1
|
|
|
"""The central module containing all code dealing with importing data from |
2
|
|
|
Netzentwicklungsplan 2035, Version 2031, Szenario C |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
from pathlib import Path |
6
|
|
|
|
7
|
|
|
from sqlalchemy import Column, Float, Integer, String |
8
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
9
|
|
|
from sqlalchemy.orm import sessionmaker |
10
|
|
|
import numpy as np |
11
|
|
|
import pandas as pd |
12
|
|
|
import yaml |
13
|
|
|
|
14
|
|
|
from egon.data import db |
15
|
|
|
from egon.data.config import settings |
16
|
|
|
from egon.data.datasets import Dataset |
17
|
|
|
import egon.data.config |
18
|
|
|
|
19
|
|
|
### will be later imported from another file ### |
20
|
|
|
Base = declarative_base() |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
class EgonScenarioCapacities(Base): |
24
|
|
|
__tablename__ = "egon_scenario_capacities" |
25
|
|
|
__table_args__ = {"schema": "supply"} |
26
|
|
|
index = Column(Integer, primary_key=True) |
27
|
|
|
component = Column(String(25)) |
28
|
|
|
carrier = Column(String(50)) |
29
|
|
|
capacity = Column(Float) |
30
|
|
|
nuts = Column(String(12)) |
31
|
|
|
scenario_name = Column(String(50)) |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
class NEP2021ConvPowerPlants(Base): |
35
|
|
|
__tablename__ = "egon_nep_2021_conventional_powerplants" |
36
|
|
|
__table_args__ = {"schema": "supply"} |
37
|
|
|
index = Column(String(50), primary_key=True) |
38
|
|
|
bnetza_id = Column(String(50)) |
39
|
|
|
name = Column(String(100)) |
40
|
|
|
name_unit = Column(String(50)) |
41
|
|
|
carrier_nep = Column(String(50)) |
42
|
|
|
carrier = Column(String(12)) |
43
|
|
|
chp = Column(String(12)) |
44
|
|
|
postcode = Column(String(12)) |
45
|
|
|
city = Column(String(50)) |
46
|
|
|
federal_state = Column(String(12)) |
47
|
|
|
commissioned = Column(String(12)) |
48
|
|
|
status = Column(String(50)) |
49
|
|
|
capacity = Column(Float) |
50
|
|
|
a2035_chp = Column(String(12)) |
51
|
|
|
a2035_capacity = Column(Float) |
52
|
|
|
b2035_chp = Column(String(12)) |
53
|
|
|
b2035_capacity = Column(Float) |
54
|
|
|
c2035_chp = Column(String(12)) |
55
|
|
|
c2035_capacity = Column(Float) |
56
|
|
|
b2040_chp = Column(String(12)) |
57
|
|
|
b2040_capacity = Column(Float) |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
class ScenarioCapacities(Dataset): |
61
|
|
|
def __init__(self, dependencies): |
62
|
|
|
super().__init__( |
63
|
|
|
name="ScenarioCapacities", |
64
|
|
|
version="0.0.11", |
65
|
|
|
dependencies=dependencies, |
66
|
|
|
tasks=(create_table, insert_data_nep, eGon100_capacities), |
67
|
|
|
) |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
def create_table(): |
71
|
|
|
"""Create input tables for scenario setup |
72
|
|
|
|
73
|
|
|
Returns |
74
|
|
|
------- |
75
|
|
|
None. |
76
|
|
|
|
77
|
|
|
""" |
78
|
|
|
|
79
|
|
|
engine = db.engine() |
80
|
|
|
db.execute_sql("CREATE SCHEMA IF NOT EXISTS supply;") |
81
|
|
|
EgonScenarioCapacities.__table__.drop(bind=engine, checkfirst=True) |
82
|
|
|
NEP2021ConvPowerPlants.__table__.drop(bind=engine, checkfirst=True) |
83
|
|
|
EgonScenarioCapacities.__table__.create(bind=engine, checkfirst=True) |
