| Total Complexity | 99 | 
| Total Lines | 2299 | 
| Duplicated Lines | 1.91 % | 
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.power_plants.pv_rooftop_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """  | 
            ||
| 2 | Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate  | 
            ||
| 3 | new PV rooftop generators for scenarios eGon2035 and eGon100RE.  | 
            ||
| 4 | |||
| 5 | Data cleaning and inference:  | 
            ||
| 6 | * Drop duplicates and entries with missing critical data.  | 
            ||
| 7 | * Determine most plausible capacity from multiple values given in MaStR data.  | 
            ||
| 8 | * Drop generators which don't have any plausible capacity data  | 
            ||
| 9 | (23.5MW > P > 0.1).  | 
            ||
| 10 | * Randomly and weighted add a start-up date if it is missing.  | 
            ||
| 11 | * Extract zip and municipality from 'site' given in MaStR data.  | 
            ||
| 12 | * Geocode unique zip and municipality combinations with Nominatim (1 sec  | 
            ||
| 13 | delay). Drop generators for which geocoding failed or which are located  | 
            ||
| 14 | outside the municipalities of Germany.  | 
            ||
| 15 | * Add some visual sanity checks for cleaned data.  | 
            ||
| 16 | |||
| 17 | Allocation of MaStR data:  | 
            ||
| 18 | * Allocate each generator to an existing building from OSM.  | 
            ||
| 19 | * Determine the quantile each generator and building is in depending on the  | 
            ||
| 20 | capacity of the generator and the area of the polygon of the building.  | 
            ||
| 21 | * Randomly distribute generators within each municipality preferably within  | 
            ||
| 22 | the same building area quantile as the generators are capacity wise.  | 
            ||
| 23 | * If not enough buildings exists within a municipality and quantile additional  | 
            ||
| 24 | buildings from other quantiles are chosen randomly.  | 
            ||
| 25 | |||
| 26 | Desegregation of pv rooftop scenarios:  | 
            ||
| 27 | * The scenario data per federal state is linearly distributed to the mv grid  | 
            ||
| 28 | districts according to the pv rooftop potential per mv grid district.  | 
            ||
| 29 | * The rooftop potential is estimated from the building area given from the OSM  | 
            ||
| 30 | buildings.  | 
            ||
| 31 | * Grid districts, which are located in several federal states, are allocated  | 
            ||
| 32 | PV capacity according to their respective roof potential in the individual  | 
            ||
| 33 | federal states.  | 
            ||
| 34 | * The desegregation of PV plants within a grid districts respects existing  | 
            ||
| 35 | plants from MaStR, which did not reach their end of life.  | 
            ||
| 36 | * New PV plants are randomly and weighted generated using a breakdown of MaStR  | 
            ||
| 37 | data as generator basis.  | 
            ||
| 38 | * Plant metadata (e.g. plant orientation) is also added random and weighted  | 
            ||
| 39 | from MaStR data as basis.  | 
            ||
| 40 | """  | 
            ||
| 41 | from __future__ import annotations  | 
            ||
| 42 | |||
| 43 | from collections import Counter  | 
            ||
| 44 | from functools import wraps  | 
            ||
| 45 | from time import perf_counter  | 
            ||
| 46 | |||
| 47 | from geoalchemy2 import Geometry  | 
            ||
| 48 | from loguru import logger  | 
            ||
| 49 | from numpy.random import RandomState, default_rng  | 
            ||
| 50 | from pyproj.crs.crs import CRS  | 
            ||
| 51 | from sqlalchemy import BigInteger, Column, Float, Integer, String  | 
            ||
| 52 | from sqlalchemy.dialects.postgresql import HSTORE  | 
            ||
| 53 | from sqlalchemy.ext.declarative import declarative_base  | 
            ||
| 54 | import geopandas as gpd  | 
            ||
| 55 | import numpy as np  | 
            ||
| 56 | import pandas as pd  | 
            ||
| 57 | |||
| 58 | from egon.data import config, db  | 
            ||
| 59 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import (  | 
            ||
| 60 | OsmBuildingsSynthetic,  | 
            ||
| 61 | )  | 
            ||
| 62 | from egon.data.datasets.power_plants.mastr_db_classes import EgonPowerPlantsPv  | 
            ||
| 63 | from egon.data.datasets.scenario_capacities import EgonScenarioCapacities  | 
            ||
| 64 | from egon.data.datasets.zensus_vg250 import Vg250Gem  | 
            ||
| 65 | |||
| 66 | engine = db.engine()  | 
            ||
| 67 | Base = declarative_base()  | 
            ||
| 68 | SEED = int(config.settings()["egon-data"]["--random-seed"])  | 
            ||
| 69 | |||
| 70 | # TODO: move to yml  | 
            ||
| 71 | MASTR_INDEX_COL = "gens_id"  | 
            ||
| 72 | |||
| 73 | EPSG = 4326  | 
            ||
| 74 | SRID = 3035  | 
            ||
| 75 | |||
| 76 | # data cleaning  | 
            ||
| 77 | MAX_REALISTIC_PV_CAP = 23500 / 10**3  | 
            ||
| 78 | MIN_REALISTIC_PV_CAP = 0.1 / 10**3  | 
            ||
| 79 | |||
| 80 | # show additional logging information  | 
            ||
| 81 | VERBOSE = False  | 
            ||
| 82 | |||
| 83 | # Number of quantiles  | 
            ||
| 84 | Q = 5  | 
            ||
| 85 | |||
| 86 | # Scenario Data  | 
            ||
| 87 | SCENARIOS = ["eGon2035", "eGon100RE"]  | 
            ||
| 88 | SCENARIO_TIMESTAMP = { | 
            ||
| 89 |     "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"), | 
            ||
| 90 |     "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"), | 
            ||
| 91 | }  | 
            ||
| 92 | PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D")  | 
            ||
| 93 | |||
| 94 | # Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp  | 
            ||
| 95 | # https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf  | 
            ||
| 96 | MODUL_CAP = 0.4 / 10**3 # MWp  | 
            ||
| 97 | MODUL_SIZE = 1.096 * 1.754 # m²  | 
            ||
| 98 | PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE  | 
            ||
| 99 | |||
| 100 | # Estimation of usable roof area  | 
            ||
| 101 | # Factor for the conversion of building area to roof area  | 
            ||
| 102 | # estimation mean roof pitch: 35°  | 
            ||
| 103 | # estimation usable roof share: 80%  | 
            ||
| 104 | # estimation that only the south side of the building is used for pv  | 
            ||
| 105 | # see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf  | 
            ||
| 106 | # AREA_FACTOR = 1.221  | 
            ||
| 107 | # USABLE_ROOF_SHARE = 0.8  | 
            ||
| 108 | # SOUTH_SHARE = 0.5  | 
            ||
| 109 | # ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE  | 
            ||
| 110 | ROOF_FACTOR = 0.5  | 
            ||
| 111 | |||
| 112 | CAP_RANGES = [  | 
            ||
| 113 | (0, 30 / 10**3),  | 
            ||
| 114 | (30 / 10**3, 100 / 10**3),  | 
            ||
| 115 |     (100 / 10**3, float("inf")), | 
            ||
| 116 | ]  | 
            ||
| 117 | |||
| 118 | MIN_BUILDING_SIZE = 10.0  | 
            ||
| 119 | UPPER_QUANTILE = 0.95  | 
            ||
| 120 | LOWER_QUANTILE = 0.05  | 
            ||
| 121 | |||
| 122 | COLS_TO_EXPORT = [  | 
            ||
| 123 | "scenario",  | 
            ||
| 124 | "bus_id",  | 
            ||
| 125 | "building_id",  | 
            ||
| 126 | "gens_id",  | 
            ||
| 127 | "capacity",  | 
            ||
| 128 | "orientation_uniform",  | 
            ||
| 129 | "orientation_primary",  | 
            ||
| 130 | "orientation_primary_angle",  | 
            ||
| 131 | "voltage_level",  | 
            ||
| 132 | "weather_cell_id",  | 
            ||
| 133 | ]  | 
            ||
| 134 | |||
| 135 | # TODO  | 
            ||
| 136 | INCLUDE_SYNTHETIC_BUILDINGS = True  | 
            ||
| 137 | ONLY_BUILDINGS_WITH_DEMAND = True  | 
            ||
| 138 | TEST_RUN = False  | 
            ||
| 139 | |||
| 140 | |||
| 141 | def timer_func(func):  | 
            ||
| 142 | @wraps(func)  | 
            ||
| 143 | def timeit_wrapper(*args, **kwargs):  | 
            ||
| 144 | start_time = perf_counter()  | 
            ||
| 145 | result = func(*args, **kwargs)  | 
            ||
| 146 | end_time = perf_counter()  | 
            ||
| 147 | total_time = end_time - start_time  | 
            ||
| 148 | logger.debug(  | 
            ||
| 149 |             f"Function {func.__name__} took {total_time:.4f} seconds." | 
            ||
| 150 | )  | 
            ||
| 151 | return result  | 
            ||
| 152 | |||
| 153 | return timeit_wrapper  | 
            ||
| 154 | |||
| 155 | |||
| 156 | @timer_func  | 
            ||
| 157 | def mastr_data(  | 
            ||
| 158 | index_col: str | int | list[str] | list[int],  | 
            ||
| 159 | ) -> gpd.GeoDataFrame:  | 
            ||
| 160 | """  | 
            ||
| 161 | Read MaStR data from database.  | 
            ||
| 162 | |||
| 163 | Parameters  | 
            ||
| 164 | -----------  | 
            ||
| 165 | index_col : str, int or list of str or int  | 
            ||
| 166 | Column(s) to use as the row labels of the DataFrame.  | 
            ||
| 167 | Returns  | 
            ||
| 168 | -------  | 
            ||
| 169 | pandas.DataFrame  | 
            ||
| 170 | DataFrame containing MaStR data.  | 
            ||
| 171 | """  | 
            ||
| 172 | with db.session_scope() as session:  | 
            ||
| 173 | query = session.query(EgonPowerPlantsPv).filter(  | 
            ||
| 174 | EgonPowerPlantsPv.status == "InBetrieb",  | 
            ||
| 175 | EgonPowerPlantsPv.site_type  | 
            ||
| 176 |             == ("Bauliche Anlagen (Hausdach, Gebäude und Fassade)"), | 
            ||
| 177 | )  | 
            ||
| 178 | |||
| 179 | gdf = gpd.read_postgis(  | 
            ||
| 180 | query.statement, query.session.bind, index_col=index_col  | 
            ||
| 181 | )  | 
            ||
| 182 | |||
| 183 |     logger.debug("MaStR data loaded.") | 
            ||
| 184 | |||
| 185 | return gdf  | 
            ||
| 186 | |||
| 187 | |||
| 188 | @timer_func  | 
            ||
| 189 | def clean_mastr_data(  | 
            ||
| 190 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 191 | max_realistic_pv_cap: int | float,  | 
            ||
| 192 | min_realistic_pv_cap: int | float,  | 
            ||
| 193 | seed: int,  | 
            ||
| 194 | ) -> gpd.GeoDataFrame:  | 
            ||
| 195 | """  | 
            ||
| 196 | Clean the MaStR data from implausible data.  | 
            ||
| 197 | |||
| 198 | * Drop MaStR ID duplicates.  | 
            ||
| 199 | * Drop generators with implausible capacities.  | 
            ||
| 200 | |||
| 201 | Parameters  | 
            ||
| 202 | -----------  | 
            ||
| 203 | mastr_gdf : pandas.DataFrame  | 
            ||
| 204 | DataFrame containing MaStR data.  | 
            ||
| 205 | max_realistic_pv_cap : int or float  | 
            ||
| 206 | Maximum capacity, which is considered to be realistic.  | 
            ||
| 207 | min_realistic_pv_cap : int or float  | 
            ||
| 208 | Minimum capacity, which is considered to be realistic.  | 
            ||
| 209 | seed : int  | 
            ||
| 210 | Seed to use for random operations with NumPy and pandas.  | 
            ||
| 211 | Returns  | 
            ||
| 212 | -------  | 
            ||
| 213 | pandas.DataFrame  | 
            ||
| 214 | DataFrame containing cleaned MaStR data.  | 
            ||
| 215 | """  | 
            ||
| 216 | init_len = len(mastr_gdf)  | 
            ||
| 217 | |||
| 218 | # drop duplicates  | 
            ||
| 219 | mastr_gdf = mastr_gdf.loc[~mastr_gdf.index.duplicated()]  | 
            ||
| 220 | |||
| 221 | # drop generators without any capacity info  | 
            ||
| 222 | # and capacity of zero  | 
            ||
| 223 | # and if the capacity is > 23.5 MW, because  | 
            ||
| 224 | # Germanies largest rooftop PV is 23 MW  | 
            ||
| 225 | # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379  | 
            ||
| 226 | mastr_gdf = mastr_gdf.loc[  | 
            ||
| 227 | ~mastr_gdf.capacity.isna()  | 
            ||
| 228 | & (mastr_gdf.capacity <= max_realistic_pv_cap)  | 
            ||
| 229 | & (mastr_gdf.capacity > min_realistic_pv_cap)  | 
            ||
| 230 | ]  | 
            ||
| 231 | |||
| 232 | # get consistent start-up date  | 
            ||
| 233 | # randomly and weighted fill missing start-up dates  | 
            ||
| 234 | pool = mastr_gdf.loc[  | 
            ||
| 235 | ~mastr_gdf.commissioning_date.isna()  | 
            ||
| 236 | ].commissioning_date.to_numpy()  | 
            ||
| 237 | |||
| 238 | size = len(mastr_gdf) - len(pool)  | 
            ||
| 239 | |||
| 240 | if size > 0:  | 
            ||
| 241 | rng = default_rng(seed=seed)  | 
            ||
| 242 | |||
| 243 | choice = rng.choice(  | 
            ||
| 244 | pool,  | 
            ||
| 245 | size=size,  | 
            ||
| 246 | replace=False,  | 
            ||
| 247 | )  | 
            ||
| 248 | |||
| 249 | mastr_gdf.loc[mastr_gdf.commissioning_date.isna()] = mastr_gdf.loc[  | 
            ||
| 250 | mastr_gdf.commissioning_date.isna()  | 
            ||
| 251 | ].assign(commissioning_date=choice)  | 
            ||
| 252 | |||
| 253 | logger.info(  | 
            ||
| 254 |             f"Randomly and weigthed added start-up date to {size} generators." | 
            ||
| 255 | )  | 
            ||
| 256 | |||
| 257 | mastr_gdf = mastr_gdf.assign(  | 
            ||
| 258 | commissioning_date=pd.to_datetime(  | 
            ||
| 259 | mastr_gdf.commissioning_date, utc=True  | 
            ||
| 260 | )  | 
            ||
| 261 | )  | 
            ||
| 262 | |||
| 263 | end_len = len(mastr_gdf)  | 
            ||
| 264 | logger.debug(  | 
            ||
| 265 |         f"Dropped {init_len - end_len} " | 
            ||
| 266 |         f"({((init_len - end_len) / init_len) * 100:g}%)" | 
            ||
