| Total Complexity | 56 | 
| Total Lines | 1615 | 
| Duplicated Lines | 13 % | 
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.DSM_cts_ind often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from sqlalchemy import ARRAY, Column, Float, Integer, String  | 
            ||
| 2 | from sqlalchemy.ext.declarative import declarative_base  | 
            ||
| 3 | import geopandas as gpd  | 
            ||
| 4 | import numpy as np  | 
            ||
| 5 | import pandas as pd  | 
            ||
| 6 | |||
| 7 | from egon.data import config, db  | 
            ||
| 8 | from egon.data.datasets import Dataset  | 
            ||
| 9 | from egon.data.datasets.electricity_demand.temporal import calc_load_curve  | 
            ||
| 10 | from egon.data.datasets.industry.temporal import identify_bus  | 
            ||
| 11 | |||
| 12 | # CONSTANTS  | 
            ||
| 13 | # TODO: move to datasets.yml  | 
            ||
| 14 | CON = db.engine()  | 
            ||
| 15 | |||
| 16 | # CTS  | 
            ||
| 17 | CTS_COOL_VENT_AC_SHARE = 0.22  | 
            ||
| 18 | |||
| 19 | S_FLEX_CTS = 0.5  | 
            ||
| 20 | S_UTIL_CTS = 0.67  | 
            ||
| 21 | S_INC_CTS = 1  | 
            ||
| 22 | S_DEC_CTS = 0  | 
            ||
| 23 | DELTA_T_CTS = 1  | 
            ||
| 24 | |||
| 25 | # industry  | 
            ||
| 26 | IND_VENT_COOL_SHARE = 0.039  | 
            ||
| 27 | IND_VENT_SHARE = 0.017  | 
            ||
| 28 | |||
| 29 | # OSM  | 
            ||
| 30 | S_FLEX_OSM = 0.5  | 
            ||
| 31 | S_UTIL_OSM = 0.73  | 
            ||
| 32 | S_INC_OSM = 0.9  | 
            ||
| 33 | S_DEC_OSM = 0.5  | 
            ||
| 34 | DELTA_T_OSM = 1  | 
            ||
| 35 | |||
| 36 | # paper  | 
            ||
| 37 | S_FLEX_PAPER = 0.15  | 
            ||
| 38 | S_UTIL_PAPER = 0.86  | 
            ||
| 39 | S_INC_PAPER = 0.95  | 
            ||
| 40 | S_DEC_PAPER = 0  | 
            ||
| 41 | DELTA_T_PAPER = 3  | 
            ||
| 42 | |||
| 43 | # recycled paper  | 
            ||
| 44 | S_FLEX_RECYCLED_PAPER = 0.7  | 
            ||
| 45 | S_UTIL_RECYCLED_PAPER = 0.85  | 
            ||
| 46 | S_INC_RECYCLED_PAPER = 0.95  | 
            ||
| 47 | S_DEC_RECYCLED_PAPER = 0  | 
            ||
| 48 | DELTA_T_RECYCLED_PAPER = 3  | 
            ||
| 49 | |||
| 50 | # pulp  | 
            ||
| 51 | S_FLEX_PULP = 0.7  | 
            ||
| 52 | S_UTIL_PULP = 0.83  | 
            ||
| 53 | S_INC_PULP = 0.95  | 
            ||
| 54 | S_DEC_PULP = 0  | 
            ||
| 55 | DELTA_T_PULP = 2  | 
            ||
| 56 | |||
| 57 | # cement  | 
            ||
| 58 | S_FLEX_CEMENT = 0.61  | 
            ||
| 59 | S_UTIL_CEMENT = 0.65  | 
            ||
| 60 | S_INC_CEMENT = 0.95  | 
            ||
| 61 | S_DEC_CEMENT = 0  | 
            ||
| 62 | DELTA_T_CEMENT = 4  | 
            ||
| 63 | |||
| 64 | # wz 23  | 
            ||
| 65 | WZ = 23  | 
            ||
| 66 | |||
| 67 | S_FLEX_WZ = 0.5  | 
            ||
| 68 | S_UTIL_WZ = 0.8  | 
            ||
| 69 | S_INC_WZ = 1  | 
            ||
| 70 | S_DEC_WZ = 0.5  | 
            ||
| 71 | DELTA_T_WZ = 1  | 
            ||
| 72 | |||
| 73 | Base = declarative_base()  | 
            ||
| 74 | |||
| 75 | |||
| 76 | class DsmPotential(Dataset):  | 
            ||
| 77 | def __init__(self, dependencies):  | 
            ||
| 78 | super().__init__(  | 
            ||
| 79 | name="DsmPotential",  | 
            ||
| 80 | version="0.0.4.dev",  | 
            ||
| 81 | dependencies=dependencies,  | 
            ||
| 82 | tasks=(dsm_cts_ind_processing),  | 
            ||
| 83 | )  | 
            ||
| 84 | |||
| 85 | |||
| 86 | # Datasets  | 
            ||
| 87 | View Code Duplication | class EgonEtragoElectricityCtsDsmTimeseries(Base):  | 
            |
| 
                                                                                                    
                        
                         | 
                |||
| 88 | target = config.datasets()["DSM_CTS_industry"]["targets"][  | 
            ||
| 89 | "cts_loadcurves_dsm"  | 
            ||
| 90 | ]  | 
            ||
| 91 | |||
| 92 | __tablename__ = target["table"]  | 
            ||
| 93 |     __table_args__ = {"schema": target["schema"]} | 
            ||
| 94 | |||
| 95 | bus = Column(Integer, primary_key=True, index=True)  | 
            ||
| 96 | scn_name = Column(String, primary_key=True, index=True)  | 
            ||
| 97 | p_nom = Column(Float)  | 
            ||
| 98 | e_nom = Column(Float)  | 
            ||
| 99 | p_set = Column(ARRAY(Float))  | 
            ||
| 100 | p_max_pu = Column(ARRAY(Float))  | 
            ||
| 101 | p_min_pu = Column(ARRAY(Float))  | 
            ||
| 102 | e_max_pu = Column(ARRAY(Float))  | 
            ||
| 103 | e_min_pu = Column(ARRAY(Float))  | 
            ||
| 104 | |||
| 105 | |||
| 106 | View Code Duplication | class EgonOsmIndLoadCurvesIndividualDsmTimeseries(Base):  | 
            |
| 107 | target = config.datasets()["DSM_CTS_industry"]["targets"][  | 
            ||
| 108 | "ind_osm_loadcurves_individual_dsm"  | 
            ||
| 109 | ]  | 
            ||
| 110 | |||
| 111 | __tablename__ = target["table"]  | 
            ||
| 112 |     __table_args__ = {"schema": target["schema"]} | 
            ||
| 113 | |||
| 114 | osm_id = Column(Integer, primary_key=True, index=True)  | 
            ||
| 115 | scn_name = Column(String, primary_key=True, index=True)  | 
            ||
| 116 | bus = Column(Integer)  | 
            ||
| 117 | p_nom = Column(Float)  | 
            ||
| 118 | e_nom = Column(Float)  | 
            ||
| 119 | p_set = Column(ARRAY(Float))  | 
            ||
| 120 | p_max_pu = Column(ARRAY(Float))  | 
            ||
| 121 | p_min_pu = Column(ARRAY(Float))  | 
            ||
| 122 | e_max_pu = Column(ARRAY(Float))  | 
            ||
| 123 | e_min_pu = Column(ARRAY(Float))  | 
            ||
| 124 | |||
| 125 | |||
| 126 | View Code Duplication | class EgonDemandregioSitesIndElectricityDsmTimeseries(Base):  | 
            |
| 127 | target = config.datasets()["DSM_CTS_industry"]["targets"][  | 
            ||
| 128 | "demandregio_ind_sites_dsm"  | 
            ||
| 129 | ]  | 
            ||
| 130 | |||
| 131 | __tablename__ = target["table"]  | 
            ||
| 132 |     __table_args__ = {"schema": target["schema"]} | 
            ||
| 133 | |||
| 134 | industrial_sites_id = Column(Integer, primary_key=True, index=True)  | 
            ||
| 135 | scn_name = Column(String, primary_key=True, index=True)  | 
            ||
| 136 | bus = Column(Integer)  | 
            ||
| 137 | application = Column(String)  | 
            ||
| 138 | p_nom = Column(Float)  | 
            ||
| 139 | e_nom = Column(Float)  | 
            ||
| 140 | p_set = Column(ARRAY(Float))  | 
            ||
| 141 | p_max_pu = Column(ARRAY(Float))  | 
            ||
| 142 | p_min_pu = Column(ARRAY(Float))  | 
            ||
| 143 | e_max_pu = Column(ARRAY(Float))  | 
            ||
| 144 | e_min_pu = Column(ARRAY(Float))  | 
            ||
| 145 | |||
| 146 | |||
| 147 | View Code Duplication | class EgonSitesIndLoadCurvesIndividualDsmTimeseries(Base):  | 
            |
| 148 | target = config.datasets()["DSM_CTS_industry"]["targets"][  | 
            ||
| 149 | "ind_sites_loadcurves_individual"  | 
            ||
| 150 | ]  | 
            ||
| 151 | |||
| 152 | __tablename__ = target["table"]  | 
            ||
| 153 |     __table_args__ = {"schema": target["schema"]} | 
            ||
| 154 | |||
| 155 | site_id = Column(Integer, primary_key=True, index=True)  | 
            ||
| 156 | scn_name = Column(String, primary_key=True, index=True)  | 
            ||
| 157 | bus = Column(Integer)  | 
            ||
| 158 | p_nom = Column(Float)  | 
            ||
| 159 | e_nom = Column(Float)  | 
            ||
| 160 | p_set = Column(ARRAY(Float))  | 
            ||
| 161 | p_max_pu = Column(ARRAY(Float))  | 
            ||
| 162 | p_min_pu = Column(ARRAY(Float))  | 
            ||
| 163 | e_max_pu = Column(ARRAY(Float))  | 
            ||
| 164 | e_min_pu = Column(ARRAY(Float))  | 
            ||
| 165 | |||
| 166 | |||
| 167 | # Code  | 
            ||
| 168 | def cts_data_import(cts_cool_vent_ac_share):  | 
            ||
| 169 | """  | 
            ||
| 170 | Import CTS data necessary to identify DSM-potential.  | 
            ||
| 171 | |||
| 172 | ----------  | 
            ||
| 173 | cts_share: float  | 
            ||
| 174 | Share of cooling, ventilation and AC in CTS demand  | 
            ||
| 175 | """  | 
            ||
| 176 | |||
| 177 | # import load data  | 
            ||
| 178 | |||
| 179 | sources = config.datasets()["DSM_CTS_industry"]["sources"][  | 
            ||
| 180 | "cts_loadcurves"  | 
            ||
| 181 | ]  | 
            ||
| 182 | |||
| 183 | ts = db.select_dataframe(  | 
            ||
| 184 | f"""SELECT bus_id, scn_name, p_set FROM  | 
            ||
| 185 |         {sources['schema']}.{sources['table']}""" | 
            ||
| 186 | )  | 
            ||
| 187 | |||
| 188 | # identify relevant columns and prepare df to be returned  | 
            ||
| 189 | |||
| 190 | dsm = pd.DataFrame(index=ts.index)  | 
            ||
| 191 | |||
| 192 | dsm["bus"] = ts["bus_id"].copy()  | 
            ||
| 193 | dsm["scn_name"] = ts["scn_name"].copy()  | 
            ||
| 194 | dsm["p_set"] = ts["p_set"].copy()  | 
            ||
| 195 | |||
| 196 | # calculate share of timeseries for air conditioning, cooling and  | 
            ||
| 197 | # ventilation out of CTS-data  | 
            ||
| 198 | |||
| 199 | timeseries = dsm["p_set"].copy()  | 
            ||
| 200 | |||
| 201 | for index, liste in timeseries.items():  | 
            ||
| 202 | share = [float(item) * cts_cool_vent_ac_share for item in liste]  | 
            ||
| 203 | timeseries.loc[index] = share  | 
            ||
| 204 | |||
| 205 | dsm["p_set"] = timeseries.copy()  | 
