Passed
Pull Request — dev (#934)
by
unknown
01:43
created

clean_mastr_data()   B

Complexity

Conditions 2

Size

Total Lines 143
Code Lines 67

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 67
dl 0
loc 143
rs 8.08
c 0
b 0
f 0
cc 2
nop 5

How to fix   Long Method   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

1
"""
2
Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate new
3
PV rooftop generators for scenarios eGon2035 and eGon100RE.
4
Data cleaning: Drop duplicates and entries with missing critical data. Determine most
5
plausible capacity from multiple values given in MaStR data. Drop generators which don't
6
have any plausible capacity data (23.5MW > P > 0.1). Randomly and weighted add a
7
start-up date if it is missing. Extract zip and municipality from 'Standort' given in
8
MaStR data. Geocode unique zip and municipality combinations with Nominatim (1sec
9
delay). Drop generators for which geocoding failed or which are located outside the
10
municipalities of Germany. Add some visual sanity checks for cleaned data.
11
Allocation of MaStR data: Allocate each generator to an existing building from OSM.
12
Determine the quantile each generator and building is in depending on the capacity of
13
the generator and the area of the polygon of the building. Randomly distribute
14
generators within each municipality preferably within the same building area quantile as
15
the generators are capacity wise. If not enough buildings exists within a municipality
16
and quantile additional buildings from other quantiles are chosen randomly.
17
Desegregation of pv rooftop scenarios: The scenario data per federal state is linear
18
distributed to the mv grid districts according to the pv rooftop potential per mv grid
19
district. The rooftop potential is estimated from the building area given from the OSM
20
buildings. Grid districts, which are located in several federal states, are allocated PV
21
capacity according to their respective roof potential in the individual federal states.
22
The desegregation of PV plants within a grid districts respects existing plants from
23
MaStR, which did not reach their end of life. New PV plants are randomly and weighted
24
generated using a breakdown of MaStR data as generator basis. Plant metadata (e.g. plant
25
orientation) is also added random and weighted from MaStR data as basis.
26
"""
27
from __future__ import annotations
28
29
from collections import Counter
30
from functools import wraps
31
from pathlib import Path
32
from time import perf_counter
33
from typing import Any
34
35
from geoalchemy2 import Geometry
36
from geopy.extra.rate_limiter import RateLimiter
37
from geopy.geocoders import Nominatim
38
from loguru import logger
39
from numpy.random import RandomState, default_rng
40
from pyproj.crs.crs import CRS
41
from sqlalchemy import BigInteger, Column, Float, Integer, String
42
from sqlalchemy.dialects.postgresql import HSTORE
43
from sqlalchemy.ext.declarative import declarative_base
44
import geopandas as gpd
45
import numpy as np
46
import pandas as pd
47
48
from egon.data import config, db
49
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import (
50
    OsmBuildingsSynthetic,
51
)
52
from egon.data.datasets.scenario_capacities import EgonScenarioCapacities
53
from egon.data.datasets.zensus_vg250 import Vg250Gem
54
55
engine = db.engine()
56
Base = declarative_base()
57
SEED = int(config.settings()["egon-data"]["--random-seed"])
58
59
# TODO: move to yml
60
# mastr data
61
MASTR_RELEVANT_COLS = [
62
    "EinheitMastrNummer",
63
    "Bruttoleistung",
64
    "StatisikFlag",
65
    "Bruttoleistung_extended",
66
    "Nettonennleistung",
67
    "InstallierteLeistung",
68
    "zugeordneteWirkleistungWechselrichter",
69
    "EinheitBetriebsstatus",
70
    "Standort",
71
    "Bundesland",
72
    "Land",
73
    "Landkreis",
74
    "Gemeinde",
75
    "Postleitzahl",
76
    "Ort",
77
    "GeplantesInbetriebnahmedatum",
78
    "Inbetriebnahmedatum",
79
    "GemeinsamerWechselrichterMitSpeicher",
80
    "Lage",
81
    "Leistungsbegrenzung",
82
    "EinheitlicheAusrichtungUndNeigungswinkel",
83
    "Hauptausrichtung",
84
    "HauptausrichtungNeigungswinkel",
85
    "Nebenausrichtung",
86
]
87
88
MASTR_DTYPES = {
89
    "EinheitMastrNummer": str,
90
    "Bruttoleistung": float,
91
    "StatisikFlag": str,
92
    "Bruttoleistung_extended": float,
93
    "Nettonennleistung": float,
94
    "InstallierteLeistung": float,
95
    "zugeordneteWirkleistungWechselrichter": float,
96
    "EinheitBetriebsstatus": str,
97
    "Standort": str,
98
    "Bundesland": str,
99
    "Land": str,
100
    "Landkreis": str,
101
    "Gemeinde": str,
102
    # "Postleitzahl": int,  # fails because of nan values
103
    "Ort": str,
104
    "GemeinsamerWechselrichterMitSpeicher": str,
105
    "Lage": str,
106
    "Leistungsbegrenzung": str,
107
    # this will parse nan values as false wich is not always correct
108
    # "EinheitlicheAusrichtungUndNeigungswinkel": bool,
109
    "Hauptausrichtung": str,
110
    "HauptausrichtungNeigungswinkel": str,
111
    "Nebenausrichtung": str,
112
    "NebenausrichtungNeigungswinkel": str,
113
}
114
115
MASTR_PARSE_DATES = [
116
    "GeplantesInbetriebnahmedatum",
117
    "Inbetriebnahmedatum",
118
]
119
120
MASTR_INDEX_COL = "EinheitMastrNummer"
121
122
EPSG = 4326
123
SRID = 3035
124
125
# data cleaning
126
MAX_REALISTIC_PV_CAP = 23500
127
MIN_REALISTIC_PV_CAP = 0.1
128
ROUNDING = 1
129
130
# geopy
131
MIN_DELAY_SECONDS = 1
132
USER_AGENT = "rli_kh_geocoder"
133
134
# show additional logging information
135
VERBOSE = False
136
137
EXPORT_DIR = Path(__name__).resolve().parent / "data"
138
EXPORT_FILE = "mastr_geocoded.gpkg"
139
EXPORT_PATH = EXPORT_DIR / EXPORT_FILE
140
DRIVER = "GPKG"
141
142
# Number of quantiles
143
Q = 5
144
145
# Scenario Data
146
CARRIER = "solar_rooftop"
147
SCENARIOS = ["eGon2035", "eGon100RE"]
148
SCENARIO_TIMESTAMP = {
149
    "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"),
150
    "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"),
151
}
152
PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D")
153
154
# Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp
155
# https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf
156
MODUL_CAP = 0.4  # kWp
157
MODUL_SIZE = 1.096 * 1.754  # m²
158
PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE
159
160
# Estimation of usable roof area
161
# Factor for the conversion of building area to roof area
162
# estimation mean roof pitch: 35°
163
# estimation usable roof share: 80%
164
# estimation that only the south side of the building is used for pv
165
# see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf
166
# AREA_FACTOR = 1.221
167
# USABLE_ROOF_SHARE = 0.8
168
# SOUTH_SHARE = 0.5
169
# ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE
170
ROOF_FACTOR = 0.5
171
172
CAP_RANGES = [
173
    (0, 30),
174
    (30, 100),
175
    (100, float("inf")),
176
]
177
178
MIN_BUILDING_SIZE = 10.0
179
UPPER_QUNATILE = 0.95
180
LOWER_QUANTILE = 0.05
181
182
COLS_TO_RENAME = {
183
    "EinheitlicheAusrichtungUndNeigungswinkel": (
184
        "einheitliche_ausrichtung_und_neigungswinkel"
185
    ),
186
    "Hauptausrichtung": "hauptausrichtung",
187
    "HauptausrichtungNeigungswinkel": "hauptausrichtung_neigungswinkel",
188
}
189
190
COLS_TO_EXPORT = [
191
    "scenario",
192
    "bus_id",
193
    "building_id",
194
    "gens_id",
195
    "capacity",
196
    "einheitliche_ausrichtung_und_neigungswinkel",
197
    "hauptausrichtung",
198
    "hauptausrichtung_neigungswinkel",
199
    "voltage_level",
200
    "weather_cell_id",
201
]
202
203
# TODO
204
INCLUDE_SYNTHETIC_BUILDINGS = True
205
ONLY_BUILDINGS_WITH_DEMAND = True
206
TEST_RUN = False
207
208
209
def timer_func(func):
210
    @wraps(func)
211
    def timeit_wrapper(*args, **kwargs):
212
        start_time = perf_counter()
213
        result = func(*args, **kwargs)
214
        end_time = perf_counter()
215
        total_time = end_time - start_time
216
        logger.debug(
217
            f"Function {func.__name__} took {total_time:.4f} seconds."