84
|
|
|
NEP2021ConvPowerPlants.__table__.create(bind=engine, checkfirst=True) |
85
|
|
|
|
86
|
|
|
|
87
|
|
|
def nuts_mapping(): |
88
|
|
|
|
89
|
|
|
nuts_mapping = { |
90
|
|
|
"BW": "DE1", |
91
|
|
|
"NW": "DEA", |
92
|
|
|
"HE": "DE7", |
93
|
|
|
"BB": "DE4", |
94
|
|
|
"HB": "DE5", |
95
|
|
|
"RP": "DEB", |
96
|
|
|
"ST": "DEE", |
97
|
|
|
"SH": "DEF", |
98
|
|
|
"MV": "DE8", |
99
|
|
|
"TH": "DEG", |
100
|
|
|
"NI": "DE9", |
101
|
|
|
"SN": "DED", |
102
|
|
|
"HH": "DE6", |
103
|
|
|
"SL": "DEC", |
104
|
|
|
"BE": "DE3", |
105
|
|
|
"BY": "DE2", |
106
|
|
|
} |
107
|
|
|
|
108
|
|
|
return nuts_mapping |
109
|
|
|
|
110
|
|
|
|
111
|
|
|
def insert_capacities_per_federal_state_nep(): |
112
|
|
|
"""Inserts installed capacities per federal state accordning to |
113
|
|
|
NEP 2035 (version 2021), scenario 2035 C |
114
|
|
|
|
115
|
|
|
Returns |
116
|
|
|
------- |
117
|
|
|
None. |
118
|
|
|
|
119
|
|
|
""" |
120
|
|
|
|
121
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
122
|
|
|
targets = egon.data.config.datasets()["scenario_input"]["targets"] |
123
|
|
|
|
124
|
|
|
# Connect to local database |
125
|
|
|
engine = db.engine() |
126
|
|
|
|
127
|
|
|
# Delete rows if already exist |
128
|
|
|
db.execute_sql( |
129
|
|
|
f""" |
130
|
|
|
DELETE FROM |
131
|
|
|
{targets['scenario_capacities']['schema']}.{targets['scenario_capacities']['table']} |
132
|
|
|
WHERE scenario_name = 'eGon2035' |
133
|
|
|
AND nuts != 'DE' |
134
|
|
|
""" |
135
|
|
|
) |
136
|
|
|
|
137
|
|
|
# read-in installed capacities per federal state of germany |
138
|
|
|
target_file = ( |
139
|
|
|
Path(".") |
140
|
|
|
/ "data_bundle_egon_data" |
141
|
|
|
/ "nep2035_version2021" |
142
|
|
|
/ sources["eGon2035"]["capacities"] |
143
|
|
|
) |
144
|
|
|
|
145
|
|
|
df = pd.read_excel( |
146
|
|
|
target_file, |
147
|
|
|
sheet_name="1.Entwurf_NEP2035_V2021", |
148
|
|
|
index_col="Unnamed: 0", |
149
|
|
|
) |
150
|
|
|
|
151
|
|
|
df_draft = pd.read_excel( |
152
|
|
|
target_file, |
153
|
|
|
sheet_name="Entwurf_des_Szenariorahmens", |
154
|
|
|
index_col="Unnamed: 0", |
155
|
|
|
) |
156
|
|
|
|
157
|
|
|
# Import data on wind offshore capacities |
158
|
|
|
df_windoff = pd.read_excel( |
159
|
|
|
target_file, |
160
|
|
|
sheet_name="WInd_Offshore_NEP", |
161
|
|
|
).dropna(subset=['Bundesland', 'Netzverknuepfungspunkt']) |
162
|
|
|
|
163
|
|
|
# Remove trailing whitespace from column Bundesland |
164
|
|
|
df_windoff['Bundesland']= df_windoff['Bundesland'].str.strip() |
165
|
|
|
|
166
|
|
|
# Group and sum capacities per federal state |
167
|
|
|
df_windoff_fs = df_windoff[['Bundesland', 'C 2035']].groupby(['Bundesland']).sum() |
168
|
|
|
|
169
|
|
|
# List federal state with an assigned wind offshore capacity |
170
|
|
|
index_list = list(df_windoff_fs.index.values) |
171
|
|
|
|
172
|
|
|
# Overwrite capacities in df_windoff with more accurate values from df_windoff_fs |
173
|
|
|
|
174
|
|
|
for state in index_list: |
175
|
|
|
|
176
|
|
|
df.at['Wind offshore', state] = df_windoff_fs.at[state, 'C 2035']/1000 |
177
|
|
|
|
178
|
|
|
|
179
|
|
|
# sort NEP-carriers: |
180
|
|
|
rename_carrier = { |
181
|
|
|
"Wind onshore": "wind_onshore", |
182
|
|
|
"Wind offshore": "wind_offshore", |