            ||
| 206 | |||
| 207 | return dsm  | 
            ||
| 208 | |||
| 209 | |||
| 210 | View Code Duplication | def ind_osm_data_import(ind_vent_cool_share):  | 
            |
| 211 | """  | 
            ||
| 212 | Import industry data per osm-area necessary to identify DSM-potential.  | 
            ||
| 213 | ----------  | 
            ||
| 214 | ind_share: float  | 
            ||
| 215 | Share of considered application in industry demand  | 
            ||
| 216 | """  | 
            ||
| 217 | |||
| 218 | # import load data  | 
            ||
| 219 | |||
| 220 | sources = config.datasets()["DSM_CTS_industry"]["sources"][  | 
            ||
| 221 | "ind_osm_loadcurves"  | 
            ||
| 222 | ]  | 
            ||
| 223 | |||
| 224 | dsm = db.select_dataframe(  | 
            ||
| 225 | f"""  | 
            ||
| 226 | SELECT bus, scn_name, p_set FROM  | 
            ||
| 227 |         {sources['schema']}.{sources['table']} | 
            ||
| 228 | """  | 
            ||
| 229 | )  | 
            ||
| 230 | |||
| 231 | # calculate share of timeseries for cooling and ventilation out of  | 
            ||
| 232 | # industry-data  | 
            ||
| 233 | |||
| 234 | timeseries = dsm["p_set"].copy()  | 
            ||
| 235 | |||
| 236 | for index, liste in timeseries.items():  | 
            ||
| 237 | share = [float(item) * ind_vent_cool_share for item in liste]  | 
            ||
| 238 | |||
| 239 | timeseries.loc[index] = share  | 
            ||
| 240 | |||
| 241 | dsm["p_set"] = timeseries.copy()  | 
            ||
| 242 | |||
| 243 | return dsm  | 
            ||
| 244 | |||
| 245 | |||
| 246 | View Code Duplication | def ind_osm_data_import_individual(ind_vent_cool_share):  | 
            |
| 247 | """  | 
            ||
| 248 | Import industry data per osm-area necessary to identify DSM-potential.  | 
            ||
| 249 | ----------  | 
            ||
| 250 | ind_share: float  | 
            ||
| 251 | Share of considered application in industry demand  | 
            ||
| 252 | """  | 
            ||
| 253 | |||
| 254 | # import load data  | 
            ||
| 255 | |||
| 256 | sources = config.datasets()["DSM_CTS_industry"]["sources"][  | 
            ||
| 257 | "ind_osm_loadcurves_individual"  | 
            ||
| 258 | ]  | 
            ||
| 259 | |||
| 260 | dsm = db.select_dataframe(  | 
            ||
| 261 | f"""  | 
            ||
| 262 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM  | 
            ||
| 263 |         {sources['schema']}.{sources['table']} | 
            ||
| 264 | """  | 
            ||
| 265 | )  | 
            ||
| 266 | |||
| 267 | # calculate share of timeseries for cooling and ventilation out of  | 
            ||
| 268 | # industry-data  | 
            ||
| 269 | |||
| 270 | timeseries = dsm["p_set"].copy()  | 
            ||
| 271 | |||
| 272 | for index, liste in timeseries.items():  | 
            ||
| 273 | share = [float(item) * ind_vent_cool_share for item in liste]  | 
            ||
| 274 | |||
| 275 | timeseries.loc[index] = share  | 
            ||
| 276 | |||
| 277 | dsm["p_set"] = timeseries.copy()  | 
            ||
| 278 | |||
| 279 | return dsm  | 
            ||
| 280 | |||
| 281 | |||
| 282 | View Code Duplication | def ind_sites_vent_data_import(ind_vent_share, wz):  | 
            |
| 283 | """  | 
            ||
| 284 | Import industry sites necessary to identify DSM-potential.  | 
            ||
| 285 | ----------  | 
            ||
| 286 | ind_vent_share: float  | 
            ||
| 287 | Share of considered application in industry demand  | 
            ||
| 288 | wz: int  | 
            ||
| 289 | Wirtschaftszweig to be considered within industry sites  | 
            ||
| 290 | """  | 
            ||
| 291 | |||
| 292 | # import load data  | 
            ||
| 293 | |||
| 294 | sources = config.datasets()["DSM_CTS_industry"]["sources"][  | 
            ||
| 295 | "ind_sites_loadcurves"  | 
            ||
| 296 | ]  | 
            ||
| 297 | |||
| 298 | dsm = db.select_dataframe(  | 
            ||
| 299 | f"""  | 
            ||
| 300 | SELECT bus, scn_name, p_set FROM  | 
            ||
| 301 |         {sources['schema']}.{sources['table']} | 
            ||
| 302 |         WHERE wz = {wz} | 
            ||
| 303 | """  | 
            ||
| 304 | )  | 
            ||
| 305 | |||
| 306 | # calculate share of timeseries for ventilation  | 
            ||
| 307 | |||
| 308 | timeseries = dsm["p_set"].copy()  | 
            ||
| 309 | |||
| 310 | for index, liste in timeseries.items():  | 
            ||
| 311 | share = [float(item) * ind_vent_share for item in liste]  | 
            ||
| 312 | timeseries.loc[index] = share  | 
            ||
| 313 | |||
| 314 | dsm["p_set"] = timeseries.copy()  | 
            ||
| 315 | |||
| 316 | return dsm  | 
            ||
| 317 | |||
| 318 | |||
| 319 | View Code Duplication | def ind_sites_vent_data_import_individual(ind_vent_share, wz):  | 
            |
| 320 | """  | 
            ||
| 321 | Import industry sites necessary to identify DSM-potential.  | 
            ||
| 322 | ----------  | 
            ||
| 323 | ind_vent_share: float  | 
            ||
| 324 | Share of considered application in industry demand  | 
            ||
| 325 | wz: int  | 
            ||
| 326 | Wirtschaftszweig to be considered within industry sites  | 
            ||
| 327 | """  | 
            ||
| 328 | |||
| 329 | # import load data  | 
            ||
| 330 | |||
| 331 | sources = config.datasets()["DSM_CTS_industry"]["sources"][  | 
            ||
| 332 | "ind_sites_loadcurves_individual"  | 
            ||
| 333 | ]  | 
            ||
| 334 | |||
| 335 | dsm = db.select_dataframe(  | 
            ||
| 336 | f"""  | 
            ||
| 337 | SELECT site_id, bus_id as bus, scn_name, p_set FROM  | 
            ||
| 338 |         {sources['schema']}.{sources['table']} | 
            ||
| 339 |         WHERE wz = {wz} | 
            ||
| 340 | """  | 
            ||
| 341 | )  | 
            ||
| 342 | |||
| 343 | # calculate share of timeseries for ventilation  | 
            ||
| 344 | |||
| 345 | timeseries = dsm["p_set"].copy()  | 
            ||
| 346 | |||
| 347 | for index, liste in timeseries.items():  | 
            ||
| 348 | share = [float(item) * ind_vent_share for item in liste]  | 
            ||
| 349 | timeseries.loc[index] = share  | 
            ||
| 350 | |||
| 351 | dsm["p_set"] = timeseries.copy()  | 
            ||
| 352 | |||
| 353 | return dsm  | 
            ||
| 354 | |||
| 355 | |||
| 356 | def calc_ind_site_timeseries(scenario):  | 
            ||
| 357 | # calculate timeseries per site  | 
            ||
| 358 | # -> using code from egon.data.datasets.industry.temporal:  | 
            ||
| 359 | # calc_load_curves_ind_sites  | 
            ||
| 360 | |||
| 361 | # select demands per industrial site including the subsector information  | 
            ||
| 362 | source1 = config.datasets()["DSM_CTS_industry"]["sources"][  | 
            ||
| 363 | "demandregio_ind_sites"  | 
            ||
| 364 | ]  | 
            ||
| 365 | |||
| 366 | demands_ind_sites = db.select_dataframe(  | 
            ||
| 367 | f"""SELECT industrial_sites_id, wz, demand  | 
            ||
| 368 |             FROM {source1['schema']}.{source1['table']} | 
            ||
| 369 |             WHERE scenario = '{scenario}' | 
            ||
| 370 | AND demand > 0  | 
            ||
| 371 | """  | 
            ||
| 372 | ).set_index(["industrial_sites_id"])  | 
            ||
| 373 | |||
| 374 | # select industrial sites as demand_areas from database  | 
            ||
| 375 | source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"]  | 
            ||
| 376 | |||
| 377 | demand_area = db.select_geodataframe(  | 
            ||
| 378 | f"""SELECT id, geom, subsector FROM  | 
            ||
| 379 |             {source2['schema']}.{source2['table']}""", | 
            ||
| 380 | index_col="id",  | 
            ||
| 381 | geom_col="geom",  | 
            ||
| 382 | epsg=3035,  | 
            ||
| 383 | )  | 
            ||
| 384 | |||
| 385 | # replace entries to bring it in line with demandregio's subsector  | 
            ||
| 386 | # definitions  | 
            ||
| 387 | demands_ind_sites.replace(1718, 17, inplace=True)  | 
            ||
| 388 | share_wz_sites = demands_ind_sites.copy()  | 
            ||
| 389 | |||
| 390 | # create additional df on wz_share per industrial site, which is always set  | 
            ||
| 391 | # to one as the industrial demand per site is subsector specific  | 
            ||
| 392 | share_wz_sites.demand = 1  | 
            ||
| 393 | share_wz_sites.reset_index(inplace=True)  | 
            ||
| 394 | |||
| 395 | share_transpose = pd.DataFrame(  | 
            ||
| 396 | index=share_wz_sites.industrial_sites_id.unique(),  | 
            ||
| 397 | columns=share_wz_sites.wz.unique(),  | 
            ||
| 398 | )  | 
            ||
| 399 |     share_transpose.index.rename("industrial_sites_id", inplace=True) | 
            ||
| 400 | for wz in share_transpose.columns:  | 
            ||
| 401 | share_transpose[wz] = (  | 
            ||
| 402 | share_wz_sites[share_wz_sites.wz == wz]  | 
            ||
| 403 |             .set_index("industrial_sites_id") | 
            ||
| 404 | .demand  | 
            ||
| 405 | )  | 
            ||
| 406 | |||
| 407 | # calculate load curves  | 
            ||
| 408 | load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"])  | 
            ||
| 409 | |||
| 410 | # identify bus per industrial site  | 
            ||
| 411 | curves_bus = identify_bus(load_curves, demand_area)  | 
            ||
| 412 | curves_bus.index = curves_bus["id"].astype(int)  | 
            ||
| 413 | |||
| 414 | # initialize dataframe to be returned  | 
            ||
| 415 | |||
| 416 | ts = pd.DataFrame(  | 
            ||
