MV grid, as well as for all buildings with gas boilers, used in eTraGo. |
||
| 1516 | |||
| 1517 | Parameters |
||
| 1518 | ----------- |
||
| 1519 | mvgd_ids : list(int) |
||
| 1520 | List of MV grid IDs to determine data for. |
||
| 1521 | |||
| 1522 | """ |
||
| 1523 | |||
| 1524 | # ========== Register np datatypes with SQLA ========== |
||
| 1525 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 1526 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 1527 | # ===================================================== |
||
| 1528 | |||
| 1529 | df_peak_loads_db = pd.DataFrame() |
||
| 1530 | df_hp_cap_per_building_2035_db = pd.DataFrame() |
||
| 1531 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
| 1532 | |||
| 1533 | for mvgd in mvgd_ids: |
||
| 1534 | |||
| 1535 | logger.info(f"MVGD={mvgd} | Start") |
||
| 1536 | |||
| 1537 | # ############# aggregate residential and CTS demand profiles ##### |
||
| 1538 | |||
| 1539 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
| 1540 | mvgd, scenario="eGon2035" |
||
| 1541 | ) |
||
| 1542 | |||
| 1543 | # ##################### determine peak loads ################### |
||
| 1544 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
| 1545 | |||
| 1546 | peak_load_2035 = df_heat_ts.max().rename("eGon2035") |
||
| 1547 | |||
| 1548 | # ######## determine HP capacity per building ######### |
||
| 1549 | logger.info(f"MVGD={mvgd} | Determine HP capacities.") |
||
| 1550 | |||
| 1551 | buildings_decentral_heating = ( |
||
| 1552 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 1553 | mvgd, scenario="eGon2035" |
||
| 1554 | ) |
||
| 1555 | ) |
||
| 1556 | |||
| 1557 | # Reduce list of decentral heating if no Peak load available |
||
| 1558 | # TODO maybe remove after succesfull DE run |
||
| 1559 | # Might be fixed in #990 |
||
| 1560 | buildings_decentral_heating = catch_missing_buidings( |
||
| 1561 | buildings_decentral_heating, peak_load_2035 |
||
| 1562 | ) |
||
| 1563 | |||
| 1564 | hp_cap_per_building_2035 = ( |
||
| 1565 | determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
| 1566 | mvgd, |
||
| 1567 | peak_load_2035, |
||
| 1568 | buildings_decentral_heating, |
||
| 1569 | ) |
||
| 1570 | ) |
||
| 1571 | buildings_gas_2035 = pd.Index(buildings_decentral_heating).drop( |
||
| 1572 | hp_cap_per_building_2035.index |
||
| 1573 | ) |
||
| 1574 | |||
| 1575 | # ################ aggregated heat profiles ################### |
||
| 1576 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
| 1577 | |||
| 1578 | df_mvgd_ts_2035_hp = df_heat_ts.loc[ |
||
| 1579 | :, |
||
| 1580 | hp_cap_per_building_2035.index, |
||
| 1581 | ].sum(axis=1) |
||
| 1582 | |||
| 1583 | # heat demand time series for buildings with gas boiler |
||
| 1584 | df_mvgd_ts_2035_gas = df_heat_ts.loc[:, buildings_gas_2035].sum(axis=1) |
||
| 1585 | |||
| 1586 | df_heat_mvgd_ts = pd.DataFrame( |
||
| 1587 | data={ |
||
| 1588 | "carrier": ["heat_pump", "CH4"], |
||
| 1589 | "bus_id": mvgd, |
||
| 1590 | "scenario": ["eGon2035", "eGon2035"], |
||
| 1591 | "dist_aggregated_mw": [ |
||
| 1592 | df_mvgd_ts_2035_hp.to_list(), |
||
| 1593 | df_mvgd_ts_2035_gas.to_list(), |
||
| 1594 | ], |
||
| 1595 | } |
||
| 1596 | ) |
||
| 1597 | |||
| 1598 | # ################ collect results ################## |
||
| 1599 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
| 1600 | |||
| 1601 | df_peak_loads_db = pd.concat( |
||