183
|
|
|
"sonstige Konventionelle": "other_non_renewable", |
184
|
|
|
"Speicherwasser": "reservoir", |
185
|
|
|
"Laufwasser": "run_of_river", |
186
|
|
|
"Biomasse": "biomass", |
187
|
|
|
"Erdgas": "gas", |
188
|
|
|
"Kuppelgas": "gas", |
189
|
|
|
"PV (Aufdach)": "solar_rooftop", |
190
|
|
|
"PV (Freiflaeche)": "solar", |
191
|
|
|
"Pumpspeicher": "pumped_hydro", |
192
|
|
|
"sonstige EE": "other_renewable", |
193
|
|
|
"Oel": "oil", |
194
|
|
|
"Haushaltswaermepumpen": "residential_rural_heat_pump", |
195
|
|
|
"KWK < 10 MW": "small_chp", |
196
|
|
|
} |
197
|
|
|
#'Elektromobilitaet gesamt': 'transport', |
198
|
|
|
# 'Elektromobilitaet privat': 'transport'} |
199
|
|
|
|
200
|
|
|
# nuts1 to federal state in Germany |
201
|
|
|
map_nuts = pd.read_sql( |
202
|
|
|
f""" |
203
|
|
|
SELECT DISTINCT ON (nuts) gen, nuts |
204
|
|
|
FROM {sources['boundaries']['schema']}.{sources['boundaries']['table']} |
205
|
|
|
""", |
206
|
|
|
engine, |
207
|
|
|
index_col="gen", |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
insert_data = pd.DataFrame() |
211
|
|
|
|
212
|
|
|
scaled_carriers = [ |
213
|
|
|
"Haushaltswaermepumpen", |
214
|
|
|
"PV (Aufdach)", |
215
|
|
|
"PV (Freiflaeche)", |
216
|
|
|
] |
217
|
|
|
|
218
|
|
|
for bl in map_nuts.index: |
219
|
|
|
|
220
|
|
|
data = pd.DataFrame(df[bl]) |
221
|
|
|
|
222
|
|
|
# if distribution to federal states is not provided, |
223
|
|
|
# use data from draft of scenario report |
224
|
|
|
for c in scaled_carriers: |
225
|
|
|
data.loc[c, bl] = ( |
226
|
|
|
df_draft.loc[c, bl] |
227
|
|
|
/ df_draft.loc[c, "Summe"] |
228
|
|
|
* df.loc[c, "Summe"] |
229
|
|
|
) |
230
|
|
|
|
231
|
|
|
# split hydro into run of river and reservoir |
232
|
|
|
# according to draft of scenario report |
233
|
|
|
if data.loc["Lauf- und Speicherwasser", bl] > 0: |
234
|
|
|
for c in ["Speicherwasser", "Laufwasser"]: |
235
|
|
|
data.loc[c, bl] = ( |
236
|
|
|
data.loc["Lauf- und Speicherwasser", bl] |
237
|
|
|
* df_draft.loc[c, bl] |
238
|
|
|
/ df_draft.loc[["Speicherwasser", "Laufwasser"], bl].sum() |
239
|
|
|
) |
240
|
|
|
|
241
|
|
|
data["carrier"] = data.index.map(rename_carrier) |
242
|
|
|
data = data.groupby(data.carrier)[bl].sum().reset_index() |
243
|
|
|
data["component"] = "generator" |
244
|
|
|
data["nuts"] = map_nuts.nuts[bl] |
245
|
|
|
data["scenario_name"] = "eGon2035" |
246
|
|
|
|
247
|
|
|
# According to NEP, each heatpump has 3kW_el installed capacity |
248
|
|
|
data.loc[data.carrier == "residential_rural_heat_pump", bl] *= 3e-6 |
249
|
|
|
data.loc[ |
250
|
|
|
data.carrier == "residential_rural_heat_pump", "component" |
251
|
|
|
] = "link" |
252
|
|
|
|
253
|
|
|
data = data.rename(columns={bl: "capacity"}) |
254
|
|
|
|
255
|
|
|
# convert GW to MW |
256
|
|
|
data.capacity *= 1e3 |
257
|
|
|
|
258
|
|
|
insert_data = insert_data.append(data) |
259
|
|
|
|
260
|
|
|
# Get aggregated capacities from nep's power plant list for certain carrier |
261
|
|
|
|
262
|
|
|
carriers = ["oil", "other_non_renewable", "pumped_hydro"] |
263
|
|
|
|
264
|
|
|
capacities_list = aggr_nep_capacities(carriers) |
265
|
|
|
|
266
|
|
|
# Filter by carrier |
267
|
|
|
updated = insert_data[insert_data["carrier"].isin(carriers)] |