218
        )
219
        return result
220
221
    return timeit_wrapper
222
223
224
@timer_func
225
def mastr_data(
226
    index_col: str | int | list[str] | list[int],
227
    usecols: list[str],
228
    dtype: dict[str, Any] | None,
229
    parse_dates: list[str] | None,
230
) -> pd.DataFrame:
231
    """
232
    Read MaStR data from csv.
233
234
    Parameters
235
    -----------
236
    index_col : str, int or list of str or int
237
        Column(s) to use as the row labels of the DataFrame.
238
    usecols : list of str
239
        Return a subset of the columns.
240
    dtype : dict of column (str) -> type (any), optional
241
        Data type for data or columns.
242
    parse_dates : list of names (str), optional
243
        Try to parse given columns to datetime.
244
    Returns
245
    -------
246
    pandas.DataFrame
247
        DataFrame containing MaStR data.
248
    """
249
    mastr_path = Path(
250
        config.datasets()["power_plants"]["sources"]["mastr_pv"]
251
    ).resolve()
252
253
    mastr_df = pd.read_csv(
254
        mastr_path,
255
        index_col=index_col,
256
        usecols=usecols,
257
        dtype=dtype,
258
        parse_dates=parse_dates,
259
    )
260
261
    mastr_df = mastr_df.loc[
262
        (mastr_df.StatisikFlag == "B")
263
        & (mastr_df.EinheitBetriebsstatus == "InBetrieb")
264
        & (mastr_df.Land == "Deutschland")
265
        & (mastr_df.Lage == "BaulicheAnlagen")
266
    ]
267
268
    if (
269
        config.settings()["egon-data"]["--dataset-boundary"]
270
        == "Schleswig-Holstein"
271
    ):
272
        init_len = len(mastr_df)
273
274
        mastr_df = mastr_df.loc[mastr_df.Bundesland == "SchleswigHolstein"]
275
276
        logger.info(
277
            f"Using only MaStR data within Schleswig-Holstein. "
278
            f"{init_len - len(mastr_df)} of {init_len} generators are dropped."
279
        )
280
281
    logger.debug("MaStR data loaded.")
282
283
    return mastr_df
284
285
286
@timer_func
287
def clean_mastr_data(
288
    mastr_df: pd.DataFrame,
289
    max_realistic_pv_cap: int | float,
290
    min_realistic_pv_cap: int | float,
291
    rounding: int,
292
    seed: int,
293
) -> pd.DataFrame:
294
    """
295
    Clean the MaStR data from implausible data.
296
297
    * Drop MaStR ID duplicates.
298
    * Drop generators with implausible capacities.
299
    * Drop generators without any kind of start-up date.
300
    * Clean up Standort column and capacity.
301
302
    Parameters
303
    -----------
304
    mastr_df : pandas.DataFrame
305
        DataFrame containing MaStR data.
306
    max_realistic_pv_cap : int or float
307
        Maximum capacity, which is considered to be realistic.
308
    min_realistic_pv_cap : int or float
309
        Minimum capacity, which is considered to be realistic.
310
    rounding : int
311
        Rounding to use when cleaning up capacity. E.g. when
312
        rounding is 1 a capacity of 9.93 will be rounded to 9.9.
313
    seed : int
314
        Seed to use for random operations with NumPy and pandas.
315
    Returns
316
    -------
317
    pandas.DataFrame
318
        DataFrame containing cleaned MaStR data.
319
    """
320
    init_len = len(mastr_df)
321
322
    # drop duplicates
323
    mastr_df = mastr_df.loc[~mastr_df.index.duplicated()]
324
325
    # drop invalid entries in standort
326
    index_to_drop = mastr_df.loc[
327
        (mastr_df.Standort.isna()) | (mastr_df.Standort.isnull())
328
    ].index
329
330
    mastr_df = mastr_df.loc[~mastr_df.index.isin(index_to_drop)]
331
332
    df = mastr_df[
333
        [
334
            "Bruttoleistung",
335
            "Bruttoleistung_extended",
336
            "Nettonennleistung",
337
            "zugeordneteWirkleistungWechselrichter",
338
            "InstallierteLeistung",
339
        ]
340
    ].round(rounding)
341
342
    # use only the smallest capacity rating if multiple are given
343
    mastr_df = mastr_df.assign(
344
        capacity=[
345
            most_plausible(p_tub, min_realistic_pv_cap)
346
            for p_tub in df.itertuples(index=False)
347
        ]
348
    )
349
350
    # drop generators without any capacity info
351
    # and capacity of zero
352
    # and if the capacity is > 23.5 MW, because
353
    # Germanies largest rooftop PV is 23 MW
354
    # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379
355
    mastr_df = mastr_df.loc[
356
        (~mastr_df.capacity.isna())
357
        & (mastr_df.capacity <= max_realistic_pv_cap)
358
        & (mastr_df.capacity > min_realistic_pv_cap)
359
    ]
360
361
    # get zip and municipality
362
    mastr_df[["zip_and_municipality", "drop_this"]] = pd.DataFrame(
363
        mastr_df.Standort.astype(str)
364
        .apply(
365
            zip_and_municipality_from_standort,
366
            args=(VERBOSE,),
367
        )
368
        .tolist(),
369
        index=mastr_df.index,
370
    )
371
372
    # drop invalid entries
373
    mastr_df = mastr_df.loc[mastr_df.drop_this].drop(columns="drop_this")
374
375
    # add ", Deutschland" just in case
376
    mastr_df = mastr_df.assign(
377
        zip_and_municipality=(mastr_df.zip_and_municipality + ", Deutschland")
378
    )
379
380
    # get consistent start-up date
381
    mastr_df = mastr_df.assign(
382
        start_up_date=mastr_df.Inbetriebnahmedatum,
383
    )
384
385
    mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
386
        mastr_df.start_up_date.isna()
387
    ].assign(
388
        start_up_date=mastr_df.GeplantesInbetriebnahmedatum.loc[
389
            mastr_df.start_up_date.isna()
390
        ]
391
    )
392
393
    # randomly and weighted fill missing start-up dates
394
    pool = mastr_df.loc[
395
        ~mastr_df.start_up_date.isna()
396
    ].start_up_date.to_numpy()
397
398
    size = len(mastr_df) - len(pool)
399
400
    if size > 0:
401
        np.random.seed(seed)
402
403
        choice = np.random.choice(
404
            pool,
405
            size=size,
406
            replace=False,
407
        )
408
409
        mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
410
            mastr_df.start_up_date.isna()
411
        ].assign(start_up_date=choice)
412
413
        logger.info(
414
            f"Randomly and weigthed added start-up date to {size} generators."