| 417 | data=curves_bus["bus_id"], index=curves_bus["id"].astype(int)  | 
            ||
| 418 | )  | 
            ||
| 419 | ts["scenario_name"] = scenario  | 
            ||
| 420 |     curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) | 
            ||
| 421 | ts["p_set"] = curves_bus.values.tolist()  | 
            ||
| 422 | |||
| 423 | # add subsector to relate to Schmidt's tables afterwards  | 
            ||
| 424 | ts["application"] = demand_area["subsector"]  | 
            ||
| 425 | |||
| 426 | return ts  | 
            ||
| 427 | |||
| 428 | |||
| 429 | def relate_to_schmidt_sites(dsm):  | 
            ||
| 430 | # import industrial sites by Schmidt  | 
            ||
| 431 | |||
| 432 | source = config.datasets()["DSM_CTS_industry"]["sources"][  | 
            ||
| 433 | "ind_sites_schmidt"  | 
            ||
| 434 | ]  | 
            ||
| 435 | |||
| 436 | schmidt = db.select_dataframe(  | 
            ||
| 437 | f"""SELECT application, geom FROM  | 
            ||
| 438 |             {source['schema']}.{source['table']}""" | 
            ||
| 439 | )  | 
            ||
| 440 | |||
| 441 | # relate calculated timeseries (dsm) to Schmidt's industrial sites  | 
            ||
| 442 | |||
| 443 | applications = np.unique(schmidt["application"])  | 
            ||
| 444 | dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)])  | 
            ||
| 445 | |||
| 446 | # initialize dataframe to be returned  | 
            ||
| 447 | |||
| 448 | dsm.rename(  | 
            ||
| 449 |         columns={"scenario_name": "scn_name", "bus_id": "bus"}, | 
            ||
| 450 | inplace=True,  | 
            ||
| 451 | )  | 
            ||
| 452 | |||
| 453 | return dsm  | 
            ||
| 454 | |||
| 455 | |||
| 456 | def ind_sites_data_import():  | 
            ||
| 457 | """  | 
            ||
| 458 | Import industry sites data necessary to identify DSM-potential.  | 
            ||
| 459 | """  | 
            ||
| 460 | # calculate timeseries per site  | 
            ||
| 461 | |||
| 462 | # scenario eGon2035  | 
            ||
| 463 |     dsm_2035 = calc_ind_site_timeseries("eGon2035") | 
            ||
| 464 | dsm_2035.reset_index(inplace=True)  | 
            ||
| 465 | # scenario eGon100RE  | 
            ||
| 466 |     dsm_100 = calc_ind_site_timeseries("eGon100RE") | 
            ||
| 467 | dsm_100.reset_index(inplace=True)  | 
            ||
| 468 | # bring df for both scenarios together  | 
            ||
| 469 | dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100))))  | 
            ||
| 470 | dsm = dsm_2035.append(dsm_100)  | 
            ||
| 471 | |||
| 472 | # relate calculated timeseries to Schmidt's industrial sites  | 
            ||
| 473 | |||
| 474 | dsm = relate_to_schmidt_sites(dsm)  | 
            ||
| 475 | |||
| 476 | return dsm[["application", "id", "bus", "scn_name", "p_set"]]  | 
            ||
| 477 | |||
| 478 | |||
| 479 | def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm):  | 
            ||
| 480 | """  | 
            ||
| 481 | Calculate DSM-potential per bus using the methods by Heitkoetter et. al.:  | 
            ||
| 482 | https://doi.org/10.1016/j.adapen.2020.100001  | 
            ||
| 483 | Parameters  | 
            ||
| 484 | ----------  | 
            ||
| 485 | s_flex: float  | 
            ||
| 486 | Feasability factor to account for socio-technical restrictions  | 
            ||
| 487 | s_util: float  | 
            ||
| 488 | Average annual utilisation rate  | 
            ||
| 489 | s_inc: float  | 
            ||
| 490 | Shiftable share of installed capacity up to which load can be  | 
            ||
| 491 | increased considering technical limitations  | 
            ||
| 492 | s_dec: float  | 
            ||
| 493 | Shiftable share of installed capacity up to which load can be  | 
            ||
| 494 | decreased considering technical limitations  | 
            ||
| 495 | delta_t: int  | 
            ||
| 496 | Maximum shift duration in hours  | 
            ||
| 497 | dsm: DataFrame  | 
            ||
| 498 | List of existing buses with DSM-potential including timeseries of  | 
            ||
| 499 | loads  | 
            ||
| 500 | """  | 
            ||
| 501 | |||
| 502 | # copy relevant timeseries  | 
            ||
| 503 | timeseries = dsm["p_set"].copy()  | 
            ||
| 504 | |||
| 505 | # calculate scheduled load L(t)  | 
            ||
| 506 | |||
| 507 | scheduled_load = timeseries.copy()  | 
            ||
| 508 | |||
| 509 | for index, liste in scheduled_load.items():  | 
            ||
| 510 | share = []  | 
            ||
| 511 | for item in liste:  | 
            ||
| 512 | share.append(item * s_flex)  | 
            ||
| 513 | scheduled_load.loc[index] = share  | 
            ||
| 514 | |||
| 515 | # calculate maximum capacity Lambda  | 
            ||
| 516 | |||
| 517 | # calculate energy annual requirement  | 
            ||
| 518 | energy_annual = pd.Series(index=timeseries.index, dtype=float)  | 
            ||
| 519 | for index, liste in timeseries.items():  | 
            ||
| 520 | energy_annual.loc[index] = sum(liste)  | 
            ||
| 521 | |||
| 522 | # calculate Lambda  | 
            ||
| 523 | lam = (energy_annual * s_flex) / (8760 * s_util)  | 
            ||
| 524 | |||
| 525 | # calculation of P_max and P_min  | 
            ||
| 526 | |||
| 527 | # P_max  | 
            ||
| 528 | p_max = scheduled_load.copy()  | 
            ||
| 529 | for index, liste in scheduled_load.items():  | 
            ||
| 530 | lamb = lam.loc[index]  | 
            ||
| 531 | p = []  | 
            ||
| 532 | for item in liste:  | 
            ||
| 533 | value = lamb * s_inc - item  | 
            ||
| 534 | if value < 0:  | 
            ||
| 535 | value = 0  | 
            ||
| 536 | p.append(value)  | 
            ||
| 537 | p_max.loc[index] = p  | 
            ||
| 538 | |||
| 539 | # P_min  | 
            ||
| 540 | p_min = scheduled_load.copy()  | 
            ||
| 541 | for index, liste in scheduled_load.items():  | 
            ||
| 542 | lamb = lam.loc[index]  | 
            ||
| 543 | p = []  | 
            ||
| 544 | for item in liste:  | 
            ||
| 545 | value = -(item - lamb * s_dec)  | 
            ||
| 546 | if value > 0:  | 
            ||
| 547 | value = 0  | 
            ||
| 548 | p.append(value)  | 
            ||
| 549 | p_min.loc[index] = p  | 
            ||
| 550 | |||
| 551 | # calculation of E_max and E_min  | 
            ||
| 552 | |||
| 553 | e_max = scheduled_load.copy()  | 
            ||
| 554 | e_min = scheduled_load.copy()  | 
            ||
| 555 | |||
| 556 | for index, liste in scheduled_load.items():  | 
            ||
| 557 | emin = []  | 
            ||
| 558 | emax = []  | 
            ||
| 559 | for i in range(len(liste)):  | 
            ||
| 560 | if i + delta_t > len(liste):  | 
            ||
| 561 | emax.append(  | 
            ||
| 562 | (sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)]))  | 
            ||
| 563 | )  | 
            ||
| 564 | else:  | 
            ||
| 565 | emax.append(sum(liste[i : i + delta_t]))  | 
            ||
| 566 | if i - delta_t < 0:  | 
            ||
| 567 | emin.append(  | 
            ||
| 568 | (  | 
            ||
| 569 | -1  | 
            ||
| 570 | * (  | 
            ||
| 571 | (  | 
            ||
| 572 | sum(liste[:i])  | 
            ||
| 573 | + sum(liste[len(liste) - delta_t + i :])  | 
            ||
| 574 | )  | 
            ||
| 575 | )  | 
            ||
| 576 | )  | 
            ||
| 577 | )  | 
            ||
| 578 | else:  | 
            ||
| 579 | emin.append(-1 * sum(liste[i - delta_t : i]))  | 
            ||
| 580 | e_max.loc[index] = emax  | 
            ||
| 581 | e_min.loc[index] = emin  | 
            ||
| 582 | |||
| 583 | return p_max, p_min, e_max, e_min  | 
            ||
| 584 | |||
| 585 | |||
| 586 | def create_dsm_components(con, p_max, p_min, e_max, e_min, dsm):  | 
            ||
| 587 | """  | 
            ||
| 588 | Create components representing DSM.  | 
            ||
| 589 | Parameters  | 
            ||
| 590 | ----------  | 
            ||
| 591 | con :  | 
            ||
| 592 | Connection to database  | 
            ||
| 593 | p_max: DataFrame  | 
            ||
| 594 | Timeseries identifying maximum load increase  | 
            ||
| 595 | p_min: DataFrame  | 
            ||
| 596 | Timeseries identifying maximum load decrease  | 
            ||
| 597 | e_max: DataFrame  | 
            ||
| 598 | Timeseries identifying maximum energy amount to be preponed  | 
            ||
| 599 | e_min: DataFrame  | 
            ||
| 600 | Timeseries identifying maximum energy amount to be postponed  | 
            ||
| 601 | dsm: DataFrame  | 
            ||
| 602 | List of existing buses with DSM-potential including timeseries of loads  | 
            ||
| 603 | """  | 
            ||
| 604 | |||
| 605 | # calculate P_nom and P per unit  | 
            ||
| 606 | p_nom = pd.Series(index=p_max.index, dtype=float)  | 
            ||
| 607 | for index, row in p_max.items():  | 
            ||
| 608 | nom = max(max(row), abs(min(p_min.loc[index])))  | 
            ||
| 609 | p_nom.loc[index] = nom  | 
            ||
| 610 | new = [element / nom for element in row]  | 
            ||
| 611 | p_max.loc[index] = new  | 
            ||
| 612 | new = [element / nom for element in p_min.loc[index]]  | 
            ||
| 613 | p_min.loc[index] = new  | 
            ||
| 614 | |||
| 615 | # calculate E_nom and E per unit  | 
            ||
| 616 | e_nom = pd.Series(index=p_min.index, dtype=float)  | 
            ||
| 617 | for index, row in e_max.items():  | 
            ||
| 618 | nom = max(max(row), abs(min(e_min.loc[index])))  | 
            ||
| 619 | e_nom.loc[index] = nom  | 
            ||
| 620 | new = [element / nom for element in row]  | 
            ||
| 621 | e_max.loc[index] = new  | 