268
|
|
|
|
269
|
|
|
# Merge to replace capacities for carriers "oil", "other_non_renewable" and "pumped_hydro" |
270
|
|
|
updated = ( |
271
|
|
|
updated.merge(capacities_list, on=["carrier", "nuts"], how="left") |
272
|
|
|
.fillna(0) |
273
|
|
|
.drop(["capacity"], axis=1) |
274
|
|
|
.rename(columns={"c2035_capacity": "capacity"}) |
275
|
|
|
) |
276
|
|
|
|
277
|
|
|
# Remove updated entries from df |
278
|
|
|
original = insert_data[~insert_data["carrier"].isin(carriers)] |
279
|
|
|
|
280
|
|
|
# Join dfs |
281
|
|
|
insert_data = pd.concat([original, updated]) |
282
|
|
|
|
283
|
|
|
# Insert data to db |
284
|
|
|
insert_data.to_sql( |
285
|
|
|
targets["scenario_capacities"]["table"], |
286
|
|
|
engine, |
287
|
|
|
schema=targets["scenario_capacities"]["schema"], |
288
|
|
|
if_exists="append", |
289
|
|
|
index=insert_data.index, |
290
|
|
|
) |
291
|
|
|
|
292
|
|
|
# Add district heating data accordning to energy and full load hours |
293
|
|
|
district_heating_input() |
294
|
|
|
|
295
|
|
|
|
296
|
|
|
def population_share(): |
297
|
|
|
"""Calulate share of population in testmode |
298
|
|
|
|
299
|
|
|
Returns |
300
|
|
|
------- |
301
|
|
|
float |
302
|
|
|
Share of population in testmode |
303
|
|
|
|
304
|
|
|
""" |
305
|
|
|
|
306
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
307
|
|
|
|
308
|
|
|
return ( |
309
|
|
|
pd.read_sql( |
310
|
|
|
f""" |
311
|
|
|
SELECT SUM(population) |
312
|
|
|
FROM {sources['zensus_population']['schema']}.{sources['zensus_population']['table']} |
313
|
|
|
WHERE population>0 |
314
|
|
|
""", |
315
|
|
|
con=db.engine(), |
316
|
|
|
)["sum"][0] |
317
|
|
|
/ 80324282 |
318
|
|
|
) |
319
|
|
|
|
320
|
|
|
|
321
|
|
|
def aggr_nep_capacities(carriers): |
322
|
|
|
"""Aggregates capacities from NEP power plants list by carrier and federal |
323
|
|
|
state |
324
|
|
|
|
325
|
|
|
Returns |
326
|
|
|
------- |
327
|
|
|
pandas.Dataframe |
328
|
|
|
Dataframe with capacities per federal state and carrier |
329
|
|
|
|
330
|
|
|
""" |
331
|
|
|
# Get list of power plants from nep |
332
|
|
|
nep_capacities = insert_nep_list_powerplants(export=False)[ |
333
|
|
|
["federal_state", "carrier", "c2035_capacity"] |
334
|
|
|
] |
335
|
|
|
|
336
|
|
|
# Sum up capacities per federal state and carrier |
337
|
|
|
capacities_list = ( |
338
|
|
|
nep_capacities.groupby(["federal_state", "carrier"])["c2035_capacity"] |
339
|
|
|
.sum() |
340
|
|
|
.to_frame() |
341
|
|
|
.reset_index() |
342
|
|
|
) |
343
|
|
|
|
344
|
|
|
# Neglect entries with carriers not in argument |
345
|
|
|
capacities_list = capacities_list[capacities_list.carrier.isin(carriers)] |
346
|
|
|
|
347
|
|
|
# Include NUTS code |
348
|
|
|
capacities_list["nuts"] = capacities_list.federal_state.map(nuts_mapping()) |
349
|
|
|
|
350
|
|
|
# Drop entries for foreign plants with nan values and federal_state column |
351
|
|
|
capacities_list = capacities_list.dropna(subset=["nuts"]).drop( |
352
|
|
|
columns=["federal_state"] |
353
|
|
|
) |
354
|
|
|
|
355
|
|
|
return capacities_list |
356
|
|
|
|
357
|
|
|
|
358
|
|
|
def map_carrier(): |
359
|
|
|
"""Map carriers from NEP and Marktstammdatenregister to carriers from eGon |
360
|
|
|
|
361
|
|
|