415
        )
416
417
    mastr_df = mastr_df.assign(
418
        start_up_date=pd.to_datetime(mastr_df.start_up_date, utc=True)
419
    )
420
421
    end_len = len(mastr_df)
422
    logger.debug(
423
        f"Dropped {init_len - end_len} "
424
        f"({((init_len - end_len) / init_len) * 100:g}%)"
425
        f" of {init_len} rows from MaStR DataFrame."
426
    )
427
428
    return mastr_df
429
430
431
def zip_and_municipality_from_standort(
432
    standort: str,
433
    verbose: bool = False,
434
) -> tuple[str, bool]:
435
    """
436
    Get zip code and municipality from Standort string split into a list.
437
    Parameters
438
    -----------
439
    standort : str
440
        Standort as given from MaStR data.
441
    verbose : bool
442
        Logs additional info if True.
443
    Returns
444
    -------
445
    str
446
        Standort with only the zip code and municipality
447
        as well a ', Germany' added.
448
    """
449
    if verbose:
450
        logger.debug(f"Uncleaned String: {standort}")
451
452
    standort_list = standort.split()
453
454
    found = False
455
    count = 0
456
457
    for count, elem in enumerate(standort_list):
458
        if len(elem) != 5:
459
            continue
460
        if not elem.isnumeric():
461
            continue
462
463
        found = True
464
465
        break
466
467
    if found:
468
        cleaned_str = " ".join(standort_list[count:])
469
470
        if verbose:
471
            logger.debug(f"Cleaned String:   {cleaned_str}")
472
473
        return cleaned_str, found
474
475
    logger.warning(
476
        "Couldn't identify zip code. This entry will be dropped."
477
        f" Original standort: {standort}."
478
    )
479
480
    return standort, found
481
482
483
def most_plausible(
484
    p_tub: tuple,
485
    min_realistic_pv_cap: int | float,
486
) -> float:
487
    """
488
    Try to determine the most plausible capacity.
489
    Try to determine the most plausible capacity from a given
490
    generator from MaStR data.
491
    Parameters
492
    -----------
493
    p_tub : tuple
494
        Tuple containing the different capacities given in
495
        the MaStR data.
496
    min_realistic_pv_cap : int or float
497
        Minimum capacity, which is considered to be realistic.
498
    Returns
499
    -------
500
    float
501
        Capacity of the generator estimated as the most realistic.
502
    """
503
    count = Counter(p_tub).most_common(3)
504
505
    if len(count) == 1:
506
        return count[0][0]
507
508
    val1 = count[0][0]
509
    val2 = count[1][0]
510
511
    if len(count) == 2:
512
        min_val = min(val1, val2)
513
        max_val = max(val1, val2)
514
    else:
515
        val3 = count[2][0]
516
517
        min_val = min(val1, val2, val3)
518
        max_val = max(val1, val2, val3)
519
520
    if min_val < min_realistic_pv_cap:
521
        return max_val
522
523
    return min_val
524
525
526
def geocoder(
527
    user_agent: str,
528
    min_delay_seconds: int,
529
) -> RateLimiter:
530
    """
531
    Setup Nominatim geocoding class.
532
    Parameters
533
    -----------
534
    user_agent : str
535
        The app name.
536
    min_delay_seconds : int
537
        Delay in seconds to use between requests to Nominatim.
538
        A minimum of 1 is advised.
539
    Returns
540
    -------
541
    geopy.extra.rate_limiter.RateLimiter
542
        Nominatim RateLimiter geocoding class to use for geocoding.
543
    """
544
    locator = Nominatim(user_agent=user_agent)
545
    return RateLimiter(
546
        locator.geocode,
547
        min_delay_seconds=min_delay_seconds,
548
    )
549
550
551
def geocoding_data(
552
    clean_mastr_df: pd.DataFrame,
553
) -> pd.DataFrame:
554
    """
555
    Setup DataFrame to geocode.
556
    Parameters
557
    -----------
558
    clean_mastr_df : pandas.DataFrame
559
        DataFrame containing cleaned MaStR data.
560
    Returns
561
    -------
562
    pandas.DataFrame
563
        DataFrame containing all unique combinations of
564
        zip codes with municipalities for geocoding.
565
    """
566
    return pd.DataFrame(
567
        data=clean_mastr_df.zip_and_municipality.unique(),
568
        columns=["zip_and_municipality"],
569
    )
570
571
572
@timer_func
573
def geocode_data(
574
    geocoding_df: pd.DataFrame,
575
    ratelimiter: RateLimiter,
576
    epsg: int,
577
) -> gpd.GeoDataFrame:
578
    """
579
    Geocode zip code and municipality.
580
    Extract latitude, longitude and altitude.
581
    Transfrom latitude and longitude to shapely
582
    Point and return a geopandas GeoDataFrame.
583
    Parameters
584
    -----------
585
    geocoding_df : pandas.DataFrame
586
        DataFrame containing all unique combinations of
587
        zip codes with municipalities for geocoding.
588
    ratelimiter : geopy.extra.rate_limiter.RateLimiter
589
        Nominatim RateLimiter geocoding class to use for geocoding.
590
    epsg : int
591
        EPSG ID to use as CRS.
592
    Returns
593
    -------
594
    geopandas.GeoDataFrame
595
        GeoDataFrame containing all unique combinations of
596
        zip codes with municipalities with matching geolocation.
597
    """
598
    logger.info(f"Geocoding {len(geocoding_df)} locations.")
599
600
    geocode_df = geocoding_df.assign(
601
        location=geocoding_df.zip_and_municipality.apply(ratelimiter)
602
    )
603
604
    geocode_df = geocode_df.assign(
605
        point=geocode_df.location.apply(
606
            lambda loc: tuple(loc.point) if loc else None
607
        )
608
    )
609
610
    geocode_df[["latitude", "longitude", "altitude"]] = pd.DataFrame(
611
        geocode_df.point.tolist(), index=geocode_df.index
612
    )
613
614
    return gpd.GeoDataFrame(
615
        geocode_df,
616
        geometry=gpd.points_from_xy(geocode_df.longitude, geocode_df.latitude),
617
        crs=f"EPSG:{epsg}",
618
    )
619
620
621
def merge_geocode_with_mastr(
622
    clean_mastr_df: pd.DataFrame, geocode_gdf: gpd.GeoDataFrame
623
) -> gpd.GeoDataFrame:
624
    """
625
    Merge geometry to original mastr data.
626
    Parameters
627
    -----------
628
    clean_mastr_df : pandas.DataFrame
629
        DataFrame containing cleaned MaStR data.
630
    geocode_gdf : geopandas.GeoDataFrame
631
        GeoDataFrame containing all unique combinations of
632
        zip codes with municipalities with matching geolocation.