| 267 |         f" of {init_len} rows from MaStR DataFrame." | 
            ||
| 268 | )  | 
            ||
| 269 | |||
| 270 | return mastr_gdf  | 
            ||
| 271 | |||
| 272 | |||
| 273 | @timer_func  | 
            ||
| 274 | def municipality_data() -> gpd.GeoDataFrame:  | 
            ||
| 275 | """  | 
            ||
| 276 | Get municipality data from eGo^n Database.  | 
            ||
| 277 | Returns  | 
            ||
| 278 | -------  | 
            ||
| 279 | gepandas.GeoDataFrame  | 
            ||
| 280 | GeoDataFrame with municipality data.  | 
            ||
| 281 | """  | 
            ||
| 282 | with db.session_scope() as session:  | 
            ||
| 283 |         query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom")) | 
            ||
| 284 | |||
| 285 | return gpd.read_postgis(  | 
            ||
| 286 | query.statement, query.session.bind, index_col="ags"  | 
            ||
| 287 | )  | 
            ||
| 288 | |||
| 289 | |||
| 290 | @timer_func  | 
            ||
| 291 | def add_ags_to_gens(  | 
            ||
| 292 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 293 | municipalities_gdf: gpd.GeoDataFrame,  | 
            ||
| 294 | ) -> gpd.GeoDataFrame:  | 
            ||
| 295 | """  | 
            ||
| 296 | Add information about AGS ID to generators.  | 
            ||
| 297 | Parameters  | 
            ||
| 298 | -----------  | 
            ||
| 299 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 300 | GeoDataFrame with valid and cleaned MaStR data.  | 
            ||
| 301 | municipalities_gdf : geopandas.GeoDataFrame  | 
            ||
| 302 | GeoDataFrame with municipality data.  | 
            ||
| 303 | Returns  | 
            ||
| 304 | -------  | 
            ||
| 305 | gepandas.GeoDataFrame  | 
            ||
| 306 | GeoDataFrame with valid and cleaned MaStR data  | 
            ||
| 307 | with AGS ID added.  | 
            ||
| 308 | """  | 
            ||
| 309 | return mastr_gdf.sjoin(  | 
            ||
| 310 | municipalities_gdf,  | 
            ||
| 311 | how="left",  | 
            ||
| 312 | predicate="intersects",  | 
            ||
| 313 |     ).rename(columns={"index_right": "ags"}) | 
            ||
| 314 | |||
| 315 | |||
| 316 | def drop_gens_outside_muns(  | 
            ||
| 317 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 318 | ) -> gpd.GeoDataFrame:  | 
            ||
| 319 | """  | 
            ||
| 320 | Drop all generators outside of municipalities.  | 
            ||
| 321 | Parameters  | 
            ||
| 322 | -----------  | 
            ||
| 323 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 324 | GeoDataFrame with valid and cleaned MaStR data.  | 
            ||
| 325 | Returns  | 
            ||
| 326 | -------  | 
            ||
| 327 | gepandas.GeoDataFrame  | 
            ||
| 328 | GeoDataFrame with valid and cleaned MaStR data  | 
            ||
| 329 | with generatos without an AGS ID dropped.  | 
            ||
| 330 | """  | 
            ||
| 331 | gdf = mastr_gdf.loc[~mastr_gdf.ags.isna()]  | 
            ||
| 332 | |||
| 333 | logger.debug(  | 
            ||
| 334 |         f"{len(mastr_gdf) - len(gdf)} (" | 
            ||
| 335 |         f"{(len(mastr_gdf) - len(gdf)) / len(mastr_gdf) * 100:g}%)" | 
            ||
| 336 |         f" of {len(mastr_gdf)} values are outside of the municipalities" | 
            ||
| 337 | " and are therefore dropped."  | 
            ||
| 338 | )  | 
            ||
| 339 | |||
| 340 | return gdf  | 
            ||
| 341 | |||
| 342 | |||
| 343 | def load_mastr_data():  | 
            ||
| 344 | """Read PV rooftop data from MaStR CSV  | 
            ||
| 345 | Note: the source will be replaced as soon as the MaStR data is available  | 
            ||
| 346 | in DB.  | 
            ||
| 347 | Returns  | 
            ||
| 348 | -------  | 
            ||
| 349 | geopandas.GeoDataFrame  | 
            ||
| 350 | GeoDataFrame containing MaStR data with geocoded locations.  | 
            ||
| 351 | """  | 
            ||
| 352 | mastr_gdf = mastr_data(  | 
            ||
| 353 | MASTR_INDEX_COL,  | 
            ||
| 354 | )  | 
            ||
| 355 | |||
| 356 | clean_mastr_gdf = clean_mastr_data(  | 
            ||
| 357 | mastr_gdf,  | 
            ||
| 358 | max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,  | 
            ||
| 359 | min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,  | 
            ||
| 360 | seed=SEED,  | 
            ||
| 361 | )  | 
            ||
| 362 | |||
| 363 | municipalities_gdf = municipality_data()  | 
            ||
| 364 | |||
| 365 | clean_mastr_gdf = add_ags_to_gens(clean_mastr_gdf, municipalities_gdf)  | 
            ||
| 366 | |||
| 367 | return drop_gens_outside_muns(clean_mastr_gdf)  | 
            ||
| 368 | |||
| 369 | |||
| 370 | class OsmBuildingsFiltered(Base):  | 
            ||
| 371 | __tablename__ = "osm_buildings_filtered"  | 
            ||
| 372 |     __table_args__ = {"schema": "openstreetmap"} | 
            ||
| 373 | |||
| 374 | osm_id = Column(BigInteger)  | 
            ||
| 375 | amenity = Column(String)  | 
            ||
| 376 | building = Column(String)  | 
            ||
| 377 | name = Column(String)  | 
            ||
| 378 | geom = Column(Geometry(srid=SRID), index=True)  | 
            ||
| 379 | area = Column(Float)  | 
            ||
| 380 | geom_point = Column(Geometry(srid=SRID), index=True)  | 
            ||
| 381 | tags = Column(HSTORE)  | 
            ||
| 382 | id = Column(BigInteger, primary_key=True, index=True)  | 
            ||
| 383 | |||
| 384 | |||
| 385 | @timer_func  | 
            ||
| 386 | def osm_buildings(  | 
            ||
| 387 | to_crs: CRS,  | 
            ||
| 388 | ) -> gpd.GeoDataFrame:  | 
            ||
| 389 | """  | 
            ||
| 390 | Read OSM buildings data from eGo^n Database.  | 
            ||
| 391 | Parameters  | 
            ||
| 392 | -----------  | 
            ||
| 393 | to_crs : pyproj.crs.crs.CRS  | 
            ||
| 394 | CRS to transform geometries to.  | 
            ||
| 395 | Returns  | 
            ||
| 396 | -------  | 
            ||
| 397 | geopandas.GeoDataFrame  | 
            ||
| 398 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 399 | """  | 
            ||
| 400 | with db.session_scope() as session:  | 
            ||
| 401 | query = session.query(  | 
            ||
| 402 | OsmBuildingsFiltered.id,  | 
            ||
| 403 | OsmBuildingsFiltered.area,  | 
            ||
| 404 |             OsmBuildingsFiltered.geom_point.label("geom"), | 
            ||
| 405 | )  | 
            ||
| 406 | |||
| 407 | return gpd.read_postgis(  | 
            ||
| 408 | query.statement, query.session.bind, index_col="id"  | 
            ||
| 409 | ).to_crs(to_crs)  | 
            ||
| 410 | |||
| 411 | |||
| 412 | @timer_func  | 
            ||
| 413 | def synthetic_buildings(  | 
            ||
| 414 | to_crs: CRS,  | 
            ||
| 415 | ) -> gpd.GeoDataFrame:  | 
            ||
| 416 | """  | 
            ||
| 417 | Read synthetic buildings data from eGo^n Database.  | 
            ||
| 418 | Parameters  | 
            ||
| 419 | -----------  | 
            ||
| 420 | to_crs : pyproj.crs.crs.CRS  | 
            ||
| 421 | CRS to transform geometries to.  | 
            ||
| 422 | Returns  | 
            ||
| 423 | -------  | 
            ||
| 424 | geopandas.GeoDataFrame  | 
            ||
| 425 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 426 | """  | 
            ||
| 427 | with db.session_scope() as session:  | 
            ||
| 428 | query = session.query(  | 
            ||
| 429 | OsmBuildingsSynthetic.id,  | 
            ||
| 430 | OsmBuildingsSynthetic.area,  | 
            ||
| 431 |             OsmBuildingsSynthetic.geom_point.label("geom"), | 
            ||
| 432 | )  | 
            ||
| 433 | |||
| 434 | return gpd.read_postgis(  | 
            ||
| 435 | query.statement, query.session.bind, index_col="id"  | 
            ||
| 436 | ).to_crs(to_crs)  | 
            ||
| 437 | |||
| 438 | |||
| 439 | @timer_func  | 
            ||
| 440 | def add_ags_to_buildings(  | 
            ||
| 441 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 442 | municipalities_gdf: gpd.GeoDataFrame,  | 
            ||
| 443 | ) -> gpd.GeoDataFrame:  | 
            ||
| 444 | """  | 
            ||
| 445 | Add information about AGS ID to buildings.  | 
            ||
| 446 | Parameters  | 
            ||
| 447 | -----------  | 
            ||
| 448 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 449 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 450 | municipalities_gdf : geopandas.GeoDataFrame  | 
            ||
| 451 | GeoDataFrame with municipality data.  | 
            ||
| 452 | Returns  | 
            ||
| 453 | -------  | 
            ||
| 454 | gepandas.GeoDataFrame  | 
            ||
| 455 | GeoDataFrame containing OSM buildings data  | 
            ||
| 456 | with AGS ID added.  | 
            ||
| 457 | """  | 
            ||
| 458 | return buildings_gdf.sjoin(  | 
            ||
| 459 | municipalities_gdf,  | 
            ||
| 460 | how="left",  | 
            ||
| 461 | predicate="intersects",  | 
            ||
| 462 |     ).rename(columns={"index_right": "ags"}) | 
            ||
| 463 | |||
| 464 | |||
| 465 | def drop_buildings_outside_muns(  | 
            ||
| 466 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 467 | ) -> gpd.GeoDataFrame:  | 
            ||
| 468 | """  | 
            ||
| 469 | Drop all buildings outside of municipalities.  | 
            ||
| 470 | Parameters  | 
            ||
| 471 | -----------  | 
            ||
| 472 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 473 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 474 | Returns  | 
            ||
| 475 | -------  | 
            ||
| 476 | gepandas.GeoDataFrame  | 
            ||
| 477 | GeoDataFrame containing OSM buildings data  | 
            ||
| 478 | with buildings without an AGS ID dropped.  | 
            ||
| 479 | """  | 
            ||
| 480 | gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()]  | 
            ||
| 481 | |||
| 482 | logger.debug(  | 
            ||
| 483 |         f"{len(buildings_gdf) - len(gdf)} " | 
            ||
| 484 |         f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " | 
            ||
| 485 |         f"of {len(buildings_gdf)} values are outside of the municipalities " | 
            ||
| 486 | "and are therefore dropped."  | 
            ||
| 487 | )  | 
            ||
| 488 | |||
| 489 | return gdf  | 
            ||
| 490 | |||
| 491 | |||
| 492 | def egon_building_peak_loads():  | 
            ||
| 493 | sql = """  | 
            ||
| 494 | SELECT building_id  | 
            ||
| 495 | FROM demand.egon_building_electricity_peak_loads  | 
            ||
| 496 | WHERE scenario = 'eGon2035'  | 
            ||
| 497 | """  | 
            ||
| 498 | |||
| 499 | return (  | 
            ||
| 500 | db.select_dataframe(sql).building_id.astype(int).sort_values().unique()  | 
            ||
| 501 | )  | 
            ||
| 502 | |||
| 503 | |||
| 504 | @timer_func  | 
            ||
| 505 | def load_building_data():  | 
            ||
| 506 | """  | 
            ||
| 507 | Read buildings from DB  | 
            ||
| 508 | Tables:  | 
            ||
| 509 | |||
| 510 | * `openstreetmap.osm_buildings_filtered` (from OSM)  | 
            ||
| 511 | * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us)  | 
            ||
| 512 | |||
| 513 | Use column `id` for both as it is unique hence you concat both datasets.  | 
            ||
| 514 | If INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be  | 
            ||
| 515 | loaded.  | 
            ||
| 516 | |||
| 517 | Returns  | 
            ||
| 518 | -------  | 
            ||
| 519 | gepandas.GeoDataFrame  | 
            ||
| 520 | GeoDataFrame containing OSM buildings data with buildings without an  | 
            ||
| 521 | AGS ID dropped.  | 
            ||
| 522 | """  | 
            ||
| 523 | |||
| 524 | municipalities_gdf = municipality_data()  | 
            ||
| 525 | |||
| 526 | osm_buildings_gdf = osm_buildings(municipalities_gdf.crs)  | 
            ||
| 527 | |||
| 528 | if INCLUDE_SYNTHETIC_BUILDINGS:  | 
            ||
| 529 | synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs)  | 
            ||
| 530 | |||
| 531 | buildings_gdf = gpd.GeoDataFrame(  | 
            ||
| 532 | pd.concat(  | 
            ||
| 533 | [  | 
            ||
| 534 | osm_buildings_gdf,  | 
            ||
| 535 | synthetic_buildings_gdf,  | 
            ||
| 536 | ]  | 
            ||
| 537 | ),  | 
            ||
| 538 | geometry="geom",  | 
            ||
| 539 | crs=osm_buildings_gdf.crs,  | 
            ||
| 540 |         ).rename(columns={"area": "building_area"}) | 
            ||
| 541 | |||
| 542 | buildings_gdf.index = buildings_gdf.index.astype(int)  | 
            ||
| 543 | |||
| 544 | else:  | 
            ||
| 545 | buildings_gdf = osm_buildings_gdf.rename(  | 
            ||
| 546 |             columns={"area": "building_area"} | 
            ||
| 547 | )  | 
            ||
| 548 | |||
| 549 | if ONLY_BUILDINGS_WITH_DEMAND:  | 
            ||
| 550 | building_ids = egon_building_peak_loads()  | 
            ||
| 551 | |||
| 552 | init_len = len(building_ids)  | 
            ||
| 553 | |||
| 554 | building_ids = np.intersect1d(  | 
            ||
| 555 | list(map(int, building_ids)),  | 
            ||
| 556 | list(map(int, buildings_gdf.index.to_numpy())),  | 
            ||
| 557 | )  | 
            ||
| 558 | |||
| 559 | end_len = len(building_ids)  | 
            ||
| 560 | |||
| 561 | logger.debug(  | 
            ||
| 562 |             f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) " | 
            ||
| 563 | f"of buildings have peak load."  | 
            ||
| 564 | )  | 
            ||
| 565 | |||
| 566 | buildings_gdf = buildings_gdf.loc[building_ids]  | 
            ||
| 567 | |||
| 568 | buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf)  | 
            ||
| 569 | |||
| 570 | buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf)  | 
            ||