Returns |
362
|
|
|
------- |
363
|
|
|
pandas.Series |
364
|
|
|
List of mapped carriers |
365
|
|
|
|
366
|
|
|
""" |
367
|
|
|
return pd.Series( |
368
|
|
|
data={ |
369
|
|
|
"Abfall": "other_non_renewable", |
370
|
|
|
"Erdgas": "gas", |
371
|
|
|
"Sonstige\nEnergieträger": "other_non_renewable", |
372
|
|
|
"Steinkohle": "coal", |
373
|
|
|
"Kuppelgase": "gas", |
374
|
|
|
"Mineralöl-\nprodukte": "oil", |
375
|
|
|
"Braunkohle": "lignite", |
376
|
|
|
"Waerme": "other_non_renewable", |
377
|
|
|
"Mineraloelprodukte": "oil", |
378
|
|
|
"NichtBiogenerAbfall": "other_non_renewable", |
379
|
|
|
"AndereGase": "gas", |
380
|
|
|
"Sonstige_Energietraeger": "other_non_renewable", |
381
|
|
|
"Kernenergie": "nuclear", |
382
|
|
|
"Pumpspeicher": "pumped_hydro", |
383
|
|
|
"Mineralöl-\nProdukte": "oil", |
384
|
|
|
} |
385
|
|
|
) |
386
|
|
|
|
387
|
|
|
|
388
|
|
|
def insert_nep_list_powerplants(export=True): |
389
|
|
|
"""Insert list of conventional powerplants attached to the approval |
390
|
|
|
of the scenario report by BNetzA |
391
|
|
|
|
392
|
|
|
Parameters |
393
|
|
|
---------- |
394
|
|
|
export : bool |
395
|
|
|
Choose if nep list should be exported to the data |
396
|
|
|
base. The default is True. |
397
|
|
|
If export=False a data frame will be returned |
398
|
|
|
|
399
|
|
|
Returns |
400
|
|
|
------- |
401
|
|
|
kw_liste_nep : pandas.DataFrame |
402
|
|
|
List of conventional power plants from nep if export=False |
403
|
|
|
""" |
404
|
|
|
|
405
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
406
|
|
|
targets = egon.data.config.datasets()["scenario_input"]["targets"] |
407
|
|
|
|
408
|
|
|
# Connect to local database |
409
|
|
|
engine = db.engine() |
410
|
|
|
|
411
|
|
|
# Read-in data from csv-file |
412
|
|
|
target_file = ( |
413
|
|
|
Path(".") |
414
|
|
|
/ "data_bundle_egon_data" |
415
|
|
|
/ "nep2035_version2021" |
416
|
|
|
/ sources["eGon2035"]["list_conv_pp"] |
417
|
|
|
) |
418
|
|
|
|
419
|
|
|
kw_liste_nep = pd.read_csv(target_file, delimiter=";", decimal=",") |
420
|
|
|
|
421
|
|
|
# Adjust column names |
422
|
|
|
kw_liste_nep = kw_liste_nep.rename( |
423
|
|
|
columns={ |
424
|
|
|
"BNetzA-ID": "bnetza_id", |
425
|
|
|
"Kraftwerksname": "name", |
426
|
|
|
"Blockname": "name_unit", |
427
|
|
|
"Energieträger": "carrier_nep", |
428
|
|
|
"KWK\nJa/Nein": "chp", |
429
|
|
|
"PLZ": "postcode", |
430
|
|
|
"Ort": "city", |
431
|
|
|
"Bundesland/\nLand": "federal_state", |
432
|
|
|
"Inbetrieb-\nnahmejahr": "commissioned", |
433
|
|
|
"Status": "status", |
434
|
|
|
"el. Leistung\n06.02.2020": "capacity", |
435
|
|
|
"A 2035:\nKWK-Ersatz": "a2035_chp", |
436
|
|
|
"A 2035:\nLeistung": "a2035_capacity", |
437
|
|
|
"B 2035\nKWK-Ersatz": "b2035_chp", |
438
|
|
|
"B 2035:\nLeistung": "b2035_capacity", |
439
|
|
|
"C 2035:\nKWK-Ersatz": "c2035_chp", |
440
|
|
|
"C 2035:\nLeistung": "c2035_capacity", |
441
|
|
|
"B 2040:\nKWK-Ersatz": "b2040_chp", |
442
|
|
|
"B 2040:\nLeistung": "b2040_capacity", |
443
|
|
|
} |
444
|
|
|
) |
445
|
|
|
|
446
|
|
|
# Cut data to federal state if in testmode |
447
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"] |
448
|
|
|
if boundary != "Everything": |
449
|
|
|
map_states = { |
450
|
|
|