| 1602 | [df_peak_loads_db, peak_load_2035.reset_index()], |
||
| 1603 | axis=0, |
||
| 1604 | ignore_index=True, |
||
| 1605 | ) |
||
| 1606 | |||
| 1607 | df_heat_mvgd_ts_db = pd.concat( |
||
| 1608 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
| 1609 | ) |
||
| 1610 | |||
| 1611 | df_hp_cap_per_building_2035_db = pd.concat( |
||
| 1612 | [ |
||
| 1613 | df_hp_cap_per_building_2035_db, |
||
| 1614 | hp_cap_per_building_2035.reset_index(), |
||
| 1615 | ], |
||
| 1616 | axis=0, |
||
| 1617 | ) |
||
| 1618 | |||
| 1619 | # ################ export to db ####################### |
||
| 1620 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
| 1621 | |||
| 1622 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False) |
||
| 1623 | |||
| 1624 | df_hp_cap_per_building_2035_db["scenario"] = "eGon2035" |
||
| 1625 | |||
| 1626 | # TODO debug duplicated building_ids |
||
| 1627 | duplicates = df_hp_cap_per_building_2035_db.loc[ |
||
| 1628 | df_hp_cap_per_building_2035_db.duplicated("building_id", keep=False) |
||
| 1629 | ] |
||
| 1630 | |||
| 1631 | logger.info( |
||
| 1632 | f"Dropped duplicated buildings: " |
||
| 1633 | f"{duplicates.loc[:,['building_id', 'hp_capacity']]}" |
||
| 1634 | ) |
||
| 1635 | |||
| 1636 | df_hp_cap_per_building_2035_db.drop_duplicates("building_id", inplace=True) |
||
| 1637 | |||
| 1638 | write_table_to_postgres( |
||
| 1639 | df_hp_cap_per_building_2035_db, |
||
| 1640 | EgonHpCapacityBuildings, |
||
| 1641 | drop=False, |
||
| 1642 | ) |
||
| 1643 | |||
| 1644 | |||
| 1645 | def determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec(mvgd_ids): |
||
| 1646 | """ |
||
| 1647 | Main function to determine minimum required HP capacity in MV for |
||
| 1648 | pypsa-eur-sec. Further, creates heat demand time series for all buildings |
||
| 1649 | with heat pumps in MV grid in eGon100RE scenario, used in eTraGo. |
||
| 1650 | |||
| 1651 | Parameters |
||
| 1652 | ----------- |
||
| 1653 | mvgd_ids : list(int) |
||
| 1654 | List of MV grid IDs to determine data for. |
||
| 1655 | |||
| 1656 | """ |
||
| 1657 | |||
| 1658 | # ========== Register np datatypes with SQLA ========== |
||
| 1659 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 1660 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 1661 | # ===================================================== |
||
| 1662 | |||
| 1663 | df_peak_loads_db = pd.DataFrame() |
||
| 1664 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
| 1665 | df_hp_min_cap_mv_grid_pypsa_eur_sec = pd.Series(dtype="float64") |
||
| 1666 | |||
| 1667 | for mvgd in mvgd_ids: |
||
| 1668 | |||
| 1669 | logger.info(f"MVGD={mvgd} | Start") |
||
| 1670 | |||
| 1671 | # ############# aggregate residential and CTS demand profiles ##### |
||
| 1672 | |||
| 1673 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
| 1674 | mvgd, scenario="eGon100RE" |
||
| 1675 | ) |
||
| 1676 | |||
| 1677 | # ##################### determine peak loads ################### |
||
| 1678 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
| 1679 | |||
| 1680 | peak_load_100RE = df_heat_ts.max().rename("eGon100RE") |
||
| 1681 | |||
| 1682 | # ######## determine minimum HP capacity pypsa-eur-sec ########### |
||
| 1683 | logger.info(f"MVGD={mvgd} | Determine minimum HP capacity.") |
||
| 1684 | |||
| 1685 | buildings_decentral_heating = ( |
||
| 1686 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 1687 | mvgd, scenario="eGon100RE" |
||
| 1688 | ) |