| 571 | |||
| 572 | grid_districts_gdf = grid_districts(EPSG)  | 
            ||
| 573 | |||
| 574 | federal_state_gdf = federal_state_data(grid_districts_gdf.crs)  | 
            ||
| 575 | |||
| 576 | grid_federal_state_gdf = overlay_grid_districts_with_counties(  | 
            ||
| 577 | grid_districts_gdf,  | 
            ||
| 578 | federal_state_gdf,  | 
            ||
| 579 | )  | 
            ||
| 580 | |||
| 581 | buildings_overlay_gdf = add_overlay_id_to_buildings(  | 
            ||
| 582 | buildings_ags_gdf,  | 
            ||
| 583 | grid_federal_state_gdf,  | 
            ||
| 584 | )  | 
            ||
| 585 | |||
| 586 |     logger.debug("Loaded buildings.") | 
            ||
| 587 | |||
| 588 | buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf)  | 
            ||
| 589 | |||
| 590 | # overwrite bus_id with data from new table  | 
            ||
| 591 | sql = (  | 
            ||
| 592 | "SELECT building_id, bus_id FROM "  | 
            ||
| 593 | "boundaries.egon_map_zensus_mvgd_buildings"  | 
            ||
| 594 | )  | 
            ||
| 595 | map_building_bus_df = db.select_dataframe(sql)  | 
            ||
| 596 | |||
| 597 | building_ids = np.intersect1d(  | 
            ||
| 598 | list(map(int, map_building_bus_df.building_id.unique())),  | 
            ||
| 599 | list(map(int, buildings_overlay_gdf.index.to_numpy())),  | 
            ||
| 600 | )  | 
            ||
| 601 | |||
| 602 | buildings_within_gdf = buildings_overlay_gdf.loc[building_ids]  | 
            ||
| 603 | |||
| 604 | gdf = (  | 
            ||
| 605 | buildings_within_gdf.reset_index()  | 
            ||
| 606 | .drop(columns=["bus_id"])  | 
            ||
| 607 | .merge(  | 
            ||
| 608 | how="left",  | 
            ||
| 609 | right=map_building_bus_df,  | 
            ||
| 610 | left_on="id",  | 
            ||
| 611 | right_on="building_id",  | 
            ||
| 612 | )  | 
            ||
| 613 | .drop(columns=["building_id"])  | 
            ||
| 614 |         .set_index("id") | 
            ||
| 615 | .sort_index()  | 
            ||
| 616 | )  | 
            ||
| 617 | |||
| 618 | return gdf[~gdf.index.duplicated(keep="first")]  | 
            ||
| 619 | |||
| 620 | |||
| 621 | @timer_func  | 
            ||
| 622 | def sort_and_qcut_df(  | 
            ||
| 623 | df: pd.DataFrame | gpd.GeoDataFrame,  | 
            ||
| 624 | col: str,  | 
            ||
| 625 | q: int,  | 
            ||
| 626 | ) -> pd.DataFrame | gpd.GeoDataFrame:  | 
            ||
| 627 | """  | 
            ||
| 628 | Determine the quantile of a given attribute in a (Geo)DataFrame.  | 
            ||
| 629 | Sort the (Geo)DataFrame in ascending order for the given attribute.  | 
            ||
| 630 | Parameters  | 
            ||
| 631 | -----------  | 
            ||
| 632 | df : pandas.DataFrame or geopandas.GeoDataFrame  | 
            ||
| 633 | (Geo)DataFrame to sort and qcut.  | 
            ||
| 634 | col : str  | 
            ||
| 635 | Name of the attribute to sort and qcut the (Geo)DataFrame on.  | 
            ||
| 636 | q : int  | 
            ||
| 637 | Number of quantiles.  | 
            ||
| 638 | Returns  | 
            ||
| 639 | -------  | 
            ||
| 640 | pandas.DataFrame or gepandas.GeoDataFrame  | 
            ||
| 641 | Sorted and qcut (Geo)DataFrame.  | 
            ||
| 642 | """  | 
            ||
| 643 | df = df.sort_values(col, ascending=True)  | 
            ||
| 644 | |||
| 645 | return df.assign(  | 
            ||
| 646 | quant=pd.qcut(  | 
            ||
| 647 | df[col],  | 
            ||
| 648 | q=q,  | 
            ||
| 649 | labels=range(q),  | 
            ||
| 650 | )  | 
            ||
| 651 | )  | 
            ||
| 652 | |||
| 653 | |||
| 654 | @timer_func  | 
            ||
| 655 | def allocate_pv(  | 
            ||
| 656 | q_mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 657 | q_buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 658 | seed: int,  | 
            ||
| 659 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:  | 
            ||
| 660 | """  | 
            ||
| 661 | Allocate the MaStR pv generators to the OSM buildings.  | 
            ||
| 662 | This will determine a building for each pv generator if there are more  | 
            ||
| 663 | buildings than generators within a given AGS. Primarily generators are  | 
            ||
| 664 | distributed with the same qunatile as the buildings. Multiple assignment  | 
            ||
| 665 | is excluded.  | 
            ||
| 666 | Parameters  | 
            ||
| 667 | -----------  | 
            ||
| 668 | q_mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 669 | GeoDataFrame containing geocoded and qcut MaStR data.  | 
            ||
| 670 | q_buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 671 | GeoDataFrame containing qcut OSM buildings data.  | 
            ||
| 672 | seed : int  | 
            ||
| 673 | Seed to use for random operations with NumPy and pandas.  | 
            ||
| 674 | Returns  | 
            ||
| 675 | -------  | 
            ||
| 676 | tuple with two geopandas.GeoDataFrame s  | 
            ||
| 677 | GeoDataFrame containing MaStR data allocated to building IDs.  | 
            ||
| 678 | GeoDataFrame containing building data allocated to MaStR IDs.  | 
            ||
| 679 | """  | 
            ||
| 680 | rng = default_rng(seed=seed)  | 
            ||
| 681 | |||
| 682 | q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan).sort_values(  | 
            ||
| 683 | by=["ags", "quant"]  | 
            ||
| 684 | )  | 
            ||
| 685 | q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan).sort_values(  | 
            ||
| 686 | by=["ags", "quant"]  | 
            ||
| 687 | )  | 
            ||
| 688 | |||
| 689 | ags_list = q_buildings_gdf.ags.unique()  | 
            ||
| 690 | |||
| 691 | if TEST_RUN:  | 
            ||
| 692 | ags_list = ags_list[:250]  | 
            ||
| 693 | |||
| 694 | num_ags = len(ags_list)  | 
            ||
| 695 | |||
| 696 | t0 = perf_counter()  | 
            ||
| 697 | |||
| 698 | for count, ags in enumerate(ags_list):  | 
            ||
| 699 | |||
| 700 | buildings = q_buildings_gdf.loc[q_buildings_gdf.ags == ags]  | 
            ||
| 701 | gens = q_mastr_gdf.loc[q_mastr_gdf.ags == ags]  | 
            ||
| 702 | |||
| 703 | len_build = len(buildings)  | 
            ||
| 704 | len_gens = len(gens)  | 
            ||
| 705 | |||
| 706 | if len_build < len_gens:  | 
            ||
| 707 | gens = gens.sample(len_build, random_state=RandomState(seed=seed))  | 
            ||
| 708 | logger.error(  | 
            ||
| 709 |                 f"There are {len_gens} generators and only {len_build}" | 
            ||
| 710 |                 f" buildings in AGS {ags}. {len_gens - len(gens)} " | 
            ||
| 711 | "generators were truncated to match the amount of buildings."  | 
            ||
| 712 | )  | 
            ||
| 713 | |||
| 714 | assert len_build == len(gens)  | 
            ||
| 715 | |||
| 716 | for quant in gens.quant.unique():  | 
            ||
| 717 | q_buildings = buildings.loc[buildings.quant == quant]  | 
            ||
| 718 | q_gens = gens.loc[gens.quant == quant]  | 
            ||
| 719 | |||
| 720 | len_build = len(q_buildings)  | 
            ||
| 721 | len_gens = len(q_gens)  | 
            ||
| 722 | |||
| 723 | if len_build < len_gens:  | 
            ||
| 724 | delta = len_gens - len_build  | 
            ||
| 725 | |||
| 726 | logger.warning(  | 
            ||
| 727 |                     f"There are {len_gens} generators and only {len_build} " | 
            ||
| 728 |                     f"buildings in AGS {ags} and quantile {quant}. {delta} " | 
            ||
| 729 |                     f"buildings from AGS {ags} will be added randomly." | 
            ||
| 730 | )  | 
            ||
| 731 | |||
| 732 | add_buildings = pd.Index(  | 
            ||
| 733 | rng.choice(  | 
            ||
| 734 | list(set(buildings.index) - set(q_buildings.index)),  | 
            ||
| 735 | size=delta,  | 
            ||
| 736 | replace=False,  | 
            ||
| 737 | )  | 
            ||
| 738 | )  | 
            ||
| 739 | |||
| 740 | chosen_buildings = q_buildings.index.append(add_buildings)  | 
            ||
| 741 | |||
| 742 | else:  | 
            ||
| 743 | chosen_buildings = rng.choice(  | 
            ||
| 744 | q_buildings.index,  | 
            ||
| 745 | size=len_gens,  | 
            ||
| 746 | replace=False,  | 
            ||
| 747 | )  | 
            ||
| 748 | |||
| 749 | q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index  | 
            ||
| 750 | buildings = buildings.drop(chosen_buildings)  | 
            ||
| 751 | |||
| 752 | if count % 500 == 0:  | 
            ||
| 753 | logger.debug(  | 
            ||
| 754 |                 f"Allocation of {count / num_ags * 100:g} % of AGS done. " | 
            ||
| 755 |                 f"It took {perf_counter() - t0:g} seconds." | 
            ||
| 756 | )  | 
            ||
| 757 | |||
| 758 | t0 = perf_counter()  | 
            ||
| 759 | |||
| 760 | assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()]  | 
            ||
| 761 | |||
| 762 | assert len(assigned_buildings) == len(assigned_buildings.gens_id.unique())  | 
            ||
| 763 | |||
| 764 | q_mastr_gdf.loc[  | 
            ||
| 765 | assigned_buildings.gens_id, "building_id"  | 
            ||
| 766 | ] = assigned_buildings.index  | 
            ||
| 767 | |||
| 768 | assigned_gens = q_mastr_gdf.loc[~q_mastr_gdf.building_id.isna()]  | 
            ||
| 769 | |||
| 770 | assert len(assigned_buildings) == len(assigned_gens)  | 
            ||
| 771 | |||
| 772 |     logger.debug("Allocated status quo generators to buildings.") | 
            ||
| 773 | |||
| 774 | return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf)  | 
            ||
| 775 | |||
| 776 | |||
| 777 | def frame_to_numeric(  | 
            ||
| 778 | df: pd.DataFrame | gpd.GeoDataFrame,  | 
            ||
| 779 | ) -> pd.DataFrame | gpd.GeoDataFrame:  | 
            ||
| 780 | """  | 
            ||
| 781 | Try to convert all columns of a DataFrame to numeric ignoring errors.  | 
            ||
| 782 | Parameters  | 
            ||
| 783 | ----------  | 
            ||
| 784 | df : pandas.DataFrame or geopandas.GeoDataFrame  | 
            ||
| 785 | Returns  | 
            ||
| 786 | -------  | 
            ||
| 787 | pandas.DataFrame or geopandas.GeoDataFrame  | 
            ||
| 788 | """  | 
            ||
| 789 | if str(df.index.dtype) == "object":  | 
            ||
| 790 | df.index = pd.to_numeric(df.index, errors="ignore")  | 
            ||
| 791 | |||
| 792 | for col in df.columns:  | 
            ||
| 793 | if str(df[col].dtype) == "object":  | 
            ||
| 794 | df[col] = pd.to_numeric(df[col], errors="ignore")  | 
            ||
| 795 | |||
| 796 | return df  | 
            ||
| 797 | |||
| 798 | |||
| 799 | def validate_output(  | 
            ||
| 800 | desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame,  | 
            ||
| 801 | desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame,  | 
            ||
| 802 | ) -> None:  | 
            ||
| 803 | """  | 
            ||
| 804 | Validate output.  | 
            ||
| 805 | |||
| 806 | * Validate that there are exactly as many buildings with a pv system as  | 
            ||
| 807 | there are pv systems with a building  | 
            ||
| 808 | * Validate that the building IDs with a pv system are the same building  | 
            ||
| 809 | IDs as assigned to the pv systems  | 
            ||
| 810 | * Validate that the pv system IDs with a building are the same pv system  | 
            ||
| 811 | IDs as assigned to the buildings  | 
            ||
| 812 | |||
| 813 | Parameters  | 
            ||
| 814 | -----------  | 
            ||
| 815 | desagg_mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 816 | GeoDataFrame containing MaStR data allocated to building IDs.  | 
            ||
| 817 | desagg_buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 818 | GeoDataFrame containing building data allocated to MaStR IDs.  | 
            ||
| 819 | """  | 
            ||
| 820 | assert len(  | 
            ||
| 821 | desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()]  | 
            ||
| 822 | ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()])  | 
            ||
| 823 | assert (  | 
            ||
| 824 | np.sort(  | 
            ||
| 825 | desagg_mastr_gdf.loc[  | 
            ||
| 826 | ~desagg_mastr_gdf.building_id.isna()  | 
            ||
| 827 | ].building_id.unique()  | 
            ||
| 828 | )  | 
            ||
| 829 | == np.sort(  | 
            ||
| 830 | desagg_buildings_gdf.loc[  | 
            ||
| 831 | ~desagg_buildings_gdf.gens_id.isna()  | 
            ||
| 832 | ].index.unique()  | 
            ||
| 833 | )  | 
            ||
| 834 | ).all()  | 
            ||
| 835 | assert (  | 
            ||
| 836 | np.sort(  | 
            ||
| 837 | desagg_mastr_gdf.loc[  | 
            ||
| 838 | ~desagg_mastr_gdf.building_id.isna()  | 
            ||
| 839 | ].index.unique()  | 
            ||
| 840 | )  | 
            ||
| 841 | == np.sort(  | 
            ||
| 842 | desagg_buildings_gdf.loc[  | 
            ||
| 843 | ~desagg_buildings_gdf.gens_id.isna()  | 
            ||
| 844 | ].gens_id.unique()  | 
            ||
| 845 | )  | 
            ||
| 846 | ).all()  | 
            ||
| 847 | |||
| 848 |     logger.debug("Validated output.") | 
            ||
| 849 | |||
| 850 | |||
| 851 | def drop_unallocated_gens(  | 
            ||
| 852 | gdf: gpd.GeoDataFrame,  | 
            ||
| 853 | ) -> gpd.GeoDataFrame:  | 
            ||
| 854 | """  | 
            ||
| 855 | Drop generators which did not get allocated.  | 
            ||
| 856 | |||
| 857 | Parameters  | 
            ||
| 858 | -----------  | 
            ||
| 859 | gdf : geopandas.GeoDataFrame  | 
            ||
| 860 | GeoDataFrame containing MaStR data allocated to building IDs.  | 
            ||
| 861 | Returns  | 
            ||
| 862 | -------  | 
            ||
| 863 | geopandas.GeoDataFrame  | 