633
    Returns
634
    -------
635
    gepandas.GeoDataFrame
636
        GeoDataFrame containing cleaned MaStR data with
637
        matching geolocation from geocoding.
638
    """
639
    return gpd.GeoDataFrame(
640
        clean_mastr_df.merge(
641
            geocode_gdf[["zip_and_municipality", "geometry"]],
642
            how="left",
643
            left_on="zip_and_municipality",
644
            right_on="zip_and_municipality",
645
        ),
646
        crs=geocode_gdf.crs,
647
    ).set_index(clean_mastr_df.index)
648
649
650
def drop_invalid_entries_from_gdf(
651
    gdf: gpd.GeoDataFrame,
652
) -> gpd.GeoDataFrame:
653
    """
654
    Drop invalid entries from geopandas GeoDataFrame.
655
    TODO: how to omit the logging from geos here???
656
    Parameters
657
    -----------
658
    gdf : geopandas.GeoDataFrame
659
        GeoDataFrame to be checked for validity.
660
    Returns
661
    -------
662
    gepandas.GeoDataFrame
663
        GeoDataFrame with rows with invalid geometries
664
        dropped.
665
    """
666
    valid_gdf = gdf.loc[gdf.is_valid]
667
668
    logger.debug(
669
        f"{len(gdf) - len(valid_gdf)} "
670
        f"({(len(gdf) - len(valid_gdf)) / len(gdf) * 100:g}%) "
671
        f"of {len(gdf)} values were invalid and are dropped."
672
    )
673
674
    return valid_gdf
675
676
677
@timer_func
678
def municipality_data() -> gpd.GeoDataFrame:
679
    """
680
    Get municipality data from eGo^n Database.
681
    Returns
682
    -------
683
    gepandas.GeoDataFrame
684
        GeoDataFrame with municipality data.
685
    """
686
    with db.session_scope() as session:
687
        query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom"))
688
689
    return gpd.read_postgis(
690
        query.statement, query.session.bind, index_col="ags"
691
    )
692
693
694
@timer_func
695
def add_ags_to_gens(
696
    valid_mastr_gdf: gpd.GeoDataFrame,
697
    municipalities_gdf: gpd.GeoDataFrame,
698
) -> gpd.GeoDataFrame:
699
    """
700
    Add information about AGS ID to generators.
701
    Parameters
702
    -----------
703
    valid_mastr_gdf : geopandas.GeoDataFrame
704
        GeoDataFrame with valid and cleaned MaStR data.
705
    municipalities_gdf : geopandas.GeoDataFrame
706
        GeoDataFrame with municipality data.
707
    Returns
708
    -------
709
    gepandas.GeoDataFrame
710
        GeoDataFrame with valid and cleaned MaStR data
711
        with AGS ID added.
712
    """
713
    return valid_mastr_gdf.sjoin(
714
        municipalities_gdf,
715
        how="left",
716
        predicate="intersects",
717
    ).rename(columns={"index_right": "ags"})
718
719
720
def drop_gens_outside_muns(
721
    valid_mastr_gdf: gpd.GeoDataFrame,
722
) -> gpd.GeoDataFrame:
723
    """
724
    Drop all generators outside of municipalities.
725
    Parameters
726
    -----------
727
    valid_mastr_gdf : geopandas.GeoDataFrame
728
        GeoDataFrame with valid and cleaned MaStR data.
729
    Returns
730
    -------
731
    gepandas.GeoDataFrame
732
        GeoDataFrame with valid and cleaned MaStR data
733
        with generatos without an AGS ID dropped.
734
    """
735
    gdf = valid_mastr_gdf.loc[~valid_mastr_gdf.ags.isna()]
736
737
    logger.debug(
738
        f"{len(valid_mastr_gdf) - len(gdf)} "
739
        f"({(len(valid_mastr_gdf) - len(gdf)) / len(valid_mastr_gdf) * 100:g}%) "
740
        f"of {len(valid_mastr_gdf)} values are outside of the municipalities"
741
        " and are therefore dropped."
742
    )
743
744
    return gdf
745
746
747
class EgonMastrPvRoofGeocoded(Base):
748
    __tablename__ = "egon_mastr_pv_roof_geocoded"
749
    __table_args__ = {"schema": "supply"}
750
751
    zip_and_municipality = Column(String, primary_key=True, index=True)
752
    location = Column(String)
753
    point = Column(String)
754
    latitude = Column(Float)
755
    longitude = Column(Float)
756
    altitude = Column(Float)
757
    geometry = Column(Geometry(srid=EPSG))
758
759
760
def create_geocoded_table(geocode_gdf):
761
    """
762
    Create geocoded table mastr pv rooftop
763
    Parameters
764
    -----------
765
    geocode_gdf : geopandas.GeoDataFrame
766
        GeoDataFrame containing geocoding information on pv rooftop locations.
767
    """
768
    EgonMastrPvRoofGeocoded.__table__.drop(bind=engine, checkfirst=True)
769
    EgonMastrPvRoofGeocoded.__table__.create(bind=engine, checkfirst=True)
770
771
    geocode_gdf.to_postgis(
772
        name=EgonMastrPvRoofGeocoded.__table__.name,
773
        schema=EgonMastrPvRoofGeocoded.__table__.schema,
774
        con=db.engine(),
775
        if_exists="append",
776
        index=False,
777
        # dtype={}
778
    )
779
780
781
def geocoded_data_from_db(
782
    epsg: str | int,
783
) -> gpd.GeoDataFrame:
784
    """
785
    Read OSM buildings data from eGo^n Database.
786
    Parameters
787
    -----------
788
    to_crs : pyproj.crs.crs.CRS
789
        CRS to transform geometries to.
790
    Returns
791
    -------
792
    geopandas.GeoDataFrame
793
        GeoDataFrame containing OSM buildings data.
794
    """
795
    with db.session_scope() as session:
796
        query = session.query(
797
            EgonMastrPvRoofGeocoded.zip_and_municipality,
798
            EgonMastrPvRoofGeocoded.geometry,
799
        )
800
801
    return gpd.read_postgis(
802
        query.statement, query.session.bind, geom_col="geometry"
803
    ).to_crs(f"EPSG:{epsg}")
804
805
806
def load_mastr_data():
807
    """Read PV rooftop data from MaStR CSV
808
    Note: the source will be replaced as soon as the MaStR data is available
809
    in DB.
810
    Returns
811
    -------
812
    geopandas.GeoDataFrame
813
        GeoDataFrame containing MaStR data with geocoded locations.
814
    """
815
    mastr_df = mastr_data(
816
        MASTR_INDEX_COL,
817
        MASTR_RELEVANT_COLS,
818
        MASTR_DTYPES,
819
        MASTR_PARSE_DATES,
820
    )
821
822
    clean_mastr_df = clean_mastr_data(
823
        mastr_df,
824
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
825
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
826
        seed=SEED,
827
        rounding=ROUNDING,
828
    )
829
830
    geocode_gdf = geocoded_data_from_db(EPSG)
831
832
    mastr_gdf = merge_geocode_with_mastr(clean_mastr_df, geocode_gdf)
833
834
    valid_mastr_gdf = drop_invalid_entries_from_gdf(mastr_gdf)
835
836
    municipalities_gdf = municipality_data()
837
838
    valid_mastr_gdf = add_ags_to_gens(valid_mastr_gdf, municipalities_gdf)
839
840
    return drop_gens_outside_muns(valid_mastr_gdf)
841
842
843
class OsmBuildingsFiltered(Base):
844
    __tablename__ = "osm_buildings_filtered"
845
    __table_args__ = {"schema": "openstreetmap"}
846
847
    osm_id = Column(BigInteger)
848
    amenity = Column(String)
849
    building = Column(String)
850
    name = Column(String)
851
    geom = Column(Geometry(srid=SRID), index=True)
852
    area = Column(Float)
853
    geom_point = Column(Geometry(srid=SRID), index=True)
854
    tags = Column(HSTORE)
855
    id = Column(BigInteger, primary_key=True, index=True)
856
857
858
@timer_func
859
def osm_buildings(
860
    to_crs: CRS,
861
) -> gpd.GeoDataFrame:
862
    """
863
    Read OSM buildings data from eGo^n Database.