"Baden-Württemberg": "BW", |
451
|
|
|
"Nordrhein-Westfalen": "NW", |
452
|
|
|
"Hessen": "HE", |
453
|
|
|
"Brandenburg": "BB", |
454
|
|
|
"Bremen": "HB", |
455
|
|
|
"Rheinland-Pfalz": "RP", |
456
|
|
|
"Sachsen-Anhalt": "ST", |
457
|
|
|
"Schleswig-Holstein": "SH", |
458
|
|
|
"Mecklenburg-Vorpommern": "MV", |
459
|
|
|
"Thüringen": "TH", |
460
|
|
|
"Niedersachsen": "NI", |
461
|
|
|
"Sachsen": "SN", |
462
|
|
|
"Hamburg": "HH", |
463
|
|
|
"Saarland": "SL", |
464
|
|
|
"Berlin": "BE", |
465
|
|
|
"Bayern": "BY", |
466
|
|
|
} |
467
|
|
|
|
468
|
|
|
kw_liste_nep = kw_liste_nep[ |
469
|
|
|
kw_liste_nep.federal_state.isin([map_states[boundary], np.nan]) |
470
|
|
|
] |
471
|
|
|
|
472
|
|
|
for col in [ |
473
|
|
|
"capacity", |
474
|
|
|
"a2035_capacity", |
475
|
|
|
"b2035_capacity", |
476
|
|
|
"c2035_capacity", |
477
|
|
|
"b2040_capacity", |
478
|
|
|
]: |
479
|
|
|
kw_liste_nep.loc[ |
480
|
|
|
kw_liste_nep[kw_liste_nep.federal_state.isnull()].index, col |
481
|
|
|
] *= population_share() |
482
|
|
|
|
483
|
|
|
kw_liste_nep["carrier"] = map_carrier()[kw_liste_nep.carrier_nep].values |
484
|
|
|
|
485
|
|
|
if export is True: |
486
|
|
|
# Insert data to db |
487
|
|
|
kw_liste_nep.to_sql( |
488
|
|
|
targets["nep_conventional_powerplants"]["table"], |
489
|
|
|
engine, |
490
|
|
|
schema=targets["nep_conventional_powerplants"]["schema"], |
491
|
|
|
if_exists="replace", |
492
|
|
|
) |
493
|
|
|
else: |
494
|
|
|
return kw_liste_nep |
495
|
|
|
|
496
|
|
|
|
497
|
|
|
def district_heating_input(): |
498
|
|
|
"""Imports data for district heating networks in Germany |
499
|
|
|
|
500
|
|
|
Returns |
501
|
|
|
------- |
502
|
|
|
None. |
503
|
|
|
|
504
|
|
|
""" |
505
|
|
|
|
506
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
507
|
|
|
|
508
|
|
|
# import data to dataframe |
509
|
|
|
file = ( |
510
|
|
|
Path(".") |
511
|
|
|
/ "data_bundle_egon_data" |
512
|
|
|
/ "nep2035_version2021" |
513
|
|
|
/ sources["eGon2035"]["capacities"] |
514
|
|
|
) |
515
|
|
|
df = pd.read_excel( |
516
|
|
|
file, sheet_name="Kurzstudie_KWK", dtype={"Wert": float} |
517
|
|
|
) |
518
|
|
|
df.set_index(["Energietraeger", "Name"], inplace=True) |
519
|
|
|
|
520
|
|
|
# Scale values to population share in testmode |
521
|
|
|
if settings()["egon-data"]["--dataset-boundary"] != "Everything": |
522
|
|
|
df.loc[ |
523
|
|
|
pd.IndexSlice[:, "Fernwaermeerzeugung"], "Wert" |
524
|
|
|
] *= population_share() |
525
|
|
|
|
526
|
|
|
# Connect to database |
527
|
|
|
engine = db.engine() |
528
|
|
|
session = sessionmaker(bind=engine)() |
529
|
|
|
|
530
|
|
|
# insert heatpumps and resistive heater as link |
531
|
|
|
for c in ["Grosswaermepumpe", "Elektrodenheizkessel"]: |
532
|
|
|
entry = EgonScenarioCapacities( |
533
|
|
|
component="link", |
534
|
|
|
scenario_name="eGon2035", |
535
|
|
|
nuts="DE", |
536
|
|
|
carrier="urban_central_" |
537
|
|
|
+ ("heat_pump" if c == "Grosswaermepumpe" else "resistive_heater"), |
538
|
|
|
capacity=df.loc[(c, "Fernwaermeerzeugung"), "Wert"] |
539
|
|
|
* 1e6 |
540
|
|
|
/ df.loc[(c, "Volllaststunden"), "Wert"] |
541
|
|
|
/ df.loc[(c, "Wirkungsgrad"), "Wert"], |
542
|
|
|
) |
543
|
|
|
|
544
|
|
|
session.add(entry) |
545
|
|
|
|
546
|
|
|