            ||
| 864 | GeoDataFrame containing MaStR data with generators dropped which did  | 
            ||
| 865 | not get allocated.  | 
            ||
| 866 | """  | 
            ||
| 867 | init_len = len(gdf)  | 
            ||
| 868 | gdf = gdf.loc[~gdf.building_id.isna()]  | 
            ||
| 869 | end_len = len(gdf)  | 
            ||
| 870 | |||
| 871 | logger.debug(  | 
            ||
| 872 |         f"Dropped {init_len - end_len} " | 
            ||
| 873 |         f"({((init_len - end_len) / init_len) * 100:g}%)" | 
            ||
| 874 |         f" of {init_len} unallocated rows from MaStR DataFrame." | 
            ||
| 875 | )  | 
            ||
| 876 | |||
| 877 | return gdf  | 
            ||
| 878 | |||
| 879 | |||
| 880 | @timer_func  | 
            ||
| 881 | def allocate_to_buildings(  | 
            ||
| 882 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 883 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 884 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:  | 
            ||
| 885 | """  | 
            ||
| 886 | Allocate status quo pv rooftop generators to buildings.  | 
            ||
| 887 | Parameters  | 
            ||
| 888 | -----------  | 
            ||
| 889 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 890 | GeoDataFrame containing MaStR data with geocoded locations.  | 
            ||
| 891 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 892 | GeoDataFrame containing OSM buildings data with buildings without an  | 
            ||
| 893 | AGS ID dropped.  | 
            ||
| 894 | Returns  | 
            ||
| 895 | -------  | 
            ||
| 896 | tuple with two geopandas.GeoDataFrame s  | 
            ||
| 897 | GeoDataFrame containing MaStR data allocated to building IDs.  | 
            ||
| 898 | GeoDataFrame containing building data allocated to MaStR IDs.  | 
            ||
| 899 | """  | 
            ||
| 900 |     logger.debug("Starting allocation of status quo.") | 
            ||
| 901 | |||
| 902 | q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q)  | 
            ||
| 903 | q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q)  | 
            ||
| 904 | |||
| 905 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv(  | 
            ||
| 906 | q_mastr_gdf, q_buildings_gdf, SEED  | 
            ||
| 907 | )  | 
            ||
| 908 | |||
| 909 | validate_output(desagg_mastr_gdf, desagg_buildings_gdf)  | 
            ||
| 910 | |||
| 911 | return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf  | 
            ||
| 912 | |||
| 913 | |||
| 914 | @timer_func  | 
            ||
| 915 | def grid_districts(  | 
            ||
| 916 | epsg: int,  | 
            ||
| 917 | ) -> gpd.GeoDataFrame:  | 
            ||
| 918 | """  | 
            ||
| 919 | Load mv grid district geo data from eGo^n Database as  | 
            ||
| 920 | geopandas.GeoDataFrame.  | 
            ||
| 921 | Parameters  | 
            ||
| 922 | -----------  | 
            ||
| 923 | epsg : int  | 
            ||
| 924 | EPSG ID to use as CRS.  | 
            ||
| 925 | Returns  | 
            ||
| 926 | -------  | 
            ||
| 927 | geopandas.GeoDataFrame  | 
            ||
| 928 | GeoDataFrame containing mv grid district ID and geo shapes data.  | 
            ||
| 929 | """  | 
            ||
| 930 | gdf = db.select_geodataframe(  | 
            ||
| 931 | """  | 
            ||
| 932 | SELECT bus_id, geom  | 
            ||
| 933 | FROM grid.egon_mv_grid_district  | 
            ||
| 934 | ORDER BY bus_id  | 
            ||
| 935 | """,  | 
            ||
| 936 | index_col="bus_id",  | 
            ||
| 937 | geom_col="geom",  | 
            ||
| 938 | epsg=epsg,  | 
            ||
| 939 | )  | 
            ||
| 940 | |||
| 941 | gdf.index = gdf.index.astype(int)  | 
            ||
| 942 | |||
| 943 |     logger.debug("Grid districts loaded.") | 
            ||
| 944 | |||
| 945 | return gdf  | 
            ||
| 946 | |||
| 947 | |||
| 948 | def scenario_data(  | 
            ||
| 949 | carrier: str = "solar_rooftop",  | 
            ||
| 950 | scenario: str = "eGon2035",  | 
            ||
| 951 | ) -> pd.DataFrame:  | 
            ||
| 952 | """  | 
            ||
| 953 | Get scenario capacity data from eGo^n Database.  | 
            ||
| 954 | Parameters  | 
            ||
| 955 | -----------  | 
            ||
| 956 | carrier : str  | 
            ||
| 957 | Carrier type to filter table by.  | 
            ||
| 958 | scenario : str  | 
            ||
| 959 | Scenario to filter table by.  | 
            ||
| 960 | Returns  | 
            ||
| 961 | -------  | 
            ||
| 962 | geopandas.GeoDataFrame  | 
            ||
| 963 | GeoDataFrame with scenario capacity data in GW.  | 
            ||
| 964 | """  | 
            ||
| 965 | with db.session_scope() as session:  | 
            ||
| 966 | query = session.query(EgonScenarioCapacities).filter(  | 
            ||
| 967 | EgonScenarioCapacities.carrier == carrier,  | 
            ||
| 968 | EgonScenarioCapacities.scenario_name == scenario,  | 
            ||
| 969 | )  | 
            ||
| 970 | |||
| 971 | df = pd.read_sql(  | 
            ||
| 972 | query.statement, query.session.bind, index_col="index"  | 
            ||
| 973 | ).sort_index()  | 
            ||
| 974 | |||
| 975 |     logger.debug("Scenario capacity data loaded.") | 
            ||
| 976 | |||
| 977 | return df  | 
            ||
| 978 | |||
| 979 | |||
| 980 | View Code Duplication | class Vg250Lan(Base):  | 
            |
| 
                                                                                                    
                        
                         | 
                |||
| 981 | __tablename__ = "vg250_lan"  | 
            ||
| 982 |     __table_args__ = {"schema": "boundaries"} | 
            ||
| 983 | |||
| 984 | id = Column(BigInteger, primary_key=True, index=True)  | 
            ||
| 985 | ade = Column(BigInteger)  | 
            ||
| 986 | gf = Column(BigInteger)  | 
            ||
| 987 | bsg = Column(BigInteger)  | 
            ||
| 988 | ars = Column(String)  | 
            ||
| 989 | ags = Column(String)  | 
            ||
| 990 | sdv_ars = Column(String)  | 
            ||
| 991 | gen = Column(String)  | 
            ||
| 992 | bez = Column(String)  | 
            ||
| 993 | ibz = Column(BigInteger)  | 
            ||
| 994 | bem = Column(String)  | 
            ||
| 995 | nbd = Column(String)  | 
            ||
| 996 | sn_l = Column(String)  | 
            ||
| 997 | sn_r = Column(String)  | 
            ||
| 998 | sn_k = Column(String)  | 
            ||
| 999 | sn_v1 = Column(String)  | 
            ||
| 1000 | sn_v2 = Column(String)  | 
            ||
| 1001 | sn_g = Column(String)  | 
            ||
| 1002 | fk_s3 = Column(String)  | 
            ||
| 1003 | nuts = Column(String)  | 
            ||
| 1004 | ars_0 = Column(String)  | 
            ||
| 1005 | ags_0 = Column(String)  | 
            ||
| 1006 | wsk = Column(String)  | 
            ||
| 1007 | debkg_id = Column(String)  | 
            ||
| 1008 | rs = Column(String)  | 
            ||
| 1009 | sdv_rs = Column(String)  | 
            ||
| 1010 | rs_0 = Column(String)  | 
            ||
| 1011 | geometry = Column(Geometry(srid=EPSG), index=True)  | 
            ||
| 1012 | |||
| 1013 | |||
| 1014 | def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame:  | 
            ||
| 1015 | """  | 
            ||
| 1016 | Get feder state data from eGo^n Database.  | 
            ||
| 1017 | Parameters  | 
            ||
| 1018 | -----------  | 
            ||
| 1019 | to_crs : pyproj.crs.crs.CRS  | 
            ||
| 1020 | CRS to transform geometries to.  | 
            ||
| 1021 | Returns  | 
            ||
| 1022 | -------  | 
            ||
| 1023 | geopandas.GeoDataFrame  | 
            ||
| 1024 | GeoDataFrame with federal state data.  | 
            ||
| 1025 | """  | 
            ||
| 1026 | with db.session_scope() as session:  | 
            ||
| 1027 | query = session.query(  | 
            ||
| 1028 |             Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom") | 
            ||
| 1029 | )  | 
            ||
| 1030 | |||
| 1031 | gdf = gpd.read_postgis(  | 
            ||
| 1032 | query.statement, session.connection(), index_col="id"  | 
            ||
| 1033 | ).to_crs(to_crs)  | 
            ||
| 1034 | |||
| 1035 |     logger.debug("Federal State data loaded.") | 
            ||
| 1036 | |||
| 1037 | return gdf  | 
            ||
| 1038 | |||
| 1039 | |||
| 1040 | @timer_func  | 
            ||
| 1041 | def overlay_grid_districts_with_counties(  | 
            ||
| 1042 | mv_grid_district_gdf: gpd.GeoDataFrame,  | 
            ||
| 1043 | federal_state_gdf: gpd.GeoDataFrame,  | 
            ||
| 1044 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1045 | """  | 
            ||
| 1046 | Calculate the intersections of mv grid districts and counties.  | 
            ||
| 1047 | Parameters  | 
            ||
| 1048 | -----------  | 
            ||
| 1049 | mv_grid_district_gdf : gpd.GeoDataFrame  | 
            ||
| 1050 | GeoDataFrame containing mv grid district ID and geo shapes data.  | 
            ||
| 1051 | federal_state_gdf : gpd.GeoDataFrame  | 
            ||
| 1052 | GeoDataFrame with federal state data.  | 
            ||
| 1053 | Returns  | 
            ||
| 1054 | -------  | 
            ||
| 1055 | geopandas.GeoDataFrame  | 
            ||
| 1056 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 1057 | """  | 
            ||
| 1058 | logger.debug(  | 
            ||
| 1059 | "Calculating intersection overlay between mv grid districts and "  | 
            ||
| 1060 | "counties. This may take a while..."  | 
            ||
| 1061 | )  | 
            ||
| 1062 | |||
| 1063 | gdf = gpd.overlay(  | 
            ||
| 1064 | federal_state_gdf.to_crs(mv_grid_district_gdf.crs),  | 
            ||
| 1065 | mv_grid_district_gdf.reset_index(),  | 
            ||
| 1066 | how="intersection",  | 
            ||
| 1067 | keep_geom_type=True,  | 
            ||
| 1068 | )  | 
            ||
| 1069 | |||
| 1070 |     logger.debug("Done!") | 
            ||
| 1071 | |||
| 1072 | return gdf  | 
            ||
| 1073 | |||
| 1074 | |||
| 1075 | @timer_func  | 
            ||
| 1076 | def add_overlay_id_to_buildings(  | 
            ||
| 1077 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1078 | grid_federal_state_gdf: gpd.GeoDataFrame,  | 
            ||
| 1079 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1080 | """  | 
            ||
| 1081 | Add information about overlay ID to buildings.  | 
            ||
| 1082 | Parameters  | 
            ||
| 1083 | -----------  | 
            ||
| 1084 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1085 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 1086 | grid_federal_state_gdf : geopandas.GeoDataFrame  | 
            ||
| 1087 | GeoDataFrame with intersection shapes between counties and grid  | 
            ||
| 1088 | districts.  | 
            ||
| 1089 | Returns  | 
            ||
| 1090 | -------  | 
            ||
| 1091 | geopandas.GeoDataFrame  | 
            ||
| 1092 | GeoDataFrame containing OSM buildings data with overlay ID added.  | 
            ||
| 1093 | """  | 
            ||
| 1094 | gdf = (  | 
            ||
| 1095 | buildings_gdf.to_crs(grid_federal_state_gdf.crs)  | 
            ||
| 1096 | .sjoin(  | 
            ||
| 1097 | grid_federal_state_gdf,  | 
            ||
| 1098 | how="left",  | 
            ||
| 1099 | predicate="intersects",  | 
            ||
| 1100 | )  | 
            ||
| 1101 |         .rename(columns={"index_right": "overlay_id"}) | 
            ||
| 1102 | )  | 
            ||
| 1103 | |||
| 1104 |     logger.debug("Added overlay ID to OSM buildings.") | 
            ||
| 1105 | |||
| 1106 | return gdf  | 
            ||
| 1107 | |||
| 1108 | |||
| 1109 | def drop_buildings_outside_grids(  | 
            ||
| 1110 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1111 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1112 | """  | 
            ||
| 1113 | Drop all buildings outside of grid areas.  | 
            ||
| 1114 | Parameters  | 
            ||
| 1115 | -----------  | 
            ||
| 1116 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1117 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 1118 | Returns  | 
            ||
| 1119 | -------  | 
            ||
| 1120 | gepandas.GeoDataFrame  | 
            ||
| 1121 | GeoDataFrame containing OSM buildings data  | 
            ||
| 1122 | with buildings without an bus ID dropped.  | 
            ||
| 1123 | """  | 
            ||
| 1124 | gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()]  | 
            ||
| 1125 | |||
| 1126 | logger.debug(  | 
            ||
| 1127 |         f"{len(buildings_gdf) - len(gdf)} " | 
            ||
| 1128 |         f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " | 
            ||
| 1129 |         f"of {len(buildings_gdf)} values are outside of the grid areas " | 
            ||
| 1130 | "and are therefore dropped."  | 
            ||
| 1131 | )  | 
            ||
| 1132 | |||
| 1133 | return gdf  | 
            ||
| 1134 | |||
| 1135 | |||
| 1136 | def cap_per_bus_id(  | 
            ||
| 1137 | scenario: str,  | 
            ||
| 1138 | ) -> pd.DataFrame:  | 
            ||
| 1139 | """  | 
            ||
| 1140 | Get table with total pv rooftop capacity per grid district.  | 
            ||
| 1141 | |||
| 1142 | Parameters  | 
            ||
| 1143 | -----------  | 
            ||
| 1144 | scenario : str  | 
            ||
| 1145 | Scenario name.  | 
            ||
| 1146 | Returns  | 
            ||
| 1147 | -------  | 
            ||
| 1148 | pandas.DataFrame  | 
            ||
| 1149 | DataFrame with total rooftop capacity per mv grid.  | 
            ||
| 1150 | """  | 
            ||
| 1151 | targets = config.datasets()["solar_rooftop"]["targets"]  | 
            ||
| 1152 | |||
| 1153 | sql = f"""  | 
            ||
| 1154 | SELECT bus as bus_id, control, p_nom as capacity  | 
            ||