||
| 1689 | ) |
||
| 1690 | |||
| 1691 | # Reduce list of decentral heating if no Peak load available |
||
| 1692 | # TODO maybe remove after succesfull DE run |
||
| 1693 | buildings_decentral_heating = catch_missing_buidings( |
||
| 1694 | buildings_decentral_heating, peak_load_100RE |
||
| 1695 | ) |
||
| 1696 | |||
| 1697 | hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
| 1698 | determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
| 1699 | peak_load_100RE, |
||
| 1700 | buildings_decentral_heating, |
||
| 1701 | ) |
||
| 1702 | ) |
||
| 1703 | |||
| 1704 | # ################ aggregated heat profiles ################### |
||
| 1705 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
| 1706 | |||
| 1707 | df_mvgd_ts_hp = df_heat_ts.loc[ |
||
| 1708 | :, |
||
| 1709 | buildings_decentral_heating, |
||
| 1710 | ].sum(axis=1) |
||
| 1711 | |||
| 1712 | df_heat_mvgd_ts = pd.DataFrame( |
||
| 1713 | data={ |
||
| 1714 | "carrier": "heat_pump", |
||
| 1715 | "bus_id": mvgd, |
||
| 1716 | "scenario": "eGon100RE", |
||
| 1717 | "dist_aggregated_mw": [df_mvgd_ts_hp.to_list()], |
||
| 1718 | } |
||
| 1719 | ) |
||
| 1720 | |||
| 1721 | # ################ collect results ################## |
||
| 1722 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
| 1723 | |||
| 1724 | df_peak_loads_db = pd.concat( |
||
| 1725 | [df_peak_loads_db, peak_load_100RE.reset_index()], |
||
| 1726 | axis=0, |
||
| 1727 | ignore_index=True, |
||
| 1728 | ) |
||
| 1729 | |||
| 1730 | df_heat_mvgd_ts_db = pd.concat( |
||
| 1731 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
| 1732 | ) |
||
| 1733 | |||
| 1734 | df_hp_min_cap_mv_grid_pypsa_eur_sec.loc[ |
||
| 1735 | mvgd |
||
| 1736 | ] = hp_min_cap_mv_grid_pypsa_eur_sec |
||
| 1737 | |||
| 1738 | # ################ export to db and csv ###################### |
||
| 1739 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
| 1740 | |||
| 1741 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False) |
||
| 1742 | |||
| 1743 | logger.info( |
||
| 1744 | f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write " |
||
| 1745 | f"pypsa-eur-sec min " |
||
| 1746 | f"HP capacities to csv." |
||
| 1747 | ) |
||
| 1748 | export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec) |
||
| 1749 | |||
| 1750 | |||
| 1751 | def split_mvgds_into_bulks(n, max_n, func): |
||
| 1752 | """ |
||
| 1753 | Generic function to split task into multiple parallel tasks, |
||
| 1754 | dividing the number of MVGDs into even bulks. |
||
| 1755 | |||
| 1756 | Parameters |
||
| 1757 | ----------- |
||
| 1758 | n : int |
||
| 1759 | Number of bulk |
||
| 1760 | max_n: int |
||
| 1761 | Maximum number of bulks |
||
| 1762 | func : function |
||
| 1763 | The funnction which is then called with the list of MVGD as |
||
| 1764 | parameter. |
||
| 1765 | """ |
||
| 1766 | |||
| 1767 | with db.session_scope() as session: |
||
| 1768 | query = ( |
||
| 1769 | session.query( |
||
| 1770 | MapZensusGridDistricts.bus_id, |
||
| 1771 | ) |
||
| 1772 | .filter( |
||
| 1773 | MapZensusGridDistricts.zensus_population_id |
||
| 1774 | == EgonPetaHeat.zensus_population_id |
||
| 1775 | ) |
||
| 1776 | .distinct(MapZensusGridDistricts.bus_id) |
||
| 1777 | ) |
||
| 1778 | mvgd_ids = pd.read_sql( |
||
| 1779 | query.statement, query.session.bind, index_col=None |
||
| 1780 | ) |
||
| 1781 | |||
| 1782 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