864
    Parameters
865
    -----------
866
    to_crs : pyproj.crs.crs.CRS
867
        CRS to transform geometries to.
868
    Returns
869
    -------
870
    geopandas.GeoDataFrame
871
        GeoDataFrame containing OSM buildings data.
872
    """
873
    with db.session_scope() as session:
874
        query = session.query(
875
            OsmBuildingsFiltered.id,
876
            OsmBuildingsFiltered.area,
877
            OsmBuildingsFiltered.geom_point.label("geom"),
878
        )
879
880
    return gpd.read_postgis(
881
        query.statement, query.session.bind, index_col="id"
882
    ).to_crs(to_crs)
883
884
885
@timer_func
886
def synthetic_buildings(
887
    to_crs: CRS,
888
) -> gpd.GeoDataFrame:
889
    """
890
    Read synthetic buildings data from eGo^n Database.
891
    Parameters
892
    -----------
893
    to_crs : pyproj.crs.crs.CRS
894
        CRS to transform geometries to.
895
    Returns
896
    -------
897
    geopandas.GeoDataFrame
898
        GeoDataFrame containing OSM buildings data.
899
    """
900
    with db.session_scope() as session:
901
        query = session.query(
902
            OsmBuildingsSynthetic.id,
903
            OsmBuildingsSynthetic.area,
904
            OsmBuildingsSynthetic.geom_point.label("geom"),
905
        )
906
907
    return gpd.read_postgis(
908
        query.statement, query.session.bind, index_col="id"
909
    ).to_crs(to_crs)
910
911
912
@timer_func
913
def add_ags_to_buildings(
914
    buildings_gdf: gpd.GeoDataFrame,
915
    municipalities_gdf: gpd.GeoDataFrame,
916
) -> gpd.GeoDataFrame:
917
    """
918
    Add information about AGS ID to buildings.
919
    Parameters
920
    -----------
921
    buildings_gdf : geopandas.GeoDataFrame
922
        GeoDataFrame containing OSM buildings data.
923
    municipalities_gdf : geopandas.GeoDataFrame
924
        GeoDataFrame with municipality data.
925
    Returns
926
    -------
927
    gepandas.GeoDataFrame
928
        GeoDataFrame containing OSM buildings data
929
        with AGS ID added.
930
    """
931
    return buildings_gdf.sjoin(
932
        municipalities_gdf,
933
        how="left",
934
        predicate="intersects",
935
    ).rename(columns={"index_right": "ags"})
936
937
938
def drop_buildings_outside_muns(
939
    buildings_gdf: gpd.GeoDataFrame,
940
) -> gpd.GeoDataFrame:
941
    """
942
    Drop all buildings outside of municipalities.
943
    Parameters
944
    -----------
945
    buildings_gdf : geopandas.GeoDataFrame
946
        GeoDataFrame containing OSM buildings data.
947
    Returns
948
    -------
949
    gepandas.GeoDataFrame
950
        GeoDataFrame containing OSM buildings data
951
        with buildings without an AGS ID dropped.
952
    """
953
    gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()]
954
955
    logger.debug(
956
        f"{len(buildings_gdf) - len(gdf)} "
957
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
958
        f"of {len(buildings_gdf)} values are outside of the municipalities "
959
        "and are therefore dropped."
960
    )
961
962
    return gdf
963
964
965
def egon_building_peak_loads():
966
    sql = """
967
    SELECT building_id
968
    FROM demand.egon_building_electricity_peak_loads
969
    WHERE scenario = 'eGon2035'
970
    """
971
972
    return (
973
        db.select_dataframe(sql).building_id.astype(int).sort_values().unique()
974
    )
975
976
977
@timer_func
978
def load_building_data():
979
    """
980
    Read buildings from DB
981
    Tables:
982
983
    * `openstreetmap.osm_buildings_filtered` (from OSM)
984
    * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us)
985
986
    Use column `id` for both as it is unique hence you concat both datasets. If
987
    INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be loaded.
988
989
    Returns
990
    -------
991
    gepandas.GeoDataFrame
992
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
993
        dropped.
994
    """
995
996
    municipalities_gdf = municipality_data()
997
998
    osm_buildings_gdf = osm_buildings(municipalities_gdf.crs)
999
1000
    if INCLUDE_SYNTHETIC_BUILDINGS:
1001
        synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs)
1002
1003
        buildings_gdf = gpd.GeoDataFrame(
1004
            pd.concat(
1005
                [
1006
                    osm_buildings_gdf,
1007
                    synthetic_buildings_gdf,
1008
                ]
1009
            ),
1010
            geometry="geom",
1011
            crs=osm_buildings_gdf.crs,
1012
        ).rename(columns={"area": "building_area"})
1013
1014
        buildings_gdf.index = buildings_gdf.index.astype(int)
1015
1016
    else:
1017
        buildings_gdf = osm_buildings_gdf.rename(
1018
            columns={"area": "building_area"}
1019
        )
1020
1021
    if ONLY_BUILDINGS_WITH_DEMAND:
1022
        building_ids = egon_building_peak_loads()
1023
1024
        init_len = len(building_ids)
1025
1026
        building_ids = np.intersect1d(
1027
            list(map(int, building_ids)),
1028
            list(map(int, buildings_gdf.index.to_numpy())),
1029
        )
1030
1031
        end_len = len(building_ids)
1032
1033
        logger.debug(
1034
            f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) of buildings have "
1035
            f"peak load."
1036
        )
1037
1038
        buildings_gdf = buildings_gdf.loc[building_ids]
1039
1040
    buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf)
1041
1042
    buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf)
1043
1044
    grid_districts_gdf = grid_districts(EPSG)
1045
1046
    federal_state_gdf = federal_state_data(grid_districts_gdf.crs)
1047
1048
    grid_federal_state_gdf = overlay_grid_districts_with_counties(
1049
        grid_districts_gdf,
1050
        federal_state_gdf,
1051
    )
1052
1053
    buildings_overlay_gdf = add_overlay_id_to_buildings(
1054
        buildings_ags_gdf,
1055
        grid_federal_state_gdf,
1056
    )
1057
1058
    logger.debug("Loaded buildings.")