| 1155 |     FROM {targets['generators']['schema']}.{targets['generators']['table']} | 
            ||
| 1156 | WHERE carrier = 'solar_rooftop'  | 
            ||
| 1157 |     AND scn_name = '{scenario}' | 
            ||
| 1158 | """  | 
            ||
| 1159 | |||
| 1160 | df = db.select_dataframe(sql, index_col="bus_id")  | 
            ||
| 1161 | |||
| 1162 | return df.loc[df.control != "Slack"]  | 
            ||
| 1163 | |||
| 1164 | |||
| 1165 | def determine_end_of_life_gens(  | 
            ||
| 1166 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1167 | scenario_timestamp: pd.Timestamp,  | 
            ||
| 1168 | pv_rooftop_lifetime: pd.Timedelta,  | 
            ||
| 1169 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1170 | """  | 
            ||
| 1171 | Determine if an old PV system has reached its end of life.  | 
            ||
| 1172 | Parameters  | 
            ||
| 1173 | -----------  | 
            ||
| 1174 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1175 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1176 | scenario_timestamp : pandas.Timestamp  | 
            ||
| 1177 | Timestamp at which the scenario takes place.  | 
            ||
| 1178 | pv_rooftop_lifetime : pandas.Timedelta  | 
            ||
| 1179 | Average expected lifetime of PV rooftop systems.  | 
            ||
| 1180 | Returns  | 
            ||
| 1181 | -------  | 
            ||
| 1182 | geopandas.GeoDataFrame  | 
            ||
| 1183 | GeoDataFrame containing geocoded MaStR data and info if the system  | 
            ||
| 1184 | has reached its end of life.  | 
            ||
| 1185 | """  | 
            ||
| 1186 | before = mastr_gdf.capacity.sum()  | 
            ||
| 1187 | |||
| 1188 | mastr_gdf = mastr_gdf.assign(  | 
            ||
| 1189 | age=scenario_timestamp - mastr_gdf.commissioning_date  | 
            ||
| 1190 | )  | 
            ||
| 1191 | |||
| 1192 | mastr_gdf = mastr_gdf.assign(  | 
            ||
| 1193 | end_of_life=pv_rooftop_lifetime < mastr_gdf.age  | 
            ||
| 1194 | )  | 
            ||
| 1195 | |||
| 1196 | after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum()  | 
            ||
| 1197 | |||
| 1198 | logger.debug(  | 
            ||
| 1199 | f"Determined if pv rooftop systems reached their end of life.\nTotal "  | 
            ||
| 1200 |         f"capacity: {before}\nActive capacity: {after}" | 
            ||
| 1201 | )  | 
            ||
| 1202 | |||
| 1203 | return mastr_gdf  | 
            ||
| 1204 | |||
| 1205 | |||
| 1206 | def calculate_max_pv_cap_per_building(  | 
            ||
| 1207 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1208 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1209 | pv_cap_per_sq_m: float | int,  | 
            ||
| 1210 | roof_factor: float | int,  | 
            ||
| 1211 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1212 | """  | 
            ||
| 1213 | Calculate the estimated maximum possible PV capacity per building.  | 
            ||
| 1214 | |||
| 1215 | Parameters  | 
            ||
| 1216 | -----------  | 
            ||
| 1217 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1218 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 1219 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1220 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1221 | pv_cap_per_sq_m : float, int  | 
            ||
| 1222 | Average expected, installable PV capacity per square meter.  | 
            ||
| 1223 | roof_factor : float, int  | 
            ||
| 1224 | Average for PV usable roof area share.  | 
            ||
| 1225 | Returns  | 
            ||
| 1226 | -------  | 
            ||
| 1227 | geopandas.GeoDataFrame  | 
            ||
| 1228 | GeoDataFrame containing OSM buildings data with estimated maximum PV  | 
            ||
| 1229 | capacity.  | 
            ||
| 1230 | """  | 
            ||
| 1231 | gdf = (  | 
            ||
| 1232 | buildings_gdf.reset_index()  | 
            ||
| 1233 |         .rename(columns={"index": "id"}) | 
            ||
| 1234 | .merge(  | 
            ||
| 1235 | mastr_gdf[  | 
            ||
| 1236 | [  | 
            ||
| 1237 | "capacity",  | 
            ||
| 1238 | "end_of_life",  | 
            ||
| 1239 | "building_id",  | 
            ||
| 1240 | "orientation_uniform",  | 
            ||
| 1241 | "orientation_primary",  | 
            ||
| 1242 | "orientation_primary_angle",  | 
            ||
| 1243 | ]  | 
            ||
| 1244 | ],  | 
            ||
| 1245 | how="left",  | 
            ||
| 1246 | left_on="id",  | 
            ||
| 1247 | right_on="building_id",  | 
            ||
| 1248 | )  | 
            ||
| 1249 |         .set_index("id") | 
            ||
| 1250 | .drop(columns="building_id")  | 
            ||
| 1251 | )  | 
            ||
| 1252 | |||
| 1253 | return gdf.assign(  | 
            ||
| 1254 | max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m),  | 
            ||
| 1255 | end_of_life=gdf.end_of_life.fillna(True).astype(bool),  | 
            ||
| 1256 | bus_id=gdf.bus_id.astype(int),  | 
            ||
| 1257 | )  | 
            ||
| 1258 | |||
| 1259 | |||
| 1260 | def calculate_building_load_factor(  | 
            ||
| 1261 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1262 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1263 | rounding: int = 4,  | 
            ||
| 1264 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1265 | """  | 
            ||
| 1266 | Calculate the roof load factor from existing PV systems.  | 
            ||
| 1267 | Parameters  | 
            ||
| 1268 | -----------  | 
            ||
| 1269 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1270 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1271 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1272 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 1273 | rounding : int  | 
            ||
| 1274 | Rounding to use for load factor.  | 
            ||
| 1275 | Returns  | 
            ||
| 1276 | -------  | 
            ||
| 1277 | geopandas.GeoDataFrame  | 
            ||
| 1278 | GeoDataFrame containing geocoded MaStR data with calculated load  | 
            ||
| 1279 | factor.  | 
            ||
| 1280 | """  | 
            ||
| 1281 | gdf = mastr_gdf.merge(  | 
            ||
| 1282 | buildings_gdf[["max_cap", "building_area"]]  | 
            ||
| 1283 | .loc[~buildings_gdf["max_cap"].isna()]  | 
            ||
| 1284 | .reset_index(),  | 
            ||
| 1285 | how="left",  | 
            ||
| 1286 | left_on="building_id",  | 
            ||
| 1287 | right_on="id",  | 
            ||
| 1288 |     ).set_index("id") | 
            ||
| 1289 | |||
| 1290 | return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding))  | 
            ||
| 1291 | |||
| 1292 | |||
| 1293 | def get_probability_for_property(  | 
            ||
| 1294 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1295 | cap_range: tuple[int | float, int | float],  | 
            ||
| 1296 | prop: str,  | 
            ||
| 1297 | ) -> tuple[np.array, np.array]:  | 
            ||
| 1298 | """  | 
            ||
| 1299 | Calculate the probability of the different options of a property of the  | 
            ||
| 1300 | existing PV plants.  | 
            ||
| 1301 | Parameters  | 
            ||
| 1302 | -----------  | 
            ||
| 1303 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1304 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1305 | cap_range : tuple(int, int)  | 
            ||
| 1306 | Capacity range of PV plants to look at.  | 
            ||
| 1307 | prop : str  | 
            ||
| 1308 | Property to calculate probabilities for. String needs to be in columns  | 
            ||
| 1309 | of mastr_gdf.  | 
            ||
| 1310 | Returns  | 
            ||
| 1311 | -------  | 
            ||
| 1312 | tuple  | 
            ||
| 1313 | numpy.array  | 
            ||
| 1314 | Unique values of property.  | 
            ||
| 1315 | numpy.array  | 
            ||
| 1316 | Probabilties per unique value.  | 
            ||
| 1317 | """  | 
            ||
| 1318 | cap_range_gdf = mastr_gdf.loc[  | 
            ||
| 1319 | (mastr_gdf.capacity > cap_range[0])  | 
            ||
| 1320 | & (mastr_gdf.capacity <= cap_range[1])  | 
            ||
| 1321 | ]  | 
            ||
| 1322 | |||
| 1323 | if prop == "load_factor":  | 
            ||
| 1324 | cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1]  | 
            ||
| 1325 | |||
| 1326 | count = Counter(  | 
            ||
| 1327 | cap_range_gdf[prop].loc[  | 
            ||
| 1328 | ~cap_range_gdf[prop].isna()  | 
            ||
| 1329 | & ~cap_range_gdf[prop].isnull()  | 
            ||
| 1330 | & ~(cap_range_gdf[prop] == "None")  | 
            ||
| 1331 | ]  | 
            ||
| 1332 | )  | 
            ||
| 1333 | |||
| 1334 | values = np.array(list(count.keys()))  | 
            ||
| 1335 | probabilities = np.fromiter(count.values(), dtype=float)  | 
            ||
| 1336 | probabilities = probabilities / np.sum(probabilities)  | 
            ||
| 1337 | |||
| 1338 | return values, probabilities  | 
            ||
| 1339 | |||
| 1340 | |||
| 1341 | @timer_func  | 
            ||
| 1342 | def probabilities(  | 
            ||
| 1343 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1344 | cap_ranges: list[tuple[int | float, int | float]] | None = None,  | 
            ||
| 1345 | properties: list[str] | None = None,  | 
            ||
| 1346 | ) -> dict:  | 
            ||
| 1347 | """  | 
            ||
| 1348 | Calculate the probability of the different options of properties of the  | 
            ||
| 1349 | existing PV plants.  | 
            ||
| 1350 | Parameters  | 
            ||
| 1351 | -----------  | 
            ||
| 1352 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1353 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1354 | cap_ranges : list(tuple(int, int))  | 
            ||
| 1355 | List of capacity ranges to distinguish between. The first tuple should  | 
            ||
| 1356 | start with a zero and the last one should end with infinite.  | 
            ||
| 1357 | properties : list(str)  | 
            ||
| 1358 | List of properties to calculate probabilities for. Strings need to be  | 
            ||
| 1359 | in columns of mastr_gdf.  | 
            ||
| 1360 | Returns  | 
            ||
| 1361 | -------  | 
            ||
| 1362 | dict  | 
            ||
| 1363 | Dictionary with values and probabilities per capacity range.  | 
            ||
| 1364 | """  | 
            ||
| 1365 | if cap_ranges is None:  | 
            ||
| 1366 | cap_ranges = [  | 
            ||
| 1367 | (0, 30 / 10**3),  | 
            ||
| 1368 | (30 / 10**3, 100 / 10**3),  | 
            ||
| 1369 |             (100 / 10**3, float("inf")), | 
            ||
| 1370 | ]  | 
            ||
| 1371 | if properties is None:  | 
            ||
| 1372 | properties = [  | 
            ||
| 1373 | "orientation_uniform",  | 
            ||
| 1374 | "orientation_primary",  | 
            ||
| 1375 | "orientation_primary_angle",  | 
            ||
| 1376 | "load_factor",  | 
            ||
| 1377 | ]  | 
            ||
| 1378 | |||
| 1379 |     prob_dict = {} | 
            ||
| 1380 | |||
| 1381 | for cap_range in cap_ranges:  | 
            ||
| 1382 |         prob_dict[cap_range] = { | 
            ||
| 1383 |             "values": {}, | 
            ||
| 1384 |             "probabilities": {}, | 
            ||
| 1385 | }  | 
            ||
| 1386 | |||
| 1387 | for prop in properties:  | 
            ||
| 1388 | v, p = get_probability_for_property(  | 
            ||
| 1389 | mastr_gdf,  | 
            ||
| 1390 | cap_range,  | 
            ||
| 1391 | prop,  | 
            ||
| 1392 | )  | 
            ||
| 1393 | |||
| 1394 | prob_dict[cap_range]["values"][prop] = v  | 
            ||
| 1395 | prob_dict[cap_range]["probabilities"][prop] = p  | 
            ||
| 1396 | |||
| 1397 | return prob_dict  | 
            ||
| 1398 | |||
| 1399 | |||
| 1400 | def cap_share_per_cap_range(  | 
            ||
| 1401 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1402 | cap_ranges: list[tuple[int | float, int | float]] | None = None,  | 
            ||
| 1403 | ) -> dict[tuple[int | float, int | float], float]:  | 
            ||
| 1404 | """  | 
            ||
| 1405 | Calculate the share of PV capacity from the total PV capacity within  | 
            ||
| 1406 | capacity ranges.  | 
            ||
| 1407 | |||
| 1408 | Parameters  | 
            ||
| 1409 | -----------  | 
            ||
| 1410 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1411 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1412 | cap_ranges : list(tuple(int, int))  | 
            ||
| 1413 | List of capacity ranges to distinguish between. The first tuple should  | 
            ||
| 1414 | start with a zero and the last one should end with infinite.  | 
            ||
| 1415 | Returns  | 
            ||
| 1416 | -------  | 
            ||
| 1417 | dict  | 
            ||
| 1418 | Dictionary with share of PV capacity from the total PV capacity within  | 
            ||
| 1419 | capacity ranges.  | 
            ||
| 1420 | """  | 
            ||
| 1421 | if cap_ranges is None:  | 
            ||
| 1422 | cap_ranges = [  | 
            ||
| 1423 | (0, 30 / 10**3),  | 
            ||
| 1424 | (30 / 10**3, 100 / 10**3),  | 
            ||
| 1425 |             (100 / 10**3, float("inf")), | 
            ||
| 1426 | ]  | 
            ||
| 1427 | |||
| 1428 |     cap_share_dict = {} | 
            ||
| 1429 | |||
| 1430 | total_cap = mastr_gdf.capacity.sum()  | 
            ||
| 1431 | |||
| 1432 | for cap_range in cap_ranges:  | 
            ||
| 1433 | cap_share = (  | 
            ||
| 1434 | mastr_gdf.loc[  | 
            ||
| 1435 | (mastr_gdf.capacity > cap_range[0])  | 
            ||
| 1436 | & (mastr_gdf.capacity <= cap_range[1])  | 
            ||
| 1437 | ].capacity.sum()  | 
            ||
| 1438 | / total_cap  | 
            ||
| 1439 | )  | 
            ||
| 1440 | |||
| 1441 | cap_share_dict[cap_range] = cap_share  | 
            ||
| 1442 | |||
| 1443 | return cap_share_dict  | 
            ||