| 1783 | |||
| 1784 | mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
||
| 1785 | # Only take split n |
||
| 1786 | mvgd_ids = mvgd_ids[n] |
||
| 1787 | |||
| 1788 | logger.info(f"Bulk takes care of MVGD: {min(mvgd_ids)} : {max(mvgd_ids)}") |
||
| 1789 | func(mvgd_ids) |
||
| 1790 | |||
| 1791 | |||
| 1792 | def delete_hp_capacity(scenario): |
||
| 1793 | """Remove all hp capacities for the selected scenario |
||
| 1794 | |||
| 1795 | Parameters |
||
| 1796 | ----------- |
||
| 1797 | scenario : string |
||
| 1798 | Either eGon2035 or eGon100RE |
||
| 1799 | |||
| 1800 | """ |
||
| 1801 | |||
| 1802 | with db.session_scope() as session: |
||
| 1803 | # Buses |
||
| 1804 | session.query(EgonHpCapacityBuildings).filter( |
||
| 1805 | EgonHpCapacityBuildings.scenario == scenario |
||
| 1806 | ).delete(synchronize_session=False) |
||
| 1807 | |||
| 1808 | |||
| 1809 | def delete_mvgd_ts(scenario): |
||
| 1810 | """Remove all hp capacities for the selected scenario |
||
| 1811 | |||
| 1812 | Parameters |
||
| 1813 | ----------- |
||
| 1814 | scenario : string |
||
| 1815 | Either eGon2035 or eGon100RE |
||
| 1816 | |||
| 1817 | """ |
||
| 1818 | |||
| 1819 | with db.session_scope() as session: |
||
| 1820 | # Buses |
||
| 1821 | session.query(EgonEtragoTimeseriesIndividualHeating).filter( |
||
| 1822 | EgonEtragoTimeseriesIndividualHeating.scenario == scenario |
||
| 1823 | ).delete(synchronize_session=False) |
||
| 1824 | |||
| 1825 | |||
| 1826 | def delete_hp_capacity_100RE(): |
||
| 1827 | """Remove all hp capacities for the selected eGon100RE""" |
||
| 1828 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
| 1829 | delete_hp_capacity(scenario="eGon100RE") |
||
| 1830 | |||
| 1831 | |||
| 1832 | def delete_hp_capacity_2035(): |
||
| 1833 | """Remove all hp capacities for the selected eGon2035""" |
||
| 1834 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
| 1835 | delete_hp_capacity(scenario="eGon2035") |
||
| 1836 | |||
| 1837 | |||
| 1838 | def delete_mvgd_ts_2035(): |
||
| 1839 | """Remove all mvgd ts for the selected eGon2035""" |
||
| 1840 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
| 1841 | bind=engine, checkfirst=True |
||
| 1842 | ) |
||
| 1843 | delete_mvgd_ts(scenario="eGon2035") |
||
| 1844 | |||
| 1845 | |||
| 1846 | def delete_mvgd_ts_100RE(): |
||
| 1847 | """Remove all mvgd ts for the selected eGon100RE""" |
||
| 1848 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
| 1849 | bind=engine, checkfirst=True |
||
| 1850 | ) |
||
| 1851 | delete_mvgd_ts(scenario="eGon100RE") |
||
| 1852 | |||
| 1853 | |||
| 1854 | def delete_heat_peak_loads_2035(): |
||
| 1855 | """Remove all heat peak loads for eGon2035.""" |
||
| 1856 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
| 1857 | with db.session_scope() as session: |
||
| 1858 | # Buses |
||
| 1859 | session.query(BuildingHeatPeakLoads).filter( |
||
| 1860 | BuildingHeatPeakLoads.scenario == "eGon2035" |
||
| 1861 | ).delete(synchronize_session=False) |
||
| 1862 | |||
| 1863 | def delete_heat_peak_loads_100RE(): |
||
| 1864 | """Remove all heat peak loads for eGon100RE.""" |
||
| 1865 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
| 1866 | with db.session_scope() as session: |
||
| 1867 | # Buses |
||
| 1868 | session.query(BuildingHeatPeakLoads).filter( |
||
| 1869 | BuildingHeatPeakLoads.scenario == "eGon100RE" |
||
| 1870 | ).delete(synchronize_session=False) |
||
| 1871 |