            ||
| 622 | new = [element / nom for element in e_min.loc[index]]  | 
            ||
| 623 | e_min.loc[index] = new  | 
            ||
| 624 | |||
| 625 | # add DSM-buses to "original" buses  | 
            ||
| 626 | dsm_buses = gpd.GeoDataFrame(index=dsm.index)  | 
            ||
| 627 | dsm_buses["original_bus"] = dsm["bus"].copy()  | 
            ||
| 628 | dsm_buses["scn_name"] = dsm["scn_name"].copy()  | 
            ||
| 629 | |||
| 630 | # get original buses and add copy of relevant information  | 
            ||
| 631 | target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"]  | 
            ||
| 632 | original_buses = db.select_geodataframe(  | 
            ||
| 633 | f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM  | 
            ||
| 634 |             {target1['schema']}.{target1['table']}""", | 
            ||
| 635 | geom_col="geom",  | 
            ||
| 636 | epsg=4326,  | 
            ||
| 637 | )  | 
            ||
| 638 | |||
| 639 | # copy relevant information from original buses to DSM-buses  | 
            ||
| 640 | dsm_buses["index"] = dsm_buses.index  | 
            ||
| 641 | originals = original_buses[  | 
            ||
| 642 | original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"]))  | 
            ||
| 643 | ]  | 
            ||
| 644 | dsm_buses = originals.merge(  | 
            ||
| 645 | dsm_buses,  | 
            ||
| 646 | left_on=["bus_id", "scn_name"],  | 
            ||
| 647 | right_on=["original_bus", "scn_name"],  | 
            ||
| 648 | )  | 
            ||
| 649 | dsm_buses.index = dsm_buses["index"]  | 
            ||
| 650 | dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True)  | 
            ||
| 651 | |||
| 652 | # new bus_ids for DSM-buses  | 
            ||
| 653 | max_id = original_buses["bus_id"].max()  | 
            ||
| 654 | if np.isnan(max_id):  | 
            ||
| 655 | max_id = 0  | 
            ||
| 656 | dsm_id = max_id + 1  | 
            ||
| 657 | bus_id = pd.Series(index=dsm_buses.index, dtype=int)  | 
            ||
| 658 | |||
| 659 | # Get number of DSM buses for both scenarios  | 
            ||
| 660 | rows_per_scenario = (  | 
            ||
| 661 |         dsm_buses.groupby("scn_name").count().original_bus.to_dict() | 
            ||
| 662 | )  | 
            ||
| 663 | |||
| 664 | # Assignment of DSM ids  | 
            ||
| 665 |     bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( | 
            ||
| 666 |         dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) | 
            ||
| 667 | )  | 
            ||
| 668 | |||
| 669 | bus_id.iloc[  | 
            ||
| 670 |         rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( | 
            ||
| 671 | "eGon2035", 0  | 
            ||
| 672 | )  | 
            ||
| 673 |         + rows_per_scenario.get("eGon100RE", 0) | 
            ||
| 674 |     ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) | 
            ||
| 675 | |||
| 676 | dsm_buses["bus_id"] = bus_id  | 
            ||
| 677 | |||
| 678 | # add links from "orignal" buses to DSM-buses  | 
            ||
| 679 | |||
| 680 | dsm_links = pd.DataFrame(index=dsm_buses.index)  | 
            ||
| 681 | dsm_links["original_bus"] = dsm_buses["original_bus"].copy()  | 
            ||
| 682 | dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy()  | 
            ||
| 683 | dsm_links["scn_name"] = dsm_buses["scn_name"].copy()  | 
            ||
| 684 | |||
| 685 | # set link_id  | 
            ||
| 686 | target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"]  | 
            ||
| 687 |     sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" | 
            ||
| 688 | max_id = pd.read_sql_query(sql, con)  | 
            ||
| 689 | max_id = max_id["link_id"].max()  | 
            ||
| 690 | if np.isnan(max_id):  | 
            ||
| 691 | max_id = 0  | 
            ||
| 692 | dsm_id = max_id + 1  | 
            ||
| 693 | link_id = pd.Series(index=dsm_buses.index, dtype=int)  | 
            ||
| 694 | |||
| 695 | # Assignment of link ids  | 
            ||
| 696 |     link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( | 
            ||
| 697 |         dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) | 
            ||
| 698 | )  | 
            ||
| 699 | |||
| 700 | link_id.iloc[  | 
            ||
| 701 |         rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( | 
            ||
| 702 | "eGon2035", 0  | 
            ||
| 703 | )  | 
            ||
| 704 |         + rows_per_scenario.get("eGon100RE", 0) | 
            ||
| 705 |     ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) | 
            ||
| 706 | |||
| 707 | dsm_links["link_id"] = link_id  | 
            ||
| 708 | |||
| 709 | # add calculated timeseries to df to be returned  | 
            ||
| 710 | dsm_links["p_nom"] = p_nom  | 
            ||
| 711 | dsm_links["p_min"] = p_min  | 
            ||
| 712 | dsm_links["p_max"] = p_max  | 
            ||
| 713 | |||
| 714 | # add DSM-stores  | 
            ||
| 715 | |||
| 716 | dsm_stores = pd.DataFrame(index=dsm_buses.index)  | 
            ||
| 717 | dsm_stores["bus"] = dsm_buses["bus_id"].copy()  | 
            ||
| 718 | dsm_stores["scn_name"] = dsm_buses["scn_name"].copy()  | 
            ||
| 719 | dsm_stores["original_bus"] = dsm_buses["original_bus"].copy()  | 
            ||
| 720 | |||
| 721 | # set store_id  | 
            ||
| 722 | target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"]  | 
            ||
| 723 |     sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" | 
            ||
| 724 | max_id = pd.read_sql_query(sql, con)  | 
            ||
| 725 | max_id = max_id["store_id"].max()  | 
            ||
| 726 | if np.isnan(max_id):  | 
            ||
| 727 | max_id = 0  | 
            ||
| 728 | dsm_id = max_id + 1  | 
            ||
| 729 | store_id = pd.Series(index=dsm_buses.index, dtype=int)  | 
            ||
| 730 | |||
| 731 | # Assignment of store ids  | 
            ||
| 732 |     store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( | 
            ||
| 733 |         dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) | 
            ||
| 734 | )  | 
            ||
| 735 | |||
| 736 | store_id.iloc[  | 
            ||
| 737 |         rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( | 
            ||
| 738 | "eGon2035", 0  | 
            ||
| 739 | )  | 
            ||
| 740 |         + rows_per_scenario.get("eGon100RE", 0) | 
            ||
| 741 |     ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) | 
            ||
| 742 | |||
| 743 | dsm_stores["store_id"] = store_id  | 
            ||
| 744 | |||
| 745 | # add calculated timeseries to df to be returned  | 
            ||
| 746 | dsm_stores["e_nom"] = e_nom  | 
            ||
| 747 | dsm_stores["e_min"] = e_min  | 
            ||
| 748 | dsm_stores["e_max"] = e_max  | 
            ||
| 749 | |||
| 750 | return dsm_buses, dsm_links, dsm_stores  | 
            ||
| 751 | |||
| 752 | |||
| 753 | def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores):  | 
            ||
| 754 | # aggregate buses  | 
            ||
| 755 | |||
| 756 | grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name]  | 
            ||
| 757 | |||
| 758 | df_dsm_buses = df_dsm_buses.groupby(grouper).first()  | 
            ||
| 759 | |||
| 760 | df_dsm_buses.reset_index(inplace=True)  | 
            ||
| 761 |     df_dsm_buses.sort_values("scn_name", inplace=True) | 
            ||
| 762 | |||
| 763 | # aggregate links  | 
            ||
| 764 | |||
| 765 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x))  | 
            ||
| 766 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x))  | 
            ||
| 767 | |||
| 768 | grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name]  | 
            ||
| 769 | p_nom = df_dsm_links.groupby(grouper)["p_nom"].sum()  | 
            ||
| 770 | p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum)  | 
            ||
| 771 | p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum)  | 
            ||
| 772 | |||
| 773 | df_dsm_links = df_dsm_links.groupby(grouper).first()  | 
            ||
| 774 | df_dsm_links.p_nom = p_nom  | 
            ||
| 775 | df_dsm_links.p_max = p_max  | 
            ||
| 776 | df_dsm_links.p_min = p_min  | 
            ||
| 777 | |||
| 778 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x))  | 
            ||
| 779 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x))  | 
            ||
| 780 | |||
| 781 | df_dsm_links.reset_index(inplace=True)  | 
            ||
| 782 |     df_dsm_links.sort_values("scn_name", inplace=True) | 
            ||
| 783 | |||
| 784 | # aggregate stores  | 
            ||
| 785 | |||
| 786 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(  | 
            ||
| 787 | lambda x: np.array(x)  | 
            ||
| 788 | )  | 
            ||
| 789 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(  | 
            ||
| 790 | lambda x: np.array(x)  | 
            ||
| 791 | )  | 
            ||
| 792 | |||
| 793 | grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name]  | 
            ||
| 794 | e_nom = df_dsm_stores.groupby(grouper)["e_nom"].sum()  | 
            ||
| 795 | e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum)  | 
            ||
| 796 | e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum)  | 
            ||
| 797 | |||
| 798 | df_dsm_stores = df_dsm_stores.groupby(grouper).first()  | 
            ||
| 799 | df_dsm_stores.e_nom = e_nom  | 
            ||
| 800 | df_dsm_stores.e_max = e_max  | 
            ||
| 801 | df_dsm_stores.e_min = e_min  | 
            ||
| 802 | |||
| 803 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x))  | 
            ||
| 804 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x))  | 
            ||
| 805 | |||