| 1444 | |||
| 1445 | |||
| 1446 | def mean_load_factor_per_cap_range(  | 
            ||
| 1447 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1448 | cap_ranges: list[tuple[int | float, int | float]] | None = None,  | 
            ||
| 1449 | ) -> dict[tuple[int | float, int | float], float]:  | 
            ||
| 1450 | """  | 
            ||
| 1451 | Calculate the mean roof load factor per capacity range from existing PV  | 
            ||
| 1452 | plants.  | 
            ||
| 1453 | Parameters  | 
            ||
| 1454 | -----------  | 
            ||
| 1455 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1456 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1457 | cap_ranges : list(tuple(int, int))  | 
            ||
| 1458 | List of capacity ranges to distinguish between. The first tuple should  | 
            ||
| 1459 | start with a zero and the last one should end with infinite.  | 
            ||
| 1460 | Returns  | 
            ||
| 1461 | -------  | 
            ||
| 1462 | dict  | 
            ||
| 1463 | Dictionary with mean roof load factor per capacity range.  | 
            ||
| 1464 | """  | 
            ||
| 1465 | if cap_ranges is None:  | 
            ||
| 1466 | cap_ranges = [  | 
            ||
| 1467 | (0, 30 / 10**3),  | 
            ||
| 1468 | (30 / 10**3, 100 / 10**3),  | 
            ||
| 1469 |             (100 / 10**3, float("inf")), | 
            ||
| 1470 | ]  | 
            ||
| 1471 | |||
| 1472 |     load_factor_dict = {} | 
            ||
| 1473 | |||
| 1474 | for cap_range in cap_ranges:  | 
            ||
| 1475 | load_factor = mastr_gdf.loc[  | 
            ||
| 1476 | (mastr_gdf.load_factor <= 1)  | 
            ||
| 1477 | & (mastr_gdf.capacity > cap_range[0])  | 
            ||
| 1478 | & (mastr_gdf.capacity <= cap_range[1])  | 
            ||
| 1479 | ].load_factor.mean()  | 
            ||
| 1480 | |||
| 1481 | load_factor_dict[cap_range] = load_factor  | 
            ||
| 1482 | |||
| 1483 | return load_factor_dict  | 
            ||
| 1484 | |||
| 1485 | |||
| 1486 | def building_area_range_per_cap_range(  | 
            ||
| 1487 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 1488 | cap_ranges: list[tuple[int | float, int | float]] | None = None,  | 
            ||
| 1489 | min_building_size: int | float = 10.0,  | 
            ||
| 1490 | upper_quantile: float = 0.95,  | 
            ||
| 1491 | lower_quantile: float = 0.05,  | 
            ||
| 1492 | ) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]:  | 
            ||
| 1493 | """  | 
            ||
| 1494 | Estimate normal building area range per capacity range.  | 
            ||
| 1495 | Calculate the mean roof load factor per capacity range from existing PV  | 
            ||
| 1496 | plants.  | 
            ||
| 1497 | Parameters  | 
            ||
| 1498 | -----------  | 
            ||
| 1499 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 1500 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 1501 | cap_ranges : list(tuple(int, int))  | 
            ||
| 1502 | List of capacity ranges to distinguish between. The first tuple should  | 
            ||
| 1503 | start with a zero and the last one should end with infinite.  | 
            ||
| 1504 | min_building_size : int, float  | 
            ||
| 1505 | Minimal building size to consider for PV plants.  | 
            ||
| 1506 | upper_quantile : float  | 
            ||
| 1507 | Upper quantile to estimate maximum building size per capacity range.  | 
            ||
| 1508 | lower_quantile : float  | 
            ||
| 1509 | Lower quantile to estimate minimum building size per capacity range.  | 
            ||
| 1510 | Returns  | 
            ||
| 1511 | -------  | 
            ||
| 1512 | dict  | 
            ||
| 1513 | Dictionary with estimated normal building area range per capacity  | 
            ||
| 1514 | range.  | 
            ||
| 1515 | """  | 
            ||
| 1516 | if cap_ranges is None:  | 
            ||
| 1517 | cap_ranges = [  | 
            ||
| 1518 | (0, 30 / 10**3),  | 
            ||
| 1519 | (30 / 10**3, 100 / 10**3),  | 
            ||
| 1520 |             (100 / 10**3, float("inf")), | 
            ||
| 1521 | ]  | 
            ||
| 1522 | |||
| 1523 |     building_area_range_dict = {} | 
            ||
| 1524 | |||
| 1525 | n_ranges = len(cap_ranges)  | 
            ||
| 1526 | |||
| 1527 | for count, cap_range in enumerate(cap_ranges):  | 
            ||
| 1528 | cap_range_gdf = mastr_gdf.loc[  | 
            ||
| 1529 | (mastr_gdf.capacity > cap_range[0])  | 
            ||
| 1530 | & (mastr_gdf.capacity <= cap_range[1])  | 
            ||
| 1531 | ]  | 
            ||
| 1532 | |||
| 1533 | if count == 0:  | 
            ||
| 1534 | building_area_range_dict[cap_range] = (  | 
            ||
| 1535 | min_building_size,  | 
            ||
| 1536 | cap_range_gdf.building_area.quantile(upper_quantile),  | 
            ||
| 1537 | )  | 
            ||
| 1538 | elif count == n_ranges - 1:  | 
            ||
| 1539 | building_area_range_dict[cap_range] = (  | 
            ||
| 1540 | cap_range_gdf.building_area.quantile(lower_quantile),  | 
            ||
| 1541 |                 float("inf"), | 
            ||
| 1542 | )  | 
            ||
| 1543 | else:  | 
            ||
| 1544 | building_area_range_dict[cap_range] = (  | 
            ||
| 1545 | cap_range_gdf.building_area.quantile(lower_quantile),  | 
            ||
| 1546 | cap_range_gdf.building_area.quantile(upper_quantile),  | 
            ||
| 1547 | )  | 
            ||
| 1548 | |||
| 1549 | values = list(building_area_range_dict.values())  | 
            ||
| 1550 | |||
| 1551 |     building_area_range_normed_dict = {} | 
            ||
| 1552 | |||
| 1553 | for count, (cap_range, (min_area, max_area)) in enumerate(  | 
            ||
| 1554 | building_area_range_dict.items()  | 
            ||
| 1555 | ):  | 
            ||
| 1556 | if count == 0:  | 
            ||
| 1557 | building_area_range_normed_dict[cap_range] = (  | 
            ||
| 1558 | min_area,  | 
            ||
| 1559 | np.mean((values[count + 1][0], max_area)),  | 
            ||
| 1560 | )  | 
            ||
| 1561 | elif count == n_ranges - 1:  | 
            ||
| 1562 | building_area_range_normed_dict[cap_range] = (  | 
            ||
| 1563 | np.mean((values[count - 1][1], min_area)),  | 
            ||
| 1564 | max_area,  | 
            ||
| 1565 | )  | 
            ||
| 1566 | else:  | 
            ||
| 1567 | building_area_range_normed_dict[cap_range] = (  | 
            ||
| 1568 | np.mean((values[count - 1][1], min_area)),  | 
            ||
| 1569 | np.mean((values[count + 1][0], max_area)),  | 
            ||
| 1570 | )  | 
            ||
| 1571 | |||
| 1572 | return building_area_range_normed_dict  | 
            ||
| 1573 | |||
| 1574 | |||
| 1575 | @timer_func  | 
            ||
| 1576 | def desaggregate_pv_in_mv_grid(  | 
            ||
| 1577 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1578 | pv_cap: float | int,  | 
            ||
| 1579 | **kwargs,  | 
            ||
| 1580 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1581 | """  | 
            ||
| 1582 | Desaggregate PV capacity on buildings within a given grid district.  | 
            ||
| 1583 | Parameters  | 
            ||
| 1584 | -----------  | 
            ||
| 1585 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1586 | GeoDataFrame containing buildings within the grid district.  | 
            ||
| 1587 | pv_cap : float, int  | 
            ||
| 1588 | PV capacity to desaggregate.  | 
            ||
| 1589 | Other Parameters  | 
            ||
| 1590 | -----------  | 
            ||
| 1591 | prob_dict : dict  | 
            ||
| 1592 | Dictionary with values and probabilities per capacity range.  | 
            ||
| 1593 | cap_share_dict : dict  | 
            ||
| 1594 | Dictionary with share of PV capacity from the total PV capacity within  | 
            ||
| 1595 | capacity ranges.  | 
            ||
| 1596 | building_area_range_dict : dict  | 
            ||
| 1597 | Dictionary with estimated normal building area range per capacity  | 
            ||
| 1598 | range.  | 
            ||
| 1599 | load_factor_dict : dict  | 
            ||
| 1600 | Dictionary with mean roof load factor per capacity range.  | 
            ||
| 1601 | seed : int  | 
            ||
| 1602 | Seed to use for random operations with NumPy and pandas.  | 
            ||
| 1603 | pv_cap_per_sq_m : float, int  | 
            ||
| 1604 | Average expected, installable PV capacity per square meter.  | 
            ||
| 1605 | Returns  | 
            ||
| 1606 | -------  | 
            ||
| 1607 | geopandas.GeoDataFrame  | 
            ||
| 1608 | GeoDataFrame containing OSM building data with desaggregated PV  | 
            ||
| 1609 | plants.  | 
            ||
| 1610 | """  | 
            ||
| 1611 | bus_id = int(buildings_gdf.bus_id.iat[0])  | 
            ||
| 1612 | |||
| 1613 | rng = default_rng(seed=kwargs["seed"])  | 
            ||
| 1614 | random_state = RandomState(seed=kwargs["seed"])  | 
            ||
| 1615 | |||
| 1616 | results_df = pd.DataFrame(columns=buildings_gdf.columns)  | 
            ||
| 1617 | |||
| 1618 | for cap_range, share in kwargs["cap_share_dict"].items():  | 
            ||
| 1619 | pv_cap_range = pv_cap * share  | 
            ||
| 1620 | |||
| 1621 | b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range]  | 
            ||
| 1622 | |||
| 1623 | cap_range_buildings_gdf = buildings_gdf.loc[  | 
            ||
| 1624 | ~buildings_gdf.index.isin(results_df.index)  | 
            ||
| 1625 | & (buildings_gdf.building_area > b_area_min)  | 
            ||
| 1626 | & (buildings_gdf.building_area <= b_area_max)  | 
            ||
| 1627 | ]  | 
            ||
| 1628 | |||
| 1629 | mean_load_factor = kwargs["load_factor_dict"][cap_range]  | 
            ||
| 1630 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign(  | 
            ||
| 1631 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,  | 
            ||
| 1632 | load_factor=np.nan,  | 
            ||
| 1633 | capacity=np.nan,  | 
            ||
| 1634 | )  | 
            ||
| 1635 | |||
| 1636 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()  | 
            ||
| 1637 | |||
| 1638 | if total_mean_cap == 0:  | 
            ||
| 1639 | logger.warning(  | 
            ||
| 1640 |                 f"There are no matching roof for capacity range {cap_range} " | 
            ||
| 1641 |                 f"kW in grid {bus_id}. Using all buildings as fallback." | 
            ||
| 1642 | )  | 
            ||
| 1643 | |||
| 1644 | cap_range_buildings_gdf = buildings_gdf.loc[  | 
            ||
| 1645 | ~buildings_gdf.index.isin(results_df.index)  | 
            ||
| 1646 | ]  | 
            ||
| 1647 | |||
| 1648 | if len(cap_range_buildings_gdf) == 0:  | 
            ||
| 1649 | logger.warning(  | 
            ||
| 1650 | "There are no roofes available for capacity range "  | 
            ||
| 1651 |                     f"{cap_range} kW in grid {bus_id}. Allowing dual use." | 
            ||
| 1652 | )  | 
            ||
| 1653 | cap_range_buildings_gdf = buildings_gdf.copy()  | 
            ||
| 1654 | |||
| 1655 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign(  | 
            ||
| 1656 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,  | 
            ||
| 1657 | load_factor=np.nan,  | 
            ||
| 1658 | capacity=np.nan,  | 
            ||
| 1659 | )  | 
            ||
| 1660 | |||
| 1661 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()  | 
            ||
| 1662 | |||
| 1663 | elif total_mean_cap < pv_cap_range:  | 
            ||
| 1664 | logger.warning(  | 
            ||
| 1665 |                 f"Average roof utilization of the roof area in grid {bus_id} " | 
            ||
| 1666 |                 f"and capacity range {cap_range} kW is not sufficient. The " | 
            ||
| 1667 | "roof utilization will be above average."  | 
            ||
| 1668 | )  | 
            ||
| 1669 | |||
| 1670 | frac = max(  | 
            ||
| 1671 | pv_cap_range / total_mean_cap,  | 
            ||
| 1672 | 1 / len(cap_range_buildings_gdf),  | 
            ||
| 1673 | )  | 
            ||
| 1674 | |||
| 1675 | samples_gdf = cap_range_buildings_gdf.sample(  | 
            ||
| 1676 | frac=min(1, frac),  | 
            ||
| 1677 | random_state=random_state,  | 
            ||
| 1678 | )  | 
            ||
| 1679 | |||
| 1680 | cap_range_dict = kwargs["prob_dict"][cap_range]  | 
            ||
| 1681 | |||
| 1682 | values_dict = cap_range_dict["values"]  | 
            ||
| 1683 | p_dict = cap_range_dict["probabilities"]  | 
            ||
| 1684 | |||
| 1685 | load_factors = rng.choice(  | 
            ||
| 1686 | a=values_dict["load_factor"],  | 
            ||
| 1687 | size=len(samples_gdf),  | 
            ||
| 1688 | p=p_dict["load_factor"],  | 
            ||
| 1689 | )  | 
            ||
| 1690 | |||
| 1691 | samples_gdf = samples_gdf.assign(  | 
            ||
| 1692 | load_factor=load_factors,  | 
            ||
| 1693 | capacity=(  | 
            ||
| 1694 | samples_gdf.building_area  | 
            ||
| 1695 | * load_factors  | 
            ||
| 1696 | * kwargs["pv_cap_per_sq_m"]  | 
            ||
| 1697 | ).clip(lower=0.4),  | 
            ||
| 1698 | )  | 
            ||
| 1699 | |||
| 1700 | missing_factor = pv_cap_range / samples_gdf.capacity.sum()  | 
            ||
| 1701 | |||
| 1702 | samples_gdf = samples_gdf.assign(  | 
            ||
| 1703 | capacity=(samples_gdf.capacity * missing_factor),  | 
            ||
| 1704 | load_factor=(samples_gdf.load_factor * missing_factor),  | 
            ||
| 1705 | )  | 
            ||
| 1706 | |||
| 1707 | assert np.isclose(  | 
            ||
| 1708 | samples_gdf.capacity.sum(),  | 
            ||
| 1709 | pv_cap_range,  | 
            ||
| 1710 | rtol=1e-03,  | 
            ||
| 1711 |         ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}" | 
            ||
| 1712 | |||
| 1713 | results_df = pd.concat(  | 
            ||
| 1714 | [  | 
            ||
| 1715 | results_df,  | 
            ||