1059
1060
    buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf)
1061
1062
    # overwrite bus_id with data from new table
1063
    sql = "SELECT building_id, bus_id FROM boundaries.egon_map_zensus_mvgd_buildings"
1064
    map_building_bus_df = db.select_dataframe(sql)
1065
1066
    building_ids = np.intersect1d(
1067
        list(map(int, map_building_bus_df.building_id.unique())),
1068
        list(map(int, buildings_overlay_gdf.index.to_numpy())),
1069
    )
1070
1071
    buildings_within_gdf = buildings_overlay_gdf.loc[building_ids]
1072
1073
    gdf = (
1074
        buildings_within_gdf.reset_index()
1075
        .drop(columns=["bus_id"])
1076
        .merge(
1077
            how="left",
1078
            right=map_building_bus_df,
1079
            left_on="id",
1080
            right_on="building_id",
1081
        )
1082
        .drop(columns=["building_id"])
1083
        .set_index("id")
1084
        .sort_index()
1085
    )
1086
1087
    return gdf[~gdf.index.duplicated(keep="first")]
1088
1089
1090
@timer_func
1091
def sort_and_qcut_df(
1092
    df: pd.DataFrame | gpd.GeoDataFrame,
1093
    col: str,
1094
    q: int,
1095
) -> pd.DataFrame | gpd.GeoDataFrame:
1096
    """
1097
    Determine the quantile of a given attribute in a (Geo)DataFrame.
1098
    Sort the (Geo)DataFrame in ascending order for the given attribute.
1099
    Parameters
1100
    -----------
1101
    df : pandas.DataFrame or geopandas.GeoDataFrame
1102
        (Geo)DataFrame to sort and qcut.
1103
    col : str
1104
        Name of the attribute to sort and qcut the (Geo)DataFrame on.
1105
    q : int
1106
        Number of quantiles.
1107
    Returns
1108
    -------
1109
    pandas.DataFrame or gepandas.GeoDataFrame
1110
        Sorted and qcut (Geo)DataFrame.
1111
    """
1112
    df = df.sort_values(col, ascending=True)
1113
1114
    return df.assign(
1115
        quant=pd.qcut(
1116
            df[col],
1117
            q=q,
1118
            labels=range(q),
1119
        )
1120
    )
1121
1122
1123
@timer_func
1124
def allocate_pv(
1125
    q_mastr_gdf: gpd.GeoDataFrame,
1126
    q_buildings_gdf: gpd.GeoDataFrame,
1127
    seed: int,
1128
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1129
    """
1130
    Allocate the MaStR pv generators to the OSM buildings.
1131
    This will determine a building for each pv generator if there are more
1132
    buildings than generators within a given AGS. Primarily generators are
1133
    distributed with the same qunatile as the buildings. Multiple assignment
1134
    is excluded.
1135
    Parameters
1136
    -----------
1137
    q_mastr_gdf : geopandas.GeoDataFrame
1138
        GeoDataFrame containing geocoded and qcut MaStR data.
1139
    q_buildings_gdf : geopandas.GeoDataFrame
1140
        GeoDataFrame containing qcut OSM buildings data.
1141
    seed : int
1142
        Seed to use for random operations with NumPy and pandas.
1143
    Returns
1144
    -------
1145
    tuple with two geopandas.GeoDataFrame s
1146
        GeoDataFrame containing MaStR data allocated to building IDs.
1147
        GeoDataFrame containing building data allocated to MaStR IDs.
1148
    """
1149
    rng = default_rng(seed=seed)
1150
1151
    q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan)
1152
    q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan)
1153
1154
    ags_list = q_buildings_gdf.ags.unique()
1155
1156
    if TEST_RUN:
1157
        ags_list = ags_list[:250]
1158
1159
    num_ags = len(ags_list)
1160
1161
    t0 = perf_counter()
1162
1163
    for count, ags in enumerate(ags_list):
1164
1165
        buildings = q_buildings_gdf.loc[
1166
            (q_buildings_gdf.ags == ags) & (q_buildings_gdf.gens_id.isna())
1167
        ]
1168
        gens = q_mastr_gdf.loc[
1169
            (q_mastr_gdf.ags == ags) & (q_mastr_gdf.building_id.isna())
1170
        ]
1171
1172
        len_build = len(buildings)
1173
        len_gens = len(gens)
1174
1175
        if len_build < len_gens:
1176
            gens = gens.sample(len_build, random_state=RandomState(seed=seed))
1177
            logger.error(
1178
                f"There are {len_gens} generators and only {len_build}"
1179
                f" buildings in AGS {ags}. {len_gens - len(gens)} "
1180
                "generators were truncated to match the amount of buildings."
1181
            )
1182
1183
            assert len_build == len(gens)
1184
1185
        for quant in gens.quant.unique():
1186
            q_buildings = buildings.loc[
1187
                (buildings.quant == quant) & (buildings.gens_id.isna())
1188
            ]
1189
            q_gens = gens.loc[gens.quant == quant]
1190
1191
            len_build = len(q_buildings)
1192
            len_gens = len(q_gens)
1193
1194
            if len_build < len_gens:
1195
                delta = len_gens - len_build
1196
1197
                logger.warning(
1198
                    f"There are {len_gens} generators and only {len_build} "
1199
                    f"buildings in AGS {ags} and quantile {quant}. {delta} "
1200
                    f"buildings from AGS {ags} will be added randomly."
1201
                )
1202
1203
                add_buildings = pd.Index(
1204
                    rng.choice(
1205
                        buildings.loc[
1206
                            (buildings.quant != quant)
1207
                            & (buildings.gens_id.isna())
1208
                        ].index,
1209
                        size=delta,
1210
                        replace=False,
1211
                    )
1212
                )
1213
1214
                q_buildings = buildings.loc[
1215
                    q_buildings.index.append(add_buildings)
1216
                ]
1217
1218
                assert len(q_buildings) == len_gens
1219
1220
            chosen_buildings = pd.Index(
1221
                rng.choice(
1222
                    q_buildings.index,
1223
                    size=len_gens,
1224
                    replace=False,
1225
                )
1226
            )
1227
1228
            q_mastr_gdf.loc[q_gens.index, "building_id"] = chosen_buildings
1229
            q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index
1230
1231
        if count % 100 == 0:
1232
            logger.debug(
1233
                f"Allocation of {count / num_ags * 100:g} % of AGS done. It took "
1234
                f"{perf_counter() - t0:g} seconds."
1235
            )
1236
1237
            t0 = perf_counter()
1238
1239
    assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()]
1240
1241
    q_mastr_gdf.loc[
1242
        assigned_buildings.gens_id, "building_id"
1243
    ] = assigned_buildings.index
1244
1245
    logger.debug("Allocated status quo generators to buildings.")
1246
1247
    return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf)
1248
1249
1250
def frame_to_numeric(
1251
    df: pd.DataFrame | gpd.GeoDataFrame,
1252
) -> pd.DataFrame | gpd.GeoDataFrame:
1253
    """
1254
    Try to convert all columns of a DataFrame to numeric ignoring errors.
1255
    Parameters
1256
    ----------
1257
    df : pandas.DataFrame or geopandas.GeoDataFrame
1258
    Returns
1259
    -------
1260
    pandas.DataFrame or geopandas.GeoDataFrame
1261
    """
1262
    if str(df.index.dtype) == "object":
1263
        df.index = pd.to_numeric(df.index, errors="ignore")
1264
1265
    for col in df.columns:
1266
        if str(df[col].dtype) == "object":
1267
            df[col] = pd.to_numeric(df[col], errors="ignore")
1268
1269
    return df
1270
1271
1272
def validate_output(
1273
    desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame,
1274
    desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame,
1275
) -> None:
1276
    """
1277
    Validate output.