# insert solar- and geothermal as generator |
547
|
|
|
for c in ["Geothermie", "Solarthermie"]: |
548
|
|
|
entry = EgonScenarioCapacities( |
549
|
|
|
component="generator", |
550
|
|
|
scenario_name="eGon2035", |
551
|
|
|
nuts="DE", |
552
|
|
|
carrier="urban_central_" |
553
|
|
|
+ ( |
554
|
|
|
"solar_thermal_collector" |
555
|
|
|
if c == "Solarthermie" |
556
|
|
|
else "geo_thermal" |
557
|
|
|
), |
558
|
|
|
capacity=df.loc[(c, "Fernwaermeerzeugung"), "Wert"] |
559
|
|
|
* 1e6 |
560
|
|
|
/ df.loc[(c, "Volllaststunden"), "Wert"], |
561
|
|
|
) |
562
|
|
|
|
563
|
|
|
session.add(entry) |
564
|
|
|
|
565
|
|
|
session.commit() |
566
|
|
|
|
567
|
|
|
|
568
|
|
|
def insert_data_nep(): |
569
|
|
|
"""Overall function for importing scenario input data for eGon2035 scenario |
570
|
|
|
|
571
|
|
|
Returns |
572
|
|
|
------- |
573
|
|
|
None. |
574
|
|
|
|
575
|
|
|
""" |
576
|
|
|
|
577
|
|
|
insert_nep_list_powerplants(export=True) |
578
|
|
|
|
579
|
|
|
insert_capacities_per_federal_state_nep() |
580
|
|
|
|
581
|
|
|
|
582
|
|
|
def eGon100_capacities(): |
583
|
|
|
"""Inserts installed capacities for the eGon100 scenario |
584
|
|
|
|
585
|
|
|
Returns |
586
|
|
|
------- |
587
|
|
|
None. |
588
|
|
|
|
589
|
|
|
""" |
590
|
|
|
|
591
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
592
|
|
|
targets = egon.data.config.datasets()["scenario_input"]["targets"] |
593
|
|
|
|
594
|
|
|
# read-in installed capacities |
595
|
|
|
execute_pypsa_eur_sec = False |
596
|
|
|
cwd = Path(".") |
597
|
|
|
|
598
|
|
|
if execute_pypsa_eur_sec: |
599
|
|
|
filepath = cwd / "run-pypsa-eur-sec" |
600
|
|
|
pypsa_eur_sec_repos = filepath / "pypsa-eur-sec" |
601
|
|
|
# Read YAML file |
602
|
|
|
pes_egonconfig = pypsa_eur_sec_repos / "config_egon.yaml" |
603
|
|
|
with open(pes_egonconfig, "r") as stream: |
604
|
|
|
data_config = yaml.safe_load(stream) |
605
|
|
|
|
606
|
|
|
target_file = ( |
607
|
|
|
pypsa_eur_sec_repos |
608
|
|
|
/ "results" |
609
|
|
|
/ data_config["run"] |
610
|
|
|
/ "csvs" |
611
|
|
|
/ sources["eGon100RE"]["capacities"] |
612
|
|
|
) |
613
|
|
|
|
614
|
|
|
else: |
615
|
|
|
target_file = ( |
616
|
|
|
cwd |
617
|
|
|
/ "data_bundle_egon_data" |
618
|
|
|
/ "pypsa_eur_sec" |
619
|
|
|
/ "2022-07-26-egondata-integration" |
620
|
|
|
/ "csvs" |
621
|
|
|
/ sources["eGon100RE"]["capacities"] |
622
|
|
|
) |
623
|
|
|
|
624
|
|
|
df = pd.read_csv(target_file, skiprows=5) |
625
|
|
|
df.columns = ["component", "country", "carrier", "p_nom"] |
626
|
|
|
|
627
|
|
|
df.set_index("carrier", inplace=True) |
628
|
|
|
|
629
|
|
|
df = df[df.country.str[:2] == "DE"] |
630
|
|
|
|
631
|
|
|
# Drop country column |
632
|
|
|
df.drop("country", axis=1, inplace=True) |
633
|
|
|
|
634
|
|
|
# Drop copmponents which will be optimized in eGo |
635
|
|
|
unused_carrier = [ |
636
|
|
|
"BEV charger", |
637
|
|
|
"DAC", |
638
|
|
|
"H2 Electrolysis", |
639
|
|
|
"electricity distribution grid", |
640
|
|
|
"home battery charger", |
641
|
|
|
"home battery discharger", |
642
|
|
|
"H2", |
643
|
|
|
"Li ion", |
644
|
|
|
"home battery", |
645
|
|
|
"residential rural water tanks charger", |
646
|
|
|
"residential rural water tanks discharger", |
647
|
|
|