| 1716 | samples_gdf,  | 
            ||
| 1717 | ],  | 
            ||
| 1718 | )  | 
            ||
| 1719 | |||
| 1720 | total_missing_factor = pv_cap / results_df.capacity.sum()  | 
            ||
| 1721 | |||
| 1722 | results_df = results_df.assign(  | 
            ||
| 1723 | capacity=(results_df.capacity * total_missing_factor),  | 
            ||
| 1724 | )  | 
            ||
| 1725 | |||
| 1726 | assert np.isclose(  | 
            ||
| 1727 | results_df.capacity.sum(),  | 
            ||
| 1728 | pv_cap,  | 
            ||
| 1729 | rtol=1e-03,  | 
            ||
| 1730 |     ), f"{results_df.capacity.sum()} != {pv_cap}" | 
            ||
| 1731 | |||
| 1732 | return gpd.GeoDataFrame(  | 
            ||
| 1733 | results_df,  | 
            ||
| 1734 | crs=samples_gdf.crs,  | 
            ||
| 1735 | geometry="geom",  | 
            ||
| 1736 | )  | 
            ||
| 1737 | |||
| 1738 | |||
| 1739 | @timer_func  | 
            ||
| 1740 | def desaggregate_pv(  | 
            ||
| 1741 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1742 | cap_df: pd.DataFrame,  | 
            ||
| 1743 | **kwargs,  | 
            ||
| 1744 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1745 | """  | 
            ||
| 1746 | Desaggregate PV capacity on buildings within a given grid district.  | 
            ||
| 1747 | |||
| 1748 | Parameters  | 
            ||
| 1749 | -----------  | 
            ||
| 1750 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1751 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 1752 | cap_df : pandas.DataFrame  | 
            ||
| 1753 | DataFrame with total rooftop capacity per mv grid.  | 
            ||
| 1754 | Other Parameters  | 
            ||
| 1755 | -----------  | 
            ||
| 1756 | prob_dict : dict  | 
            ||
| 1757 | Dictionary with values and probabilities per capacity range.  | 
            ||
| 1758 | cap_share_dict : dict  | 
            ||
| 1759 | Dictionary with share of PV capacity from the total PV capacity within  | 
            ||
| 1760 | capacity ranges.  | 
            ||
| 1761 | building_area_range_dict : dict  | 
            ||
| 1762 | Dictionary with estimated normal building area range per capacity  | 
            ||
| 1763 | range.  | 
            ||
| 1764 | load_factor_dict : dict  | 
            ||
| 1765 | Dictionary with mean roof load factor per capacity range.  | 
            ||
| 1766 | seed : int  | 
            ||
| 1767 | Seed to use for random operations with NumPy and pandas.  | 
            ||
| 1768 | pv_cap_per_sq_m : float, int  | 
            ||
| 1769 | Average expected, installable PV capacity per square meter.  | 
            ||
| 1770 | Returns  | 
            ||
| 1771 | -------  | 
            ||
| 1772 | geopandas.GeoDataFrame  | 
            ||
| 1773 | GeoDataFrame containing OSM building data with desaggregated PV  | 
            ||
| 1774 | plants.  | 
            ||
| 1775 | """  | 
            ||
| 1776 | allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life]  | 
            ||
| 1777 | |||
| 1778 | building_bus_ids = set(buildings_gdf.bus_id)  | 
            ||
| 1779 | cap_bus_ids = set(cap_df.index)  | 
            ||
| 1780 | |||
| 1781 | logger.debug(  | 
            ||
| 1782 |         f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from " | 
            ||
| 1783 |         f"capacity: {len(cap_bus_ids)}" | 
            ||
| 1784 | )  | 
            ||
| 1785 | |||
| 1786 | if len(building_bus_ids) > len(cap_bus_ids):  | 
            ||
| 1787 | missing = building_bus_ids - cap_bus_ids  | 
            ||
| 1788 | else:  | 
            ||
| 1789 | missing = cap_bus_ids - building_bus_ids  | 
            ||
| 1790 | |||
| 1791 | logger.debug(str(missing))  | 
            ||
| 1792 | |||
| 1793 | bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids))  | 
            ||
| 1794 | |||
| 1795 | # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index)  | 
            ||
| 1796 | |||
| 1797 | for bus_id in bus_ids:  | 
            ||
| 1798 | buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id]  | 
            ||
| 1799 | |||
| 1800 | pv_installed_gdf = buildings_grid_gdf.loc[  | 
            ||
| 1801 | ~buildings_grid_gdf.end_of_life  | 
            ||
| 1802 | ]  | 
            ||
| 1803 | |||
| 1804 | pv_installed = pv_installed_gdf.capacity.sum()  | 
            ||
| 1805 | |||
| 1806 | pot_buildings_gdf = buildings_grid_gdf.drop(  | 
            ||
| 1807 | index=pv_installed_gdf.index  | 
            ||
| 1808 | )  | 
            ||
| 1809 | |||
| 1810 | if len(pot_buildings_gdf) == 0:  | 
            ||
| 1811 | logger.error(  | 
            ||
| 1812 |                 f"In grid {bus_id} there are no potential buildings to " | 
            ||
| 1813 | f"allocate PV capacity to. The grid is skipped. This message "  | 
            ||
| 1814 | f"should only appear doing test runs with few buildings."  | 
            ||
| 1815 | )  | 
            ||
| 1816 | |||
| 1817 | continue  | 
            ||
| 1818 | |||
| 1819 | pv_target = cap_df.at[bus_id, "capacity"]  | 
            ||
| 1820 | |||
| 1821 |         logger.debug(f"pv_target: {pv_target}") | 
            ||
| 1822 | |||
| 1823 | pv_missing = pv_target - pv_installed  | 
            ||
| 1824 | |||
| 1825 | if pv_missing <= 0:  | 
            ||
| 1826 | logger.warning(  | 
            ||
| 1827 |                 f"In grid {bus_id} there is more PV installed " | 
            ||
| 1828 |                 f"({pv_installed: g} kW) in status Quo than allocated within " | 
            ||
| 1829 |                 f"the scenario ({pv_target: g} kW). " | 
            ||
| 1830 | f"No new generators are added."  | 
            ||
| 1831 | )  | 
            ||
| 1832 | |||
| 1833 | continue  | 
            ||
| 1834 | |||
| 1835 | if pot_buildings_gdf.max_cap.sum() < pv_missing:  | 
            ||
| 1836 | logger.error(  | 
            ||
| 1837 |                 f"In grid {bus_id} there is less PV potential (" | 
            ||
| 1838 |                 f"{pot_buildings_gdf.max_cap.sum():g} MW) than allocated PV " | 
            ||
| 1839 |                 f"capacity ({pv_missing:g} MW). The average roof utilization " | 
            ||
| 1840 | f"will be very high."  | 
            ||
| 1841 | )  | 
            ||
| 1842 | |||
| 1843 | gdf = desaggregate_pv_in_mv_grid(  | 
            ||
| 1844 | buildings_gdf=pot_buildings_gdf,  | 
            ||
| 1845 | pv_cap=pv_missing,  | 
            ||
| 1846 | **kwargs,  | 
            ||
| 1847 | )  | 
            ||
| 1848 | |||
| 1849 |         logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}") | 
            ||
| 1850 |         logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}") | 
            ||
| 1851 | logger.debug(  | 
            ||
| 1852 |             f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}" | 
            ||
| 1853 | )  | 
            ||
| 1854 | |||
| 1855 | if not np.isclose(  | 
            ||
| 1856 | gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3  | 
            ||
| 1857 | ):  | 
            ||
| 1858 | logger.warning(  | 
            ||
| 1859 |                 f"The desired capacity and actual capacity in grid {bus_id} " | 
            ||
| 1860 | f"differ.\n"  | 
            ||
| 1861 |                 f"Desired cap: {pv_target}\nActual cap: " | 
            ||
| 1862 |                 f"{gdf.capacity.sum() + pv_installed}" | 
            ||
| 1863 | )  | 
            ||
| 1864 | |||
| 1865 | pre_cap = allocated_buildings_gdf.capacity.sum()  | 
            ||
| 1866 | new_cap = gdf.capacity.sum()  | 
            ||
| 1867 | |||
| 1868 | allocated_buildings_gdf = pd.concat(  | 
            ||
| 1869 | [  | 
            ||
| 1870 | allocated_buildings_gdf,  | 
            ||
| 1871 | gdf,  | 
            ||
| 1872 | ]  | 
            ||
| 1873 | )  | 
            ||
| 1874 | |||
| 1875 | total_cap = allocated_buildings_gdf.capacity.sum()  | 
            ||
| 1876 | |||
| 1877 | assert np.isclose(pre_cap + new_cap, total_cap)  | 
            ||
| 1878 | |||
| 1879 |     logger.debug("Desaggregated scenario.") | 
            ||
| 1880 |     logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}") | 
            ||
| 1881 | logger.debug(  | 
            ||
| 1882 |         f"Generator capacity: " f"{allocated_buildings_gdf.capacity.sum(): g}" | 
            ||
| 1883 | )  | 
            ||
| 1884 | |||
| 1885 | return gpd.GeoDataFrame(  | 
            ||
| 1886 | allocated_buildings_gdf,  | 
            ||
| 1887 | crs=gdf.crs,  | 
            ||
| 1888 | geometry="geom",  | 
            ||
| 1889 | )  | 
            ||
| 1890 | |||
| 1891 | |||
| 1892 | @timer_func  | 
            ||
| 1893 | def add_buildings_meta_data(  | 
            ||
| 1894 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1895 | prob_dict: dict,  | 
            ||
| 1896 | seed: int,  | 
            ||
| 1897 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1898 | """  | 
            ||
| 1899 | Randomly add additional metadata to desaggregated PV plants.  | 
            ||
| 1900 | Parameters  | 
            ||
| 1901 | -----------  | 
            ||
| 1902 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1903 | GeoDataFrame containing OSM buildings data with desaggregated PV  | 
            ||
| 1904 | plants.  | 
            ||
| 1905 | prob_dict : dict  | 
            ||
| 1906 | Dictionary with values and probabilities per capacity range.  | 
            ||
| 1907 | seed : int  | 
            ||
| 1908 | Seed to use for random operations with NumPy and pandas.  | 
            ||
| 1909 | Returns  | 
            ||
| 1910 | -------  | 
            ||
| 1911 | geopandas.GeoDataFrame  | 
            ||
| 1912 | GeoDataFrame containing OSM building data with desaggregated PV  | 
            ||
| 1913 | plants.  | 
            ||
| 1914 | """  | 
            ||
| 1915 | rng = default_rng(seed=seed)  | 
            ||
| 1916 | buildings_gdf = buildings_gdf.reset_index().rename(  | 
            ||
| 1917 |         columns={ | 
            ||
| 1918 | "index": "building_id",  | 
            ||
| 1919 | }  | 
            ||
| 1920 | )  | 
            ||
| 1921 | |||
| 1922 | for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items():  | 
            ||
| 1923 | cap_range_gdf = buildings_gdf.loc[  | 
            ||
| 1924 | (buildings_gdf.capacity >= min_cap)  | 
            ||
| 1925 | & (buildings_gdf.capacity < max_cap)  | 
            ||
| 1926 | ]  | 
            ||
| 1927 | |||
| 1928 | for key, values in cap_range_prob_dict["values"].items():  | 
            ||
| 1929 | if key == "load_factor":  | 
            ||
| 1930 | continue  | 
            ||
| 1931 | |||
| 1932 | gdf = cap_range_gdf.loc[  | 
            ||
| 1933 | cap_range_gdf[key].isna()  | 
            ||
| 1934 | | cap_range_gdf[key].isnull()  | 
            ||
| 1935 | | (cap_range_gdf[key] == "None")  | 
            ||
| 1936 | ]  | 
            ||
| 1937 | |||
| 1938 | key_vals = rng.choice(  | 
            ||
| 1939 | a=values,  | 
            ||
| 1940 | size=len(gdf),  | 
            ||
| 1941 | p=cap_range_prob_dict["probabilities"][key],  | 
            ||
| 1942 | )  | 
            ||
| 1943 | |||
| 1944 | buildings_gdf.loc[gdf.index, key] = key_vals  | 
            ||
| 1945 | |||
| 1946 | return buildings_gdf  | 
            ||
| 1947 | |||
| 1948 | |||
| 1949 | def add_voltage_level(  | 
            ||
| 1950 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 1951 | ) -> gpd.GeoDataFrame:  | 
            ||
| 1952 | """  | 
            ||
| 1953 | Get voltage level data from mastr table and assign to units. Infer missing  | 
            ||
| 1954 | values derived from generator capacity to the power plants.  | 
            ||
| 1955 | |||
| 1956 | Parameters  | 
            ||
| 1957 | -----------  | 
            ||
| 1958 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 1959 | GeoDataFrame containing OSM buildings data with desaggregated PV  | 
            ||
| 1960 | plants.  | 
            ||
| 1961 | Returns  | 
            ||
| 1962 | -------  | 
            ||
| 1963 | geopandas.GeoDataFrame  | 
            ||
| 1964 | GeoDataFrame containing OSM building data with voltage level per  | 
            ||
| 1965 | generator.  | 
            ||
| 1966 | """  | 
            ||
| 1967 | |||
| 1968 | View Code Duplication | def voltage_levels(p: float) -> int:  | 
            |
| 1969 | if p <= 100:  | 
            ||
| 1970 | return 7  | 
            ||
| 1971 | elif p <= 200:  | 
            ||
| 1972 | return 6  | 
            ||
| 1973 | elif p <= 5500:  | 
            ||
| 1974 | return 5  | 
            ||
| 1975 | elif p <= 20000:  | 
            ||
| 1976 | return 4  | 
            ||
| 1977 | elif p <= 120000:  | 
            ||
| 1978 | return 3  | 
            ||
| 1979 | return 1  | 
            ||
| 1980 | |||
| 1981 | # Join mastr table  | 
            ||
| 1982 | with db.session_scope() as session:  | 
            ||
| 1983 | query = session.query(  | 
            ||
| 1984 | EgonPowerPlantsPv.gens_id,  | 
            ||
| 1985 | EgonPowerPlantsPv.voltage_level,  | 
            ||
| 1986 | )  | 
            ||
| 1987 | voltage_levels_df = pd.read_sql(  | 
            ||
| 1988 | query.statement, query.session.bind, index_col=None  | 
            ||
| 1989 | )  | 
            ||
| 1990 | buildings_gdf = buildings_gdf.merge(  | 
            ||
| 1991 | voltage_levels_df,  | 
            ||
| 1992 | left_on="gens_id",  | 
            ||
| 1993 | right_on="gens_id",  | 
            ||
| 1994 | how="left",  | 
            ||
| 1995 | )  | 
            ||
| 1996 | |||
| 1997 | # Infer missing values  | 
            ||
| 1998 | mask = buildings_gdf.voltage_level.isna()  | 
            ||
| 1999 | buildings_gdf.loc[mask, "voltage_level"] = buildings_gdf.loc[  | 
            ||
| 2000 | mask, "capacity"  | 
            ||
| 2001 | ].apply(voltage_levels)  | 
            ||
| 2002 | |||
| 2003 | return buildings_gdf  | 
            ||
| 2004 | |||
| 2005 | |||
| 2006 | def add_commissioning_date(  | 
            ||