1278
1279
    * Validate that there are exactly as many buildings with a pv system as there are
1280
      pv systems with a building
1281
    * Validate that the building IDs with a pv system are the same building IDs as
1282
      assigned to the pv systems
1283
    * Validate that the pv system IDs with a building are the same pv system IDs as
1284
      assigned to the buildings
1285
1286
    Parameters
1287
    -----------
1288
    desagg_mastr_gdf : geopandas.GeoDataFrame
1289
        GeoDataFrame containing MaStR data allocated to building IDs.
1290
    desagg_buildings_gdf : geopandas.GeoDataFrame
1291
        GeoDataFrame containing building data allocated to MaStR IDs.
1292
    """
1293
    assert len(
1294
        desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()]
1295
    ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()])
1296
    assert (
1297
        np.sort(
1298
            desagg_mastr_gdf.loc[
1299
                ~desagg_mastr_gdf.building_id.isna()
1300
            ].building_id.unique()
1301
        )
1302
        == np.sort(
1303
            desagg_buildings_gdf.loc[
1304
                ~desagg_buildings_gdf.gens_id.isna()
1305
            ].index.unique()
1306
        )
1307
    ).all()
1308
    assert (
1309
        np.sort(
1310
            desagg_mastr_gdf.loc[
1311
                ~desagg_mastr_gdf.building_id.isna()
1312
            ].index.unique()
1313
        )
1314
        == np.sort(
1315
            desagg_buildings_gdf.loc[
1316
                ~desagg_buildings_gdf.gens_id.isna()
1317
            ].gens_id.unique()
1318
        )
1319
    ).all()
1320
1321
    logger.debug("Validated output.")
1322
1323
1324
def drop_unallocated_gens(
1325
    gdf: gpd.GeoDataFrame,
1326
) -> gpd.GeoDataFrame:
1327
    """
1328
    Drop generators which did not get allocated.
1329
1330
    Parameters
1331
    -----------
1332
    gdf : geopandas.GeoDataFrame
1333
        GeoDataFrame containing MaStR data allocated to building IDs.
1334
    Returns
1335
    -------
1336
    geopandas.GeoDataFrame
1337
        GeoDataFrame containing MaStR data with generators dropped which did not get
1338
        allocated.
1339
    """
1340
    init_len = len(gdf)
1341
    gdf = gdf.loc[~gdf.building_id.isna()]
1342
    end_len = len(gdf)
1343
1344
    logger.debug(
1345
        f"Dropped {init_len - end_len} "
1346
        f"({((init_len - end_len) / init_len) * 100:g}%)"
1347
        f" of {init_len} unallocated rows from MaStR DataFrame."
1348
    )
1349
1350
    return gdf
1351
1352
1353
@timer_func
1354
def allocate_to_buildings(
1355
    mastr_gdf: gpd.GeoDataFrame,
1356
    buildings_gdf: gpd.GeoDataFrame,
1357
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1358
    """
1359
    Allocate status quo pv rooftop generators to buildings.
1360
    Parameters
1361
    -----------
1362
    mastr_gdf : geopandas.GeoDataFrame
1363
        GeoDataFrame containing MaStR data with geocoded locations.
1364
    buildings_gdf : geopandas.GeoDataFrame
1365
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
1366
        dropped.
1367
    Returns
1368
    -------
1369
    tuple with two geopandas.GeoDataFrame s
1370
        GeoDataFrame containing MaStR data allocated to building IDs.
1371
        GeoDataFrame containing building data allocated to MaStR IDs.
1372
    """
1373
    logger.debug("Starting allocation of status quo.")
1374
1375
    q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q)
1376
    q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q)
1377
1378
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv(
1379
        q_mastr_gdf, q_buildings_gdf, SEED
1380
    )
1381
1382
    validate_output(desagg_mastr_gdf, desagg_buildings_gdf)
1383
1384
    return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf
1385
1386
1387
@timer_func
1388
def grid_districts(
1389
    epsg: int,
1390
) -> gpd.GeoDataFrame:
1391
    """
1392
    Load mv grid district geo data from eGo^n Database as
1393
    geopandas.GeoDataFrame.
1394
    Parameters
1395
    -----------
1396
    epsg : int
1397
        EPSG ID to use as CRS.
1398
    Returns
1399
    -------
1400
    geopandas.GeoDataFrame
1401
        GeoDataFrame containing mv grid district ID and geo shapes data.
1402
    """
1403
    gdf = db.select_geodataframe(
1404
        """
1405
        SELECT bus_id, geom
1406
        FROM grid.egon_mv_grid_district
1407
        ORDER BY bus_id
1408
        """,
1409
        index_col="bus_id",
1410
        geom_col="geom",
1411
        epsg=epsg,
1412
    )
1413
1414
    gdf.index = gdf.index.astype(int)
1415
1416
    logger.debug("Grid districts loaded.")
1417
1418
    return gdf
1419
1420
1421
def scenario_data(
1422
    carrier: str = "solar_rooftop",
1423
    scenario: str = "eGon2035",
1424
) -> pd.DataFrame:
1425
    """
1426
    Get scenario capacity data from eGo^n Database.
1427
    Parameters
1428
    -----------
1429
    carrier : str
1430
        Carrier type to filter table by.
1431
    scenario : str
1432
        Scenario to filter table by.
1433
    Returns
1434
    -------
1435
    geopandas.GeoDataFrame
1436
        GeoDataFrame with scenario capacity data in GW.
1437
    """
1438
    with db.session_scope() as session:
1439
        query = session.query(EgonScenarioCapacities).filter(
1440
            EgonScenarioCapacities.carrier == carrier,
1441
            EgonScenarioCapacities.scenario_name == scenario,
1442
        )
1443
1444
    df = pd.read_sql(
1445
        query.statement, query.session.bind, index_col="index"
1446
    ).sort_index()
1447
1448
    logger.debug("Scenario capacity data loaded.")
1449
1450
    return df
1451
1452
1453 View Code Duplication
class Vg250Lan(Base):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
1454
    __tablename__ = "vg250_lan"
1455
    __table_args__ = {"schema": "boundaries"}
1456
1457
    id = Column(BigInteger, primary_key=True, index=True)
1458
    ade = Column(BigInteger)
1459
    gf = Column(BigInteger)
1460
    bsg = Column(BigInteger)
1461
    ars = Column(String)
1462
    ags = Column(String)
1463
    sdv_ars = Column(String)
1464
    gen = Column(String)
1465
    bez = Column(String)
1466
    ibz = Column(BigInteger)
1467
    bem = Column(String)
1468
    nbd = Column(String)
1469
    sn_l = Column(String)
1470
    sn_r = Column(String)
1471
    sn_k = Column(String)
1472
    sn_v1 = Column(String)
1473
    sn_v2 = Column(String)
1474
    sn_g = Column(String)
1475
    fk_s3 = Column(String)
1476
    nuts = Column(String)
1477
    ars_0 = Column(String)
1478
    ags_0 = Column(String)
1479
    wsk = Column(String)
1480
    debkg_id = Column(String)
1481
    rs = Column(String)
1482
    sdv_rs = Column(String)
1483
    rs_0 = Column(String)
1484
    geometry = Column(Geometry(srid=EPSG), index=True)
1485
1486
1487
def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame:
1488
    """
1489
    Get feder state data from eGo^n Database.