| 806 | df_dsm_stores.reset_index(inplace=True)  | 
            ||
| 807 |     df_dsm_stores.sort_values("scn_name", inplace=True) | 
            ||
| 808 | |||
| 809 | # select new bus_ids for aggregated buses and add to links and stores  | 
            ||
| 810 |     bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index | 
            ||
| 811 | |||
| 812 | df_dsm_buses["bus_id"] = bus_id  | 
            ||
| 813 | df_dsm_links["dsm_bus"] = bus_id  | 
            ||
| 814 | df_dsm_stores["bus"] = bus_id  | 
            ||
| 815 | |||
| 816 | # select new link_ids for aggregated links  | 
            ||
| 817 |     link_id = db.next_etrago_id("Link") + df_dsm_links.index | 
            ||
| 818 | |||
| 819 | df_dsm_links["link_id"] = link_id  | 
            ||
| 820 | |||
| 821 | # select new store_ids to aggregated stores  | 
            ||
| 822 | |||
| 823 |     store_id = db.next_etrago_id("Store") + df_dsm_stores.index | 
            ||
| 824 | |||
| 825 | df_dsm_stores["store_id"] = store_id  | 
            ||
| 826 | |||
| 827 | return df_dsm_buses, df_dsm_links, df_dsm_stores  | 
            ||
| 828 | |||
| 829 | |||
| 830 | def data_export(dsm_buses, dsm_links, dsm_stores, carrier):  | 
            ||
| 831 | """  | 
            ||
| 832 | Export new components to database.  | 
            ||
| 833 | |||
| 834 | Parameters  | 
            ||
| 835 | ----------  | 
            ||
| 836 | dsm_buses: DataFrame  | 
            ||
| 837 | Buses representing locations of DSM-potential  | 
            ||
| 838 | dsm_links: DataFrame  | 
            ||
| 839 | Links connecting DSM-buses and DSM-stores  | 
            ||
| 840 | dsm_stores: DataFrame  | 
            ||
| 841 | Stores representing DSM-potential  | 
            ||
| 842 | carrier: str  | 
            ||
| 843 | Remark to be filled in column 'carrier' identifying DSM-potential  | 
            ||
| 844 | """  | 
            ||
| 845 | |||
| 846 | targets = config.datasets()["DSM_CTS_industry"]["targets"]  | 
            ||
| 847 | |||
| 848 | # dsm_buses  | 
            ||
| 849 | |||
| 850 | insert_buses = gpd.GeoDataFrame(  | 
            ||
| 851 | index=dsm_buses.index,  | 
            ||
| 852 | data=dsm_buses["geom"],  | 
            ||
| 853 | geometry="geom",  | 
            ||
| 854 | crs=dsm_buses.crs,  | 
            ||
| 855 | )  | 
            ||
| 856 | insert_buses["scn_name"] = dsm_buses["scn_name"]  | 
            ||
| 857 | insert_buses["bus_id"] = dsm_buses["bus_id"]  | 
            ||
| 858 | insert_buses["v_nom"] = dsm_buses["v_nom"]  | 
            ||
| 859 | insert_buses["carrier"] = carrier  | 
            ||
| 860 | insert_buses["x"] = dsm_buses["x"]  | 
            ||
| 861 | insert_buses["y"] = dsm_buses["y"]  | 
            ||
| 862 | |||
| 863 | # insert into database  | 
            ||
| 864 | insert_buses.to_postgis(  | 
            ||
| 865 | targets["bus"]["table"],  | 
            ||
| 866 | con=db.engine(),  | 
            ||
| 867 | schema=targets["bus"]["schema"],  | 
            ||
| 868 | if_exists="append",  | 
            ||
| 869 | index=False,  | 
            ||
| 870 |         dtype={"geom": "geometry"}, | 
            ||
| 871 | )  | 
            ||
| 872 | |||
| 873 | # dsm_links  | 
            ||
| 874 | |||
| 875 | insert_links = pd.DataFrame(index=dsm_links.index)  | 
            ||
| 876 | insert_links["scn_name"] = dsm_links["scn_name"]  | 
            ||
| 877 | insert_links["link_id"] = dsm_links["link_id"]  | 
            ||
| 878 | insert_links["bus0"] = dsm_links["original_bus"]  | 
            ||
| 879 | insert_links["bus1"] = dsm_links["dsm_bus"]  | 
            ||
| 880 | insert_links["carrier"] = carrier  | 
            ||
| 881 | insert_links["p_nom"] = dsm_links["p_nom"]  | 
            ||
| 882 | |||
| 883 | # insert into database  | 
            ||
| 884 | insert_links.to_sql(  | 
            ||
| 885 | targets["link"]["table"],  | 
            ||
| 886 | con=db.engine(),  | 
            ||
| 887 | schema=targets["link"]["schema"],  | 
            ||
| 888 | if_exists="append",  | 
            ||
| 889 | index=False,  | 
            ||
| 890 | )  | 
            ||
| 891 | |||
| 892 | insert_links_timeseries = pd.DataFrame(index=dsm_links.index)  | 
            ||
| 893 | insert_links_timeseries["scn_name"] = dsm_links["scn_name"]  | 
            ||
| 894 | insert_links_timeseries["link_id"] = dsm_links["link_id"]  | 
            ||
| 895 | insert_links_timeseries["p_min_pu"] = dsm_links["p_min"]  | 
            ||
| 896 | insert_links_timeseries["p_max_pu"] = dsm_links["p_max"]  | 
            ||
| 897 | insert_links_timeseries["temp_id"] = 1  | 
            ||
| 898 | |||
| 899 | # insert into database  | 
            ||
| 900 | insert_links_timeseries.to_sql(  | 
            ||
| 901 | targets["link_timeseries"]["table"],  | 
            ||
| 902 | con=db.engine(),  | 
            ||
| 903 | schema=targets["link_timeseries"]["schema"],  | 
            ||
| 904 | if_exists="append",  | 
            ||
| 905 | index=False,  | 
            ||
| 906 | )  | 
            ||
| 907 | |||
| 908 | # dsm_stores  | 
            ||
| 909 | |||
| 910 | insert_stores = pd.DataFrame(index=dsm_stores.index)  | 
            ||
| 911 | insert_stores["scn_name"] = dsm_stores["scn_name"]  | 
            ||
| 912 | insert_stores["store_id"] = dsm_stores["store_id"]  | 
            ||
| 913 | insert_stores["bus"] = dsm_stores["bus"]  | 
            ||
| 914 | insert_stores["carrier"] = carrier  | 
            ||
| 915 | insert_stores["e_nom"] = dsm_stores["e_nom"]  | 
            ||
| 916 | |||
| 917 | # insert into database  | 
            ||
| 918 | insert_stores.to_sql(  | 
            ||
| 919 | targets["store"]["table"],  | 
            ||
| 920 | con=db.engine(),  | 
            ||
| 921 | schema=targets["store"]["schema"],  | 
            ||
| 922 | if_exists="append",  | 
            ||
| 923 | index=False,  | 
            ||
| 924 | )  | 
            ||
| 925 | |||
| 926 | insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index)  | 
            ||
| 927 | insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"]  | 
            ||
| 928 | insert_stores_timeseries["store_id"] = dsm_stores["store_id"]  | 
            ||
| 929 | insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"]  | 
            ||
| 930 | insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"]  | 
            ||
| 931 | insert_stores_timeseries["temp_id"] = 1  | 
            ||
| 932 | |||
| 933 | # insert into database  | 
            ||
| 934 | insert_stores_timeseries.to_sql(  | 
            ||
| 935 | targets["store_timeseries"]["table"],  | 
            ||
| 936 | con=db.engine(),  | 
            ||
| 937 | schema=targets["store_timeseries"]["schema"],  | 
            ||
| 938 | if_exists="append",  | 
            ||
| 939 | index=False,  | 
            ||
| 940 | )  | 
            ||
| 941 | |||
| 942 | |||
| 943 | def delete_dsm_entries(carrier):  | 
            ||
| 944 | """  | 
            ||
| 945 | Deletes DSM-components from database if they already exist before creating  | 
            ||
| 946 | new ones.  | 
            ||
| 947 | |||
| 948 | Parameters  | 
            ||
| 949 | ----------  | 
            ||
| 950 | carrier: str  | 
            ||
| 951 | Remark in column 'carrier' identifying DSM-potential  | 
            ||
| 952 | """  | 
            ||
| 953 | |||
| 954 | targets = config.datasets()["DSM_CTS_industry"]["targets"]  | 
            ||
| 955 | |||
| 956 | # buses  | 
            ||
| 957 | |||
| 958 |     sql = f"""DELETE FROM {targets["bus"]["schema"]}.{targets["bus"]["table"]} b | 
            ||
| 959 |      WHERE (b.carrier LIKE '{carrier}');""" | 
            ||
| 960 | db.execute_sql(sql)  | 
            ||
| 961 | |||
| 962 | # links  | 
            ||
| 963 | |||
| 964 | sql = f"""  | 
            ||
| 965 |         DELETE FROM {targets["link_timeseries"]["schema"]}. | 
            ||
| 966 |         {targets["link_timeseries"]["table"]} t | 
            ||
| 967 | WHERE t.link_id IN  | 
            ||
| 968 | (  | 
            ||
| 969 |             SELECT l.link_id FROM {targets["link"]["schema"]}. | 
            ||
| 970 |             {targets["link"]["table"]} l | 
            ||
| 971 |             WHERE l.carrier LIKE '{carrier}' | 
            ||
| 972 | );  | 
            ||
| 973 | """  | 
            ||
| 974 | |||
| 975 | db.execute_sql(sql)  | 
            ||
| 976 | |||
| 977 | sql = f"""  | 
            ||
| 978 |         DELETE FROM {targets["link"]["schema"]}. | 
            ||
| 979 |         {targets["link"]["table"]} l | 
            ||
| 980 |         WHERE (l.carrier LIKE '{carrier}'); | 
            ||
| 981 | """  | 
            ||
| 982 | |||
| 983 | db.execute_sql(sql)  | 
            ||
| 984 | |||
| 985 | # stores  | 
            ||
| 986 | |||
| 987 | sql = f"""  | 
            ||
| 988 |         DELETE FROM {targets["store_timeseries"]["schema"]}. | 
            ||
| 989 |         {targets["store_timeseries"]["table"]} t | 
            ||
| 990 | WHERE t.store_id IN  | 
            ||
| 991 | (  | 
            ||
| 992 |             SELECT s.store_id FROM {targets["store"]["schema"]}. | 
            ||
| 993 |             {targets["store"]["table"]} s | 
            ||
| 994 |             WHERE s.carrier LIKE '{carrier}' | 
            ||
| 995 | );  | 
            ||
| 996 | """  | 
            ||
| 997 | |||
| 998 | db.execute_sql(sql)  | 
            ||
| 999 | |||
| 1000 | sql = f"""  | 
            ||
| 1001 |         DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s | 
            ||
| 1002 |         WHERE (s.carrier LIKE '{carrier}'); | 
            ||
| 1003 | """  | 
            ||
| 1004 | |||
| 1005 | db.execute_sql(sql)  | 
            ||
| 1006 | |||
| 1007 | |||
| 1008 | def dsm_cts_ind(  | 
            ||