| 2007 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 2008 | start: pd.Timestamp,  | 
            ||
| 2009 | end: pd.Timestamp,  | 
            ||
| 2010 | seed: int,  | 
            ||
| 2011 | ):  | 
            ||
| 2012 | """  | 
            ||
| 2013 | Randomly and linear add start-up date to new pv generators.  | 
            ||
| 2014 | Parameters  | 
            ||
| 2015 | ----------  | 
            ||
| 2016 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 2017 | GeoDataFrame containing OSM buildings data with desaggregated PV  | 
            ||
| 2018 | plants.  | 
            ||
| 2019 | start : pandas.Timestamp  | 
            ||
| 2020 | Minimum Timestamp to use.  | 
            ||
| 2021 | end : pandas.Timestamp  | 
            ||
| 2022 | Maximum Timestamp to use.  | 
            ||
| 2023 | seed : int  | 
            ||
| 2024 | Seed to use for random operations with NumPy and pandas.  | 
            ||
| 2025 | Returns  | 
            ||
| 2026 | -------  | 
            ||
| 2027 | geopandas.GeoDataFrame  | 
            ||
| 2028 | GeoDataFrame containing OSM buildings data with start-up date added.  | 
            ||
| 2029 | """  | 
            ||
| 2030 | rng = default_rng(seed=seed)  | 
            ||
| 2031 | |||
| 2032 | date_range = pd.date_range(start=start, end=end, freq="1D")  | 
            ||
| 2033 | |||
| 2034 | return buildings_gdf.assign(  | 
            ||
| 2035 | commissioning_date=rng.choice(date_range, size=len(buildings_gdf))  | 
            ||
| 2036 | )  | 
            ||
| 2037 | |||
| 2038 | |||
| 2039 | @timer_func  | 
            ||
| 2040 | def allocate_scenarios(  | 
            ||
| 2041 | mastr_gdf: gpd.GeoDataFrame,  | 
            ||
| 2042 | valid_buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 2043 | last_scenario_gdf: gpd.GeoDataFrame,  | 
            ||
| 2044 | scenario: str,  | 
            ||
| 2045 | ):  | 
            ||
| 2046 | """  | 
            ||
| 2047 | Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings.  | 
            ||
| 2048 | Parameters  | 
            ||
| 2049 | ----------  | 
            ||
| 2050 | mastr_gdf : geopandas.GeoDataFrame  | 
            ||
| 2051 | GeoDataFrame containing geocoded MaStR data.  | 
            ||
| 2052 | valid_buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 2053 | GeoDataFrame containing OSM buildings data.  | 
            ||
| 2054 | last_scenario_gdf : geopandas.GeoDataFrame  | 
            ||
| 2055 | GeoDataFrame containing OSM buildings matched with pv generators from  | 
            ||
| 2056 | temporally preceding scenario.  | 
            ||
| 2057 | scenario : str  | 
            ||
| 2058 | Scenario to desaggrgate and allocate.  | 
            ||
| 2059 | Returns  | 
            ||
| 2060 | -------  | 
            ||
| 2061 | tuple  | 
            ||
| 2062 | geopandas.GeoDataFrame  | 
            ||
| 2063 | GeoDataFrame containing OSM buildings matched with pv generators.  | 
            ||
| 2064 | pandas.DataFrame  | 
            ||
| 2065 | DataFrame containing pv rooftop capacity per grid id.  | 
            ||
| 2066 | """  | 
            ||
| 2067 | cap_per_bus_id_df = cap_per_bus_id(scenario)  | 
            ||
| 2068 | |||
| 2069 | logger.debug(  | 
            ||
| 2070 |         f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}" | 
            ||
| 2071 | )  | 
            ||
| 2072 | |||
| 2073 | last_scenario_gdf = determine_end_of_life_gens(  | 
            ||
| 2074 | last_scenario_gdf,  | 
            ||
| 2075 | SCENARIO_TIMESTAMP[scenario],  | 
            ||
| 2076 | PV_ROOFTOP_LIFETIME,  | 
            ||
| 2077 | )  | 
            ||
| 2078 | |||
| 2079 | buildings_gdf = calculate_max_pv_cap_per_building(  | 
            ||
| 2080 | valid_buildings_gdf,  | 
            ||
| 2081 | last_scenario_gdf,  | 
            ||
| 2082 | PV_CAP_PER_SQ_M,  | 
            ||
| 2083 | ROOF_FACTOR,  | 
            ||
| 2084 | )  | 
            ||
| 2085 | |||
| 2086 | mastr_gdf = calculate_building_load_factor(  | 
            ||
| 2087 | mastr_gdf,  | 
            ||
| 2088 | buildings_gdf,  | 
            ||
| 2089 | )  | 
            ||
| 2090 | |||
| 2091 | probabilities_dict = probabilities(  | 
            ||
| 2092 | mastr_gdf,  | 
            ||
| 2093 | cap_ranges=CAP_RANGES,  | 
            ||
| 2094 | )  | 
            ||
| 2095 | |||
| 2096 | cap_share_dict = cap_share_per_cap_range(  | 
            ||
| 2097 | mastr_gdf,  | 
            ||
| 2098 | cap_ranges=CAP_RANGES,  | 
            ||
| 2099 | )  | 
            ||
| 2100 | |||
| 2101 | load_factor_dict = mean_load_factor_per_cap_range(  | 
            ||
| 2102 | mastr_gdf,  | 
            ||
| 2103 | cap_ranges=CAP_RANGES,  | 
            ||
| 2104 | )  | 
            ||
| 2105 | |||
| 2106 | building_area_range_dict = building_area_range_per_cap_range(  | 
            ||
| 2107 | mastr_gdf,  | 
            ||
| 2108 | cap_ranges=CAP_RANGES,  | 
            ||
| 2109 | min_building_size=MIN_BUILDING_SIZE,  | 
            ||
| 2110 | upper_quantile=UPPER_QUANTILE,  | 
            ||
| 2111 | lower_quantile=LOWER_QUANTILE,  | 
            ||
| 2112 | )  | 
            ||
| 2113 | |||
| 2114 | allocated_buildings_gdf = desaggregate_pv(  | 
            ||
| 2115 | buildings_gdf=buildings_gdf,  | 
            ||
| 2116 | cap_df=cap_per_bus_id_df,  | 
            ||
| 2117 | prob_dict=probabilities_dict,  | 
            ||
| 2118 | cap_share_dict=cap_share_dict,  | 
            ||
| 2119 | building_area_range_dict=building_area_range_dict,  | 
            ||
| 2120 | load_factor_dict=load_factor_dict,  | 
            ||
| 2121 | seed=SEED,  | 
            ||
| 2122 | pv_cap_per_sq_m=PV_CAP_PER_SQ_M,  | 
            ||
| 2123 | )  | 
            ||
| 2124 | |||
| 2125 | allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario)  | 
            ||
| 2126 | |||
| 2127 | meta_buildings_gdf = frame_to_numeric(  | 
            ||
| 2128 | add_buildings_meta_data(  | 
            ||
| 2129 | allocated_buildings_gdf,  | 
            ||
| 2130 | probabilities_dict,  | 
            ||
| 2131 | SEED,  | 
            ||
| 2132 | )  | 
            ||
| 2133 | )  | 
            ||
| 2134 | |||
| 2135 | return (  | 
            ||
| 2136 | add_commissioning_date(  | 
            ||
| 2137 | meta_buildings_gdf,  | 
            ||
| 2138 | start=last_scenario_gdf.commissioning_date.max(),  | 
            ||
| 2139 | end=SCENARIO_TIMESTAMP[scenario],  | 
            ||
| 2140 | seed=SEED,  | 
            ||
| 2141 | ),  | 
            ||
| 2142 | cap_per_bus_id_df,  | 
            ||
| 2143 | )  | 
            ||
| 2144 | |||
| 2145 | |||
| 2146 | class EgonPowerPlantPvRoofBuildingScenario(Base):  | 
            ||
| 2147 | __tablename__ = "egon_power_plants_pv_roof_building"  | 
            ||
| 2148 |     __table_args__ = {"schema": "supply"} | 
            ||
| 2149 | |||
| 2150 | index = Column(Integer, primary_key=True, index=True)  | 
            ||
| 2151 | scenario = Column(String)  | 
            ||
| 2152 | bus_id = Column(Integer, nullable=True)  | 
            ||
| 2153 | building_id = Column(Integer)  | 
            ||
| 2154 | gens_id = Column(String, nullable=True)  | 
            ||
| 2155 | capacity = Column(Float)  | 
            ||
| 2156 | einheitliche_ausrichtung_und_neigungswinkel = Column(Float)  | 
            ||
| 2157 | hauptausrichtung = Column(String)  | 
            ||
| 2158 | hauptausrichtung_neigungswinkel = Column(String)  | 
            ||
| 2159 | voltage_level = Column(Integer)  | 
            ||
| 2160 | weather_cell_id = Column(Integer)  | 
            ||
| 2161 | |||
| 2162 | |||
| 2163 | def create_scenario_table(buildings_gdf):  | 
            ||
| 2164 | """Create mapping table pv_unit <-> building for scenario"""  | 
            ||
| 2165 | EgonPowerPlantPvRoofBuildingScenario.__table__.drop(  | 
            ||
| 2166 | bind=engine, checkfirst=True  | 
            ||
| 2167 | )  | 
            ||
| 2168 | EgonPowerPlantPvRoofBuildingScenario.__table__.create(  | 
            ||
| 2169 | bind=engine, checkfirst=True  | 
            ||
| 2170 | )  | 
            ||
| 2171 | |||
| 2172 | buildings_gdf[COLS_TO_EXPORT].reset_index().to_sql(  | 
            ||
| 2173 | name=EgonPowerPlantPvRoofBuildingScenario.__table__.name,  | 
            ||
| 2174 | schema=EgonPowerPlantPvRoofBuildingScenario.__table__.schema,  | 
            ||
| 2175 | con=db.engine(),  | 
            ||
| 2176 | if_exists="append",  | 
            ||
| 2177 | index=False,  | 
            ||
| 2178 | )  | 
            ||
| 2179 | |||
| 2180 | |||
| 2181 | def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:  | 
            ||
| 2182 | sql = """  | 
            ||
| 2183 | SELECT building_id, zensus_population_id  | 
            ||
| 2184 | FROM boundaries.egon_map_zensus_mvgd_buildings  | 
            ||
| 2185 | """  | 
            ||
| 2186 | |||
| 2187 | buildings_gdf = buildings_gdf.merge(  | 
            ||
| 2188 | right=db.select_dataframe(sql).drop_duplicates(subset="building_id"),  | 
            ||
| 2189 | how="left",  | 
            ||
| 2190 | on="building_id",  | 
            ||
| 2191 | )  | 
            ||
| 2192 | |||
| 2193 | sql = """  | 
            ||
| 2194 | SELECT zensus_population_id, w_id as weather_cell_id  | 
            ||
| 2195 | FROM boundaries.egon_map_zensus_weather_cell  | 
            ||
| 2196 | """  | 
            ||
| 2197 | |||
| 2198 | buildings_gdf = buildings_gdf.merge(  | 
            ||
| 2199 | right=db.select_dataframe(sql).drop_duplicates(  | 
            ||
| 2200 | subset="zensus_population_id"  | 
            ||
| 2201 | ),  | 
            ||
| 2202 | how="left",  | 
            ||
| 2203 | on="zensus_population_id",  | 
            ||
| 2204 | )  | 
            ||
| 2205 | |||
| 2206 | if buildings_gdf.weather_cell_id.isna().any():  | 
            ||
| 2207 | missing = buildings_gdf.loc[  | 
            ||
| 2208 | buildings_gdf.weather_cell_id.isna(), "building_id"  | 
            ||
| 2209 | ].tolist()  | 
            ||
| 2210 | |||
| 2211 | raise ValueError(  | 
            ||
| 2212 |             f"Following buildings don't have a weather cell id: {missing}" | 
            ||
| 2213 | )  | 
            ||
| 2214 | |||
| 2215 | return buildings_gdf  | 
            ||
| 2216 | |||
| 2217 | |||
| 2218 | def add_bus_ids_sq(  | 
            ||
| 2219 | buildings_gdf: gpd.GeoDataFrame,  | 
            ||
| 2220 | ) -> gpd.GeoDataFrame:  | 
            ||
| 2221 | """Add bus ids for status_quo units  | 
            ||
| 2222 | |||
| 2223 | Parameters  | 
            ||
| 2224 | -----------  | 
            ||
| 2225 | buildings_gdf : geopandas.GeoDataFrame  | 
            ||
| 2226 | GeoDataFrame containing OSM buildings data with desaggregated PV  | 
            ||
| 2227 | plants.  | 
            ||
| 2228 | Returns  | 
            ||
| 2229 | -------  | 
            ||
| 2230 | geopandas.GeoDataFrame  | 
            ||
| 2231 | GeoDataFrame containing OSM building data with bus_id per  | 
            ||
| 2232 | generator.  | 
            ||
| 2233 | """  | 
            ||
| 2234 | grid_districts_gdf = grid_districts(EPSG)  | 
            ||
| 2235 | |||
| 2236 | mask = buildings_gdf.scenario == "status_quo"  | 
            ||
| 2237 | buildings_gdf.loc[mask, "bus_id"] = (  | 
            ||
| 2238 | buildings_gdf.loc[mask]  | 
            ||
| 2239 | .sjoin(grid_districts_gdf, how="left")  | 
            ||
| 2240 | .index_right  | 
            ||
| 2241 | )  | 
            ||
| 2242 | |||
| 2243 | return buildings_gdf  | 
            ||
| 2244 | |||
| 2245 | |||
| 2246 | def pv_rooftop_to_buildings():  | 
            ||
| 2247 | """Main script, executed as task"""  | 
            ||
| 2248 | |||
| 2249 | mastr_gdf = load_mastr_data()  | 
            ||
| 2250 | |||
| 2251 | buildings_gdf = load_building_data()  | 
            ||
| 2252 | |||
| 2253 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings(  | 
            ||
| 2254 | mastr_gdf, buildings_gdf  | 
            ||
| 2255 | )  | 
            ||
| 2256 | |||
| 2257 | all_buildings_gdf = (  | 
            ||
| 2258 | desagg_mastr_gdf.assign(scenario="status_quo")  | 
            ||
| 2259 | .reset_index()  | 
            ||
| 2260 |         .rename(columns={"geometry": "geom", "gens_id": "gens_id"}) | 
            ||
| 2261 | )  | 
            ||
| 2262 | |||
| 2263 | scenario_buildings_gdf = all_buildings_gdf.copy()  | 
            ||
| 2264 | |||
| 2265 | cap_per_bus_id_df = pd.DataFrame()  | 
            ||
| 2266 | |||
| 2267 | for scenario in SCENARIOS:  | 
            ||
| 2268 |         logger.debug(f"Desaggregating scenario {scenario}.") | 
            ||
| 2269 | (  | 
            ||
| 2270 | scenario_buildings_gdf,  | 
            ||
| 2271 | cap_per_bus_id_scenario_df,  | 
            ||
| 2272 | ) = allocate_scenarios( # noqa: F841  | 
            ||
| 2273 | desagg_mastr_gdf,  | 
            ||
| 2274 | desagg_buildings_gdf,  | 
            ||
| 2275 | scenario_buildings_gdf,  | 
            ||
| 2276 | scenario,  | 
            ||
| 2277 | )  | 
            ||
| 2278 | |||
| 2279 | all_buildings_gdf = gpd.GeoDataFrame(  | 
            ||
| 2280 | pd.concat(  | 
            ||
| 2281 | [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True  | 
            ||
| 2282 | ),  | 
            ||
| 2283 | crs=scenario_buildings_gdf.crs,  | 
            ||
| 2284 | geometry="geom",  | 
            ||
| 2285 | )  | 
            ||
| 2286 | |||
| 2287 | cap_per_bus_id_df = pd.concat(  | 
            ||
| 2288 | [cap_per_bus_id_df, cap_per_bus_id_scenario_df]  | 
            ||
| 2289 | )  | 
            ||
| 2290 | |||
| 2291 | # add weather cell  | 
            ||
| 2292 | all_buildings_gdf = add_weather_cell_id(all_buildings_gdf)  | 
            ||
| 2293 | |||
| 2294 | # add bus IDs for status quo scenario  | 
            ||
| 2295 | all_buildings_gdf = add_bus_ids_sq(all_buildings_gdf)  | 
            ||
| 2296 | |||
| 2297 | # export scenario  | 
            ||
| 2298 | create_scenario_table(add_voltage_level(all_buildings_gdf))  | 
            ||
| 2299 |