"services rural water tanks charger", |
648
|
|
|
"services rural water tanks discharger", |
649
|
|
|
"residential rural water tanks", |
650
|
|
|
"services rural water tanks", |
651
|
|
|
"urban central water tanks", |
652
|
|
|
"urban central water tanks charger", |
653
|
|
|
"urban central water tanks discharger", |
654
|
|
|
"H2 Fuel Cell", |
655
|
|
|
] |
656
|
|
|
|
657
|
|
|
df = df[~df.index.isin(unused_carrier)] |
658
|
|
|
|
659
|
|
|
df.index = df.index.str.replace(" ", "_") |
660
|
|
|
|
661
|
|
|
# Aggregate offshore wind |
662
|
|
|
df = df.append( |
663
|
|
|
pd.DataFrame( |
664
|
|
|
index=["wind_offshore"], |
665
|
|
|
data={ |
666
|
|
|
"p_nom": (df.p_nom["offwind-ac"] + df.p_nom["offwind-dc"]), |
667
|
|
|
"component": df.component["offwind-ac"], |
668
|
|
|
}, |
669
|
|
|
) |
670
|
|
|
) |
671
|
|
|
df = df.drop(["offwind-ac", "offwind-dc"]) |
672
|
|
|
|
673
|
|
|
# Aggregate technologies with and without carbon_capture (CC) |
674
|
|
|
for carrier in ["SMR", "urban_central_gas_CHP"]: |
675
|
|
|
df.p_nom[carrier] += df.p_nom[f"{carrier}_CC"] |
676
|
|
|
df = df.drop([f"{carrier}_CC"]) |
677
|
|
|
|
678
|
|
|
# Aggregate residential and services rural heat supply |
679
|
|
|
for merge_carrier in [ |
680
|
|
|
"rural_resistive_heater", |
681
|
|
|
"rural_ground_heat_pump", |
682
|
|
|
"rural_gas_boiler", |
683
|
|
|
"rural_solar_thermal", |
684
|
|
|
]: |
685
|
|
|
if f"residential_{merge_carrier}" in df.index: |
686
|
|
|
df = df.append( |
687
|
|
|
pd.DataFrame( |
688
|
|
|
index=[merge_carrier], |
689
|
|
|
data={ |
690
|
|
|
"p_nom": ( |
691
|
|
|
df.p_nom[f"residential_{merge_carrier}"] |
692
|
|
|
+ df.p_nom[f"services_{merge_carrier}"] |
693
|
|
|
), |
694
|
|
|
"component": df.component[f"residential_{merge_carrier}"], |
695
|
|
|
}, |
696
|
|
|
) |
697
|
|
|
) |
698
|
|
|
df = df.drop( |
699
|
|
|
[f"residential_{merge_carrier}", f"services_{merge_carrier}"] |
700
|
|
|
) |
701
|
|
|
|
702
|
|
|
# Rename carriers |
703
|
|
|
df.rename( |
704
|
|
|
{ |
705
|
|
|
"onwind": "wind_onshore", |
706
|
|
|
"ror": "run_of_river", |
707
|
|
|
"PHS": "pumped_hydro", |
708
|
|
|
"OCGT": "gas", |
709
|
|
|
"rural_ground_heat_pump": "residential_rural_heat_pump", |
710
|
|
|
"urban_central_air_heat_pump": "urban_central_heat_pump", |
711
|
|
|
"urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
712
|
|
|
}, |
713
|
|
|
inplace=True, |
714
|
|
|
) |
715
|
|
|
|
716
|
|
|
# Reset index |
717
|
|
|
df = df.reset_index() |
718
|
|
|
|
719
|
|
|
# Rename columns |
720
|
|
|
df.rename( |
721
|
|
|
{"p_nom": "capacity", "index": "carrier"}, axis="columns", inplace=True |
722
|
|
|
) |
723
|
|
|
|
724
|
|
|
df["scenario_name"] = "eGon100RE" |
725
|
|
|
df["nuts"] = "DE" |
726
|
|
|
|
727
|
|
|
db.execute_sql( |
728
|
|
|
f""" |
729
|
|
|
DELETE FROM |
730
|
|
|
{targets['scenario_capacities']['schema']}.{targets['scenario_capacities']['table']} |
731
|
|
|
WHERE scenario_name='eGon100RE' |
732
|
|
|
""" |
733
|
|
|
) |
734
|
|
|
|
735
|
|
|
df.to_sql( |
736
|
|
|
targets["scenario_capacities"]["table"], |
737
|
|
|
schema=targets["scenario_capacities"]["schema"], |
738
|
|
|
con=db.engine(), |
739
|
|
|
if_exists="append", |
740
|
|
|
index=False, |
741
|
|
|
) |
742
|
|
|
|