| 1009 | con=db.engine(),  | 
            ||
| 1010 | cts_cool_vent_ac_share=0.22,  | 
            ||
| 1011 | ind_vent_cool_share=0.039,  | 
            ||
| 1012 | ind_vent_share=0.017,  | 
            ||
| 1013 | ):  | 
            ||
| 1014 | """  | 
            ||
| 1015 | Execute methodology to create and implement components for DSM considering  | 
            ||
| 1016 | a) CTS per osm-area: combined potentials of cooling, ventilation and air  | 
            ||
| 1017 | conditioning  | 
            ||
| 1018 | b) Industry per osm-are: combined potentials of cooling and ventilation  | 
            ||
| 1019 | c) Industrial Sites: potentials of ventilation in sites of  | 
            ||
| 1020 | "Wirtschaftszweig" (WZ) 23  | 
            ||
| 1021 | d) Industrial Sites: potentials of sites specified by subsectors  | 
            ||
| 1022 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG):  | 
            ||
| 1023 | Paper, Recycled Paper, Pulp, Cement  | 
            ||
| 1024 | |||
| 1025 | Modelled using the methods by Heitkoetter et. al.:  | 
            ||
| 1026 | https://doi.org/10.1016/j.adapen.2020.100001  | 
            ||
| 1027 | |||
| 1028 | Parameters  | 
            ||
| 1029 | ----------  | 
            ||
| 1030 | con :  | 
            ||
| 1031 | Connection to database  | 
            ||
| 1032 | cts_cool_vent_ac_share: float  | 
            ||
| 1033 | Share of cooling, ventilation and AC in CTS demand  | 
            ||
| 1034 | ind_vent_cool_share: float  | 
            ||
| 1035 | Share of cooling and ventilation in industry demand  | 
            ||
| 1036 | ind_vent_share: float  | 
            ||
| 1037 | Share of ventilation in industry demand in sites of WZ 23  | 
            ||
| 1038 | |||
| 1039 | """  | 
            ||
| 1040 | |||
| 1041 | # CTS per osm-area: cooling, ventilation and air conditioning  | 
            ||
| 1042 | |||
| 1043 |     print(" ") | 
            ||
| 1044 |     print("CTS per osm-area: cooling, ventilation and air conditioning") | 
            ||
| 1045 |     print(" ") | 
            ||
| 1046 | |||
| 1047 | dsm = cts_data_import(cts_cool_vent_ac_share)  | 
            ||
| 1048 | |||
| 1049 | # calculate combined potentials of cooling, ventilation and air  | 
            ||
| 1050 | # conditioning in CTS using combined parameters by Heitkoetter et. al.  | 
            ||
| 1051 | p_max, p_min, e_max, e_min = calculate_potentials(  | 
            ||
| 1052 | s_flex=S_FLEX_CTS,  | 
            ||
| 1053 | s_util=S_UTIL_CTS,  | 
            ||
| 1054 | s_inc=S_INC_CTS,  | 
            ||
| 1055 | s_dec=S_DEC_CTS,  | 
            ||
| 1056 | delta_t=DELTA_T_CTS,  | 
            ||
| 1057 | dsm=dsm,  | 
            ||
| 1058 | )  | 
            ||
| 1059 | |||
| 1060 | dsm_buses, dsm_links, dsm_stores = create_dsm_components(  | 
            ||
| 1061 | con, p_max, p_min, e_max, e_min, dsm  | 
            ||
| 1062 | )  | 
            ||
| 1063 | |||
| 1064 | df_dsm_buses = dsm_buses.copy()  | 
            ||
| 1065 | df_dsm_links = dsm_links.copy()  | 
            ||
| 1066 | df_dsm_stores = dsm_stores.copy()  | 
            ||
| 1067 | |||
| 1068 | # industry per osm-area: cooling and ventilation  | 
            ||
| 1069 | |||
| 1070 |     print(" ") | 
            ||
| 1071 |     print("industry per osm-area: cooling and ventilation") | 
            ||
| 1072 |     print(" ") | 
            ||
| 1073 | |||
| 1074 | dsm = ind_osm_data_import(ind_vent_cool_share)  | 
            ||
| 1075 | |||
| 1076 | # calculate combined potentials of cooling and ventilation in industrial  | 
            ||
| 1077 | # sector using combined parameters by Heitkoetter et. al.  | 
            ||
| 1078 | p_max, p_min, e_max, e_min = calculate_potentials(  | 
            ||
| 1079 | s_flex=S_FLEX_OSM,  | 
            ||
| 1080 | s_util=S_UTIL_OSM,  | 
            ||
| 1081 | s_inc=S_INC_OSM,  | 
            ||
| 1082 | s_dec=S_DEC_OSM,  | 
            ||
| 1083 | delta_t=DELTA_T_OSM,  | 
            ||
| 1084 | dsm=dsm,  | 
            ||
| 1085 | )  | 
            ||
| 1086 | |||
| 1087 | dsm_buses, dsm_links, dsm_stores = create_dsm_components(  | 
            ||
| 1088 | con, p_max, p_min, e_max, e_min, dsm  | 
            ||
| 1089 | )  | 
            ||
| 1090 | |||
| 1091 | df_dsm_buses = gpd.GeoDataFrame(  | 
            ||
| 1092 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True),  | 
            ||
| 1093 | crs="EPSG:4326",  | 
            ||
| 1094 | )  | 
            ||
| 1095 | df_dsm_links = pd.DataFrame(  | 
            ||
| 1096 | pd.concat([df_dsm_links, dsm_links], ignore_index=True)  | 
            ||
| 1097 | )  | 
            ||
| 1098 | df_dsm_stores = pd.DataFrame(  | 
            ||
| 1099 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True)  | 
            ||
| 1100 | )  | 
            ||
| 1101 | |||
| 1102 | # industry sites  | 
            ||
| 1103 | |||
| 1104 | # industry sites: different applications  | 
            ||
| 1105 | |||
| 1106 | dsm = ind_sites_data_import()  | 
            ||
| 1107 | |||
| 1108 |     print(" ") | 
            ||
| 1109 |     print("industry sites: paper") | 
            ||
| 1110 |     print(" ") | 
            ||
| 1111 | |||
| 1112 | dsm_paper = gpd.GeoDataFrame(  | 
            ||
| 1113 | dsm[  | 
            ||
| 1114 | dsm["application"].isin(  | 
            ||
| 1115 | [  | 
            ||
| 1116 | "Graphic Paper",  | 
            ||
| 1117 | "Packing Paper and Board",  | 
            ||
| 1118 | "Hygiene Paper",  | 
            ||
| 1119 | "Technical/Special Paper and Board",  | 
            ||
| 1120 | ]  | 
            ||
| 1121 | )  | 
            ||
| 1122 | ]  | 
            ||
| 1123 | )  | 
            ||
| 1124 | |||
| 1125 | # calculate potentials of industrial sites with paper-applications  | 
            ||
| 1126 | # using parameters by Heitkoetter et al.  | 
            ||
| 1127 | p_max, p_min, e_max, e_min = calculate_potentials(  | 
            ||
| 1128 | s_flex=S_FLEX_PAPER,  | 
            ||
| 1129 | s_util=S_UTIL_PAPER,  | 
            ||
| 1130 | s_inc=S_INC_PAPER,  | 
            ||
| 1131 | s_dec=S_DEC_PAPER,  | 
            ||
| 1132 | delta_t=DELTA_T_PAPER,  | 
            ||
| 1133 | dsm=dsm_paper,  | 
            ||
| 1134 | )  | 
            ||
| 1135 | |||
| 1136 | dsm_buses, dsm_links, dsm_stores = create_dsm_components(  | 
            ||
| 1137 | con, p_max, p_min, e_max, e_min, dsm_paper  | 
            ||
| 1138 | )  | 
            ||
| 1139 | |||
| 1140 | df_dsm_buses = gpd.GeoDataFrame(  | 
            ||
| 1141 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True),  | 
            ||
| 1142 | crs="EPSG:4326",  | 
            ||
| 1143 | )  | 
            ||
| 1144 | df_dsm_links = pd.DataFrame(  | 
            ||
| 1145 | pd.concat([df_dsm_links, dsm_links], ignore_index=True)  | 
            ||
| 1146 | )  | 
            ||
| 1147 | df_dsm_stores = pd.DataFrame(  | 
            ||
| 1148 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True)  | 
            ||
| 1149 | )  | 
            ||
| 1150 | |||
| 1151 |     print(" ") | 
            ||
| 1152 |     print("industry sites: recycled paper") | 
            ||
| 1153 |     print(" ") | 
            ||
| 1154 | |||
| 1155 | # calculate potentials of industrial sites with recycled paper-applications  | 
            ||
| 1156 | # using parameters by Heitkoetter et. al.  | 
            ||
| 1157 | dsm_recycled_paper = gpd.GeoDataFrame(  | 
            ||
| 1158 | dsm[dsm["application"] == "Recycled Paper"]  | 
            ||
| 1159 | )  | 
            ||
| 1160 | |||
| 1161 | p_max, p_min, e_max, e_min = calculate_potentials(  | 
            ||
| 1162 | s_flex=S_FLEX_RECYCLED_PAPER,  | 
            ||
| 1163 | s_util=S_UTIL_RECYCLED_PAPER,  | 
            ||
| 1164 | s_inc=S_INC_RECYCLED_PAPER,  | 
            ||
| 1165 | s_dec=S_DEC_RECYCLED_PAPER,  | 
            ||
| 1166 | delta_t=DELTA_T_RECYCLED_PAPER,  | 
            ||
| 1167 | dsm=dsm_recycled_paper,  | 
            ||
| 1168 | )  | 
            ||
| 1169 | |||
| 1170 | dsm_buses, dsm_links, dsm_stores = create_dsm_components(  | 
            ||
| 1171 | con, p_max, p_min, e_max, e_min, dsm_recycled_paper  | 
            ||
| 1172 | )  | 
            ||
| 1173 | |||
| 1174 | df_dsm_buses = gpd.GeoDataFrame(  | 
            ||
| 1175 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True),  | 
            ||
| 1176 | crs="EPSG:4326",  | 
            ||
| 1177 | )  | 
            ||
| 1178 | df_dsm_links = pd.DataFrame(  | 
            ||
| 1179 | pd.concat([df_dsm_links, dsm_links], ignore_index=True)  | 
            ||
| 1180 | )  | 
            ||
| 1181 | df_dsm_stores = pd.DataFrame(  | 
            ||
| 1182 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True)  | 
            ||
| 1183 | )  | 
            ||
| 1184 | |||
| 1185 |     print(" ") | 
            ||
| 1186 |     print("industry sites: pulp") | 
            ||
| 1187 |     print(" ") | 
            ||
| 1188 | |||
| 1189 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"])  | 
            ||
| 1190 | |||
| 1191 | # calculate potentials of industrial sites with pulp-applications  | 
            ||
| 1192 | # using parameters by Heitkoetter et al.  | 
            ||
| 1193 | p_max, p_min, e_max, e_min = calculate_potentials(  | 
            ||
| 1194 | s_flex=S_FLEX_PULP,  | 
            ||
| 1195 | s_util=S_UTIL_PULP,  | 
            ||
| 1196 | s_inc=S_INC_PULP,  | 
            ||
| 1197 | s_dec=S_DEC_PULP,  | 
            ||
| 1198 | delta_t=DELTA_T_PULP,  | 
            ||
| 1199 | dsm=dsm_pulp,  | 
            ||
| 1200 | )  | 
            ||
| 1201 | |||
| 1202 | dsm_buses, dsm_links, dsm_stores = create_dsm_components(  | 
            ||
| 1203 | con, p_max, p_min, e_max, e_min, dsm_pulp  | 
            ||
| 1204 | )  | 
            ||
| 1205 | |||
| 1206 | df_dsm_buses = gpd.GeoDataFrame(  | 
            ||
| 1207 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True),  | 
            ||
| 1208 | crs="EPSG:4326",  | 
            ||
| 1209 | )  | 
            ||
| 1210 | df_dsm_links = pd.DataFrame(  | 
            ||
| 1211 | pd.concat([df_dsm_links, dsm_links], ignore_index=True)  | 
            ||
| 1212 | )  | 
            ||
| 1213 | df_dsm_stores = pd.DataFrame(  | 
            ||
| 1214 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True)  | 
            ||
| 1215 | )  | 
            ||
| 1216 | |||
| 1217 | # industry sites: cement  | 
            ||
| 1218 | |||
| 1219 |     print(" ") | 
            ||
| 1220 |     print("industry sites: cement") | 
            ||
| 1221 |     print(" ") | 
            ||
| 1222 | |||
| 1223 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"])  | 
            ||
| 1224 | |||
| 1225 | # calculate potentials of industrial sites with cement-applications  | 
            ||
| 1226 | # using parameters by Heitkoetter et al.  | 
            ||
| 1227 | p_max, p_min, e_max, e_min = calculate_potentials(  | 
            ||
| 1228 | s_flex=S_FLEX_CEMENT,  | 
            ||
| 1229 | s_util=S_UTIL_CEMENT,  | 
            ||
| 1230 | s_inc=S_INC_CEMENT,  | 
            ||
| 1231 | s_dec=S_DEC_CEMENT,  | 
            ||
| 1232 | delta_t=DELTA_T_CEMENT,  | 
            ||
| 1233 | dsm=dsm_cement,  | 
            ||
| 1234 | )  | 
            ||
| 1235 | |||
| 1236 | dsm_buses, dsm_links, dsm_stores = create_dsm_components(  | 
            ||
| 1237 | con, p_max, p_min, e_max, e_min, dsm_cement  | 
            ||
| 1238 | )  | 
            ||
| 1239 | |||
| 1240 | df_dsm_buses = gpd.GeoDataFrame(  | 
            ||
| 1241 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True),  | 
            ||
| 1242 | crs="EPSG:4326",  | 
            ||
| 1243 | )  | 
            ||
| 1244 | df_dsm_links = pd.DataFrame(  | 
            ||
| 1245 | pd.concat([df_dsm_links, dsm_links], ignore_index=True)  | 
            ||
| 1246 | )  | 
            ||
| 1247 | df_dsm_stores = pd.DataFrame(  | 
            ||
| 1248 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True)  | 
            ||
| 1249 | )  | 
            ||
| 1250 | |||
| 1251 | # industry sites: ventilation in WZ23  | 
            ||
| 1252 | |||
| 1253 |     print(" ") | 
            ||
| 1254 |     print("industry sites: ventilation in WZ23") | 
            ||
| 1255 |     print(" ") | 
            ||
| 1256 | |||
| 1257 | dsm = ind_sites_vent_data_import(ind_vent_share, wz=WZ)  | 
            ||
| 1258 | |||
| 1259 | # drop entries of Cement Mills whose DSM-potentials have already been  | 
            ||
| 1260 | # modelled  | 
            ||
| 1261 | cement = np.unique(dsm_cement["bus"].values)  | 
            ||
| 1262 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index)  | 
            ||
| 1263 | dsm.drop(index_names, inplace=True)  | 
            ||
| 1264 | |||
| 1265 | # calculate potentials of ventialtion in industrial sites of WZ 23  | 
            ||
| 1266 | # using parameters by Heitkoetter et al.  | 
            ||
| 1267 | p_max, p_min, e_max, e_min = calculate_potentials(  | 
            ||
| 1268 | s_flex=S_FLEX_WZ,  | 
            ||
| 1269 | s_util=S_UTIL_WZ,  | 
            ||
| 1270 | s_inc=S_INC_WZ,  | 
            ||
| 1271 | s_dec=S_DEC_WZ,  | 
            ||
| 1272 | delta_t=DELTA_T_WZ,  | 
            ||
| 1273 | dsm=dsm,  | 
            ||
| 1274 | )  | 
            ||
| 1275 | |||
| 1276 | dsm_buses, dsm_links, dsm_stores = create_dsm_components(  | 
            ||
| 1277 | con, p_max, p_min, e_max, e_min, dsm  | 
            ||
| 1278 | )  | 
            ||
| 1279 | |||
| 1280 | df_dsm_buses = gpd.GeoDataFrame(  | 
            ||
| 1281 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True),  | 
            ||
| 1282 | crs="EPSG:4326",  | 
            ||
| 1283 | )  | 
            ||
| 1284 | df_dsm_links = pd.DataFrame(  | 
            ||
| 1285 | pd.concat([df_dsm_links, dsm_links], ignore_index=True)  | 
            ||
| 1286 | )  | 
            ||
| 1287 | df_dsm_stores = pd.DataFrame(  | 
            ||
| 1288 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True)  | 
            ||
| 1289 | )  | 
            ||
| 1290 | |||
| 1291 | # aggregate DSM components per substation  | 
            ||
| 1292 | dsm_buses, dsm_links, dsm_stores = aggregate_components(  | 
            ||
| 1293 | df_dsm_buses, df_dsm_links, df_dsm_stores  | 
            ||
| 1294 | )  | 
            ||
| 1295 | |||
| 1296 | # export aggregated DSM components to database  | 
            ||
| 1297 | |||
| 1298 |     delete_dsm_entries("dsm-cts") | 
            ||
| 1299 |     delete_dsm_entries("dsm-ind-osm") | 
            ||
| 1300 |     delete_dsm_entries("dsm-ind-sites") | 
            ||
| 1301 |     delete_dsm_entries("dsm") | 
            ||
| 1302 | |||
| 1303 | data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm")  | 
            ||
| 1304 | |||
| 1305 | |||
| 1306 | def get_p_nom_e_nom(df: pd.DataFrame):  | 
            ||
| 1307 | p_nom = [  | 
            ||
| 1308 | max(max(val), max(abs(v) for v in df.p_min_pu.at[idx]))  | 
            ||
| 1309 | for idx, val in df.p_max_pu.items()  | 
            ||
| 1310 | ]  | 
            ||
| 1311 | |||
| 1312 | e_nom = [  | 
            ||
| 1313 | max(max(val), max(abs(v) for v in df.e_min_pu.at[idx]))  | 
            ||
| 1314 | for idx, val in df.e_max_pu.items()  | 
            ||
| 1315 | ]  | 
            ||
| 1316 | |||
| 1317 | return df.assign(p_nom=p_nom, e_nom=e_nom)  | 
            ||
| 1318 | |||
| 1319 | |||
| 1320 | def calc_per_unit(df):  | 
            ||
| 1321 | df = get_p_nom_e_nom(df)  | 
            ||
| 1322 | |||
| 1323 | for col in ["p_max_pu", "p_min_pu"]:  | 
            ||
| 1324 | rslt = []  | 
            ||
| 1325 | |||
| 1326 | for idx, lst in df[col].items():  | 
            ||
| 1327 | p_nom = df.p_nom.at[idx]  | 
            ||
| 1328 | |||
| 1329 | rslt.append([v / p_nom for v in lst])  | 
            ||
| 1330 | |||
| 1331 | df[col] = rslt  | 
            ||
| 1332 | |||
| 1333 | for col in ["e_max_pu", "e_min_pu"]:  | 
            ||
| 1334 | rslt = []  | 
            ||
| 1335 | |||
| 1336 | for idx, lst in df[col].items():  | 
            ||
| 1337 | e_nom = df.e_nom.at[idx]  | 
            ||
| 1338 | |||
| 1339 | rslt.append([v / e_nom for v in lst])  | 
            ||
| 1340 | |||
| 1341 | df[col] = rslt  | 
            ||
| 1342 | |||
| 1343 | return df  | 
            ||
| 1344 | |||
| 1345 | |||
| 1346 | def create_table(df, table, engine=CON):  | 
            ||
| 1347 | """Create table"""  | 
            ||
| 1348 | table.__table__.drop(bind=engine, checkfirst=True)  | 
            ||
| 1349 | table.__table__.create(bind=engine, checkfirst=True)  | 
            ||
| 1350 | |||
| 1351 | df.to_sql(  | 
            ||
| 1352 | name=table.__table__.name,  | 
            ||
| 1353 | schema=table.__table__.schema,  | 
            ||
| 1354 | con=engine,  | 
            ||
| 1355 | if_exists="append",  | 
            ||
| 1356 | index=False,  | 
            ||
| 1357 | )  | 
            ||
| 1358 | |||
| 1359 | |||
| 1360 | def dsm_cts_ind_individual(  | 
            ||
| 1361 | cts_cool_vent_ac_share=CTS_COOL_VENT_AC_SHARE,  | 
            ||
| 1362 | ind_vent_cool_share=IND_VENT_COOL_SHARE,  | 
            ||
| 1363 | ind_vent_share=IND_VENT_SHARE,  | 
            ||
| 1364 | ):  | 
            ||
| 1365 | """  | 
            ||
| 1366 | Execute methodology to create and implement components for DSM considering  | 
            ||
| 1367 | a) CTS per osm-area: combined potentials of cooling, ventilation and air  | 
            ||
| 1368 | conditioning  | 
            ||
| 1369 | b) Industry per osm-are: combined potentials of cooling and ventilation  | 
            ||
| 1370 | c) Industrial Sites: potentials of ventilation in sites of  | 
            ||
| 1371 | "Wirtschaftszweig" (WZ) 23  | 
            ||
| 1372 | d) Industrial Sites: potentials of sites specified by subsectors  | 
            ||
| 1373 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG):  | 
            ||
| 1374 | Paper, Recycled Paper, Pulp, Cement  | 
            ||
| 1375 | |||
| 1376 | Modelled using the methods by Heitkoetter et. al.:  | 
            ||
| 1377 | https://doi.org/10.1016/j.adapen.2020.100001  | 
            ||
| 1378 | |||
| 1379 | Parameters  | 
            ||
| 1380 | ----------  | 
            ||
| 1381 | cts_cool_vent_ac_share: float  | 
            ||
| 1382 | Share of cooling, ventilation and AC in CTS demand  | 
            ||
| 1383 | ind_vent_cool_share: float  | 
            ||
| 1384 | Share of cooling and ventilation in industry demand  | 
            ||
| 1385 | ind_vent_share: float  | 
            ||
| 1386 | Share of ventilation in industry demand in sites of WZ 23  | 
            ||
| 1387 | |||
| 1388 | """  | 
            ||
| 1389 | |||
| 1390 | # CTS per osm-area: cooling, ventilation and air conditioning  | 
            ||
| 1391 | |||
| 1392 |     print(" ") | 
            ||
| 1393 |     print("CTS per osm-area: cooling, ventilation and air conditioning") | 
            ||
| 1394 |     print(" ") | 
            ||
| 1395 | |||
| 1396 | dsm = cts_data_import(cts_cool_vent_ac_share)  | 
            ||
| 1397 | |||
| 1398 | # calculate combined potentials of cooling, ventilation and air  | 
            ||
| 1399 | # conditioning in CTS using combined parameters by Heitkoetter et. al.  | 
            ||
| 1400 | vals = calculate_potentials(  | 
            ||
| 1401 | s_flex=S_FLEX_CTS,  | 
            ||
| 1402 | s_util=S_UTIL_CTS,  | 
            ||
| 1403 | s_inc=S_INC_CTS,  | 
            ||
| 1404 | s_dec=S_DEC_CTS,  | 
            ||
| 1405 | delta_t=DELTA_T_CTS,  | 
            ||
| 1406 | dsm=dsm,  | 
            ||
| 1407 | )  | 
            ||
| 1408 | |||
| 1409 | base_columns = [  | 
            ||
| 1410 | "bus",  | 
            ||
| 1411 | "scn_name",  | 
            ||
| 1412 | "p_set",  | 
            ||
| 1413 | "p_max_pu",  | 
            ||
| 1414 | "p_min_pu",  | 
            ||
| 1415 | "e_max_pu",  | 
            ||
| 1416 | "e_min_pu",  | 
            ||
| 1417 | ]  | 
            ||
| 1418 | |||
| 1419 | cts_df = pd.concat([dsm, *vals], axis=1, ignore_index=True)  | 
            ||
| 1420 | cts_df.columns = base_columns  | 
            ||
| 1421 | cts_df = calc_per_unit(cts_df)  | 
            ||
| 1422 | |||
| 1423 |     print(" ") | 
            ||
| 1424 |     print("industry per osm-area: cooling and ventilation") | 
            ||
| 1425 |     print(" ") | 
            ||
| 1426 | |||
| 1427 | dsm = ind_osm_data_import_individual(ind_vent_cool_share)  | 
            ||
| 1428 | |||
| 1429 | # calculate combined potentials of cooling and ventilation in industrial  | 
            ||
| 1430 | # sector using combined parameters by Heitkoetter et al.  | 
            ||
| 1431 | vals = calculate_potentials(  | 
            ||
| 1432 | s_flex=S_FLEX_OSM,  | 
            ||
| 1433 | s_util=S_UTIL_OSM,  | 
            ||
| 1434 | s_inc=S_INC_OSM,  | 
            ||
| 1435 | s_dec=S_DEC_OSM,  | 
            ||
| 1436 | delta_t=DELTA_T_OSM,  | 
            ||
| 1437 | dsm=dsm,  | 
            ||
| 1438 | )  | 
            ||
| 1439 | |||
| 1440 | columns = ["osm_id"] + base_columns  | 
            ||
| 1441 | |||
| 1442 | osm_df = pd.concat([dsm, *vals], axis=1, ignore_index=True)  | 
            ||
| 1443 | osm_df.columns = columns  | 
            ||
| 1444 | osm_df = calc_per_unit(osm_df)  | 
            ||
| 1445 | |||
| 1446 | # industry sites  | 
            ||
| 1447 | |||
| 1448 | # industry sites: different applications  | 
            ||
| 1449 | |||
| 1450 | dsm = ind_sites_data_import()  | 
            ||
| 1451 | |||
| 1452 |     print(" ") | 
            ||
| 1453 |     print("industry sites: paper") | 
            ||
| 1454 |     print(" ") | 
            ||
| 1455 | |||
| 1456 | dsm_paper = gpd.GeoDataFrame(  | 
            ||
| 1457 | dsm[  | 
            ||
| 1458 | dsm["application"].isin(  | 
            ||
| 1459 | [  | 
            ||
| 1460 | "Graphic Paper",  | 
            ||
| 1461 | "Packing Paper and Board",  | 
            ||
| 1462 | "Hygiene Paper",  | 
            ||
| 1463 | "Technical/Special Paper and Board",  | 
            ||
| 1464 | ]  | 
            ||
| 1465 | )  | 
            ||
| 1466 | ]  | 
            ||
| 1467 | )  | 
            ||
| 1468 | |||
| 1469 | # calculate potentials of industrial sites with paper-applications  | 
            ||
| 1470 | # using parameters by Heitkoetter et al.  | 
            ||
| 1471 | vals = calculate_potentials(  | 
            ||
| 1472 | s_flex=S_FLEX_PAPER,  | 
            ||
| 1473 | s_util=S_UTIL_PAPER,  | 
            ||
| 1474 | s_inc=S_INC_PAPER,  | 
            ||
| 1475 | s_dec=S_DEC_PAPER,  | 
            ||
| 1476 | delta_t=DELTA_T_PAPER,  | 
            ||
| 1477 | dsm=dsm_paper,  | 
            ||
| 1478 | )  | 
            ||
| 1479 | |||
| 1480 | columns = ["application", "industrial_sites_id"] + base_columns  | 
            ||
| 1481 | |||
| 1482 | paper_df = pd.concat([dsm_paper, *vals], axis=1, ignore_index=True)  | 
            ||
| 1483 | paper_df.columns = columns  | 
            ||
| 1484 | paper_df = calc_per_unit(paper_df)  | 
            ||
| 1485 | |||
| 1486 |     print(" ") | 
            ||
| 1487 |     print("industry sites: recycled paper") | 
            ||
| 1488 |     print(" ") | 
            ||
| 1489 | |||
| 1490 | # calculate potentials of industrial sites with recycled paper-applications  | 
            ||
| 1491 | # using parameters by Heitkoetter et. al.  | 
            ||
| 1492 | dsm_recycled_paper = gpd.GeoDataFrame(  | 
            ||
| 1493 | dsm[dsm["application"] == "Recycled Paper"]  | 
            ||
| 1494 | )  | 
            ||
| 1495 | |||
| 1496 | vals = calculate_potentials(  | 
            ||
| 1497 | s_flex=S_FLEX_RECYCLED_PAPER,  | 
            ||
| 1498 | s_util=S_UTIL_RECYCLED_PAPER,  | 
            ||
| 1499 | s_inc=S_INC_RECYCLED_PAPER,  | 
            ||
| 1500 | s_dec=S_DEC_RECYCLED_PAPER,  | 
            ||
| 1501 | delta_t=DELTA_T_RECYCLED_PAPER,  | 
            ||
| 1502 | dsm=dsm_recycled_paper,  | 
            ||
| 1503 | )  | 
            ||
| 1504 | |||
| 1505 | recycled_paper_df = pd.concat(  | 
            ||
| 1506 | [dsm_recycled_paper, *vals], axis=1, ignore_index=True  | 
            ||
| 1507 | )  | 
            ||
| 1508 | recycled_paper_df.columns = columns  | 
            ||
| 1509 | recycled_paper_df = calc_per_unit(recycled_paper_df)  | 
            ||
| 1510 | |||
| 1511 |     print(" ") | 
            ||
| 1512 |     print("industry sites: pulp") | 
            ||
| 1513 |     print(" ") | 
            ||
| 1514 | |||
| 1515 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"])  | 
            ||
| 1516 | |||
| 1517 | # calculate potentials of industrial sites with pulp-applications  | 
            ||
| 1518 | # using parameters by Heitkoetter et al.  | 
            ||
| 1519 | vals = calculate_potentials(  | 
            ||
| 1520 | s_flex=S_FLEX_PULP,  | 
            ||
| 1521 | s_util=S_UTIL_PULP,  | 
            ||
| 1522 | s_inc=S_INC_PULP,  | 
            ||
| 1523 | s_dec=S_DEC_PULP,  | 
            ||
| 1524 | delta_t=DELTA_T_PULP,  | 
            ||
| 1525 | dsm=dsm_pulp,  | 
            ||
| 1526 | )  | 
            ||
| 1527 | |||
| 1528 | pulp_df = pd.concat([dsm_pulp, *vals], axis=1, ignore_index=True)  | 
            ||
| 1529 | pulp_df.columns = columns  | 
            ||
| 1530 | pulp_df = calc_per_unit(pulp_df)  | 
            ||
| 1531 | |||
| 1532 | # industry sites: cement  | 
            ||
| 1533 | |||
| 1534 |     print(" ") | 
            ||
| 1535 |     print("industry sites: cement") | 
            ||
| 1536 |     print(" ") | 
            ||
| 1537 | |||
| 1538 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"])  | 
            ||
| 1539 | |||
| 1540 | # calculate potentials of industrial sites with cement-applications  | 
            ||
| 1541 | # using parameters by Heitkoetter et al.  | 
            ||
| 1542 | vals = calculate_potentials(  | 
            ||
| 1543 | s_flex=S_FLEX_CEMENT,  | 
            ||
| 1544 | s_util=S_UTIL_CEMENT,  | 
            ||
| 1545 | s_inc=S_INC_CEMENT,  | 
            ||
| 1546 | s_dec=S_DEC_CEMENT,  | 
            ||
| 1547 | delta_t=DELTA_T_CEMENT,  | 
            ||
| 1548 | dsm=dsm_cement,  | 
            ||
| 1549 | )  | 
            ||
| 1550 | |||
| 1551 | cement_df = pd.concat([dsm_cement, *vals], axis=1, ignore_index=True)  | 
            ||
| 1552 | cement_df.columns = columns  | 
            ||
| 1553 | cement_df = calc_per_unit(cement_df)  | 
            ||
| 1554 | |||
| 1555 | ind_df = pd.concat(  | 
            ||
| 1556 | [paper_df, recycled_paper_df, pulp_df, cement_df], ignore_index=True  | 
            ||
| 1557 | )  | 
            ||
| 1558 | |||
| 1559 | # industry sites: ventilation in WZ23  | 
            ||
| 1560 | |||
| 1561 |     print(" ") | 
            ||
| 1562 |     print("industry sites: ventilation in WZ23") | 
            ||
| 1563 |     print(" ") | 
            ||
| 1564 | |||
| 1565 | dsm = ind_sites_vent_data_import_individual(ind_vent_share, wz=WZ)  | 
            ||
| 1566 | |||
| 1567 | # drop entries of Cement Mills whose DSM-potentials have already been  | 
            ||
| 1568 | # modelled  | 
            ||
| 1569 | cement = np.unique(dsm_cement["bus"].values)  | 
            ||
| 1570 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index)  | 
            ||
| 1571 | dsm.drop(index_names, inplace=True)  | 
            ||
| 1572 | |||
| 1573 | # calculate potentials of ventialtion in industrial sites of WZ 23  | 
            ||
| 1574 | # using parameters by Heitkoetter et al.  | 
            ||
| 1575 | vals = calculate_potentials(  | 
            ||
| 1576 | s_flex=S_FLEX_WZ,  | 
            ||
| 1577 | s_util=S_UTIL_WZ,  | 
            ||
| 1578 | s_inc=S_INC_WZ,  | 
            ||
| 1579 | s_dec=S_DEC_WZ,  | 
            ||
| 1580 | delta_t=DELTA_T_WZ,  | 
            ||
| 1581 | dsm=dsm,  | 
            ||
| 1582 | )  | 
            ||
| 1583 | |||
| 1584 | columns = ["site_id"] + base_columns  | 
            ||
| 1585 | |||
| 1586 | ind_sites_df = pd.concat([dsm, *vals], axis=1, ignore_index=True)  | 
            ||
| 1587 | ind_sites_df.columns = columns  | 
            ||
| 1588 | ind_sites_df = calc_per_unit(ind_sites_df)  | 
            ||
| 1589 | |||
| 1590 | # create tables  | 
            ||
| 1591 | create_table(  | 
            ||
| 1592 | df=cts_df, table=EgonEtragoElectricityCtsDsmTimeseries, engine=CON  | 
            ||
| 1593 | )  | 
            ||
| 1594 | create_table(  | 
            ||
| 1595 | df=osm_df,  | 
            ||
| 1596 | table=EgonOsmIndLoadCurvesIndividualDsmTimeseries,  | 
            ||
| 1597 | engine=CON,  | 
            ||
| 1598 | )  | 
            ||
| 1599 | create_table(  | 
            ||
| 1600 | df=ind_df,  | 
            ||
| 1601 | table=EgonDemandregioSitesIndElectricityDsmTimeseries,  | 
            ||
| 1602 | engine=CON,  | 
            ||
| 1603 | )  | 
            ||
| 1604 | create_table(  | 
            ||
| 1605 | df=ind_sites_df,  | 
            ||
| 1606 | table=EgonSitesIndLoadCurvesIndividualDsmTimeseries,  | 
            ||
| 1607 | engine=CON,  | 
            ||
| 1608 | )  | 
            ||
| 1609 | |||
| 1610 | |||
| 1611 | def dsm_cts_ind_processing():  | 
            ||
| 1612 | dsm_cts_ind()  | 
            ||
| 1613 | |||
| 1614 | dsm_cts_ind_individual()  | 
            ||
| 1615 |