1490
    Parameters
1491
    -----------
1492
    to_crs : pyproj.crs.crs.CRS
1493
        CRS to transform geometries to.
1494
    Returns
1495
    -------
1496
    geopandas.GeoDataFrame
1497
        GeoDataFrame with federal state data.
1498
    """
1499
    with db.session_scope() as session:
1500
        query = session.query(
1501
            Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom")
1502
        )
1503
1504
        gdf = gpd.read_postgis(
1505
            query.statement, session.connection(), index_col="id"
1506
        ).to_crs(to_crs)
1507
1508
    logger.debug("Federal State data loaded.")
1509
1510
    return gdf
1511
1512
1513
@timer_func
1514
def overlay_grid_districts_with_counties(
1515
    mv_grid_district_gdf: gpd.GeoDataFrame,
1516
    federal_state_gdf: gpd.GeoDataFrame,
1517
) -> gpd.GeoDataFrame:
1518
    """
1519
    Calculate the intersections of mv grid districts and counties.
1520
    Parameters
1521
    -----------
1522
    mv_grid_district_gdf : gpd.GeoDataFrame
1523
        GeoDataFrame containing mv grid district ID and geo shapes data.
1524
    federal_state_gdf : gpd.GeoDataFrame
1525
        GeoDataFrame with federal state data.
1526
    Returns
1527
    -------
1528
    geopandas.GeoDataFrame
1529
        GeoDataFrame containing OSM buildings data.
1530
    """
1531
    logger.debug(
1532
        "Calculating intersection overlay between mv grid districts and "
1533
        "counties. This may take a while..."
1534
    )
1535
1536
    gdf = gpd.overlay(
1537
        federal_state_gdf.to_crs(mv_grid_district_gdf.crs),
1538
        mv_grid_district_gdf.reset_index(),
1539
        how="intersection",
1540
        keep_geom_type=True,
1541
    )
1542
1543
    logger.debug("Done!")
1544
1545
    return gdf
1546
1547
1548
@timer_func
1549
def add_overlay_id_to_buildings(
1550
    buildings_gdf: gpd.GeoDataFrame,
1551
    grid_federal_state_gdf: gpd.GeoDataFrame,
1552
) -> gpd.GeoDataFrame:
1553
    """
1554
    Add information about overlay ID to buildings.
1555
    Parameters
1556
    -----------
1557
    buildings_gdf : geopandas.GeoDataFrame
1558
        GeoDataFrame containing OSM buildings data.
1559
    grid_federal_state_gdf : geopandas.GeoDataFrame
1560
        GeoDataFrame with intersection shapes between counties and grid districts.
1561
    Returns
1562
    -------
1563
    geopandas.GeoDataFrame
1564
        GeoDataFrame containing OSM buildings data with overlay ID added.
1565
    """
1566
    gdf = (
1567
        buildings_gdf.to_crs(grid_federal_state_gdf.crs)
1568
        .sjoin(
1569
            grid_federal_state_gdf,
1570
            how="left",
1571
            predicate="intersects",
1572
        )
1573
        .rename(columns={"index_right": "overlay_id"})
1574
    )
1575
1576
    logger.debug("Added overlay ID to OSM buildings.")
1577
1578
    return gdf
1579
1580
1581
def drop_buildings_outside_grids(
1582
    buildings_gdf: gpd.GeoDataFrame,
1583
) -> gpd.GeoDataFrame:
1584
    """
1585
    Drop all buildings outside of grid areas.
1586
    Parameters
1587
    -----------
1588
    buildings_gdf : geopandas.GeoDataFrame
1589
        GeoDataFrame containing OSM buildings data.
1590
    Returns
1591
    -------
1592
    gepandas.GeoDataFrame
1593
        GeoDataFrame containing OSM buildings data
1594
        with buildings without an bus ID dropped.
1595
    """
1596
    gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()]
1597
1598
    logger.debug(
1599
        f"{len(buildings_gdf) - len(gdf)} "
1600
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
1601
        f"of {len(buildings_gdf)} values are outside of the grid areas "
1602
        "and are therefore dropped."
1603
    )
1604
1605
    return gdf
1606
1607
1608
def cap_per_bus_id(
1609
    scenario: str,
1610
) -> pd.DataFrame:
1611
    """
1612
    Get table with total pv rooftop capacity per grid district.
1613
1614
    Parameters
1615
    -----------
1616
    scenario : str
1617
        Scenario name.
1618
    Returns
1619
    -------
1620
    pandas.DataFrame
1621
        DataFrame with total rooftop capacity per mv grid.
1622
    """
1623
    targets = config.datasets()["solar_rooftop"]["targets"]
1624
1625
    sql = f"""
1626
    SELECT bus as bus_id, p_nom as capacity
1627
    FROM {targets['generators']['schema']}.{targets['generators']['table']}
1628
    WHERE carrier = 'solar_rooftop'
1629
    AND scn_name = '{scenario}'
1630
    """
1631
1632
    return db.select_dataframe(sql, index_col="bus_id")
1633
1634
    # overlay_gdf = overlay_gdf.assign(capacity=np.nan)
1635
    #
1636
    # for cap, nuts in scenario_df[["capacity", "nuts"]].itertuples(index=False):
1637
    #     nuts_gdf = overlay_gdf.loc[overlay_gdf.nuts == nuts]
1638
    #
1639
    #     capacity = nuts_gdf.building_area.multiply(
1640
    #         cap / nuts_gdf.building_area.sum()
1641
    #     )
1642
    #
1643
    #     overlay_gdf.loc[nuts_gdf.index] = overlay_gdf.loc[
1644
    #         nuts_gdf.index
1645
    #     ].assign(capacity=capacity.multiply(conversion).to_numpy())
1646
    #
1647
    # return overlay_gdf[["bus_id", "capacity"]].groupby("bus_id").sum()
1648
1649
1650
def determine_end_of_life_gens(
1651
    mastr_gdf: gpd.GeoDataFrame,
1652
    scenario_timestamp: pd.Timestamp,
1653
    pv_rooftop_lifetime: pd.Timedelta,
1654
) -> gpd.GeoDataFrame:
1655
    """
1656
    Determine if an old PV system has reached its end of life.
1657
    Parameters
1658
    -----------
1659
    mastr_gdf : geopandas.GeoDataFrame
1660
        GeoDataFrame containing geocoded MaStR data.
1661
    scenario_timestamp : pandas.Timestamp
1662
        Timestamp at which the scenario takes place.
1663
    pv_rooftop_lifetime : pandas.Timedelta
1664
        Average expected lifetime of PV rooftop systems.
1665
    Returns
1666
    -------
1667
    geopandas.GeoDataFrame
1668
        GeoDataFrame containing geocoded MaStR data and info if the system
1669
        has reached its end of life.
1670
    """
1671
    before = mastr_gdf.capacity.sum()
1672
1673
    mastr_gdf = mastr_gdf.assign(
1674
        age=scenario_timestamp - mastr_gdf.start_up_date
1675
    )
1676
1677
    mastr_gdf = mastr_gdf.assign(
1678
        end_of_life=pv_rooftop_lifetime < mastr_gdf.age
1679
    )
1680
1681
    after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum()
1682
1683
    logger.debug(
1684
        "Determined if pv rooftop systems reached their end of life.\nTotal capacity: "
1685
        f"{before}\nActive capacity: {after}"
1686
    )
1687
1688
    return mastr_gdf
1689
1690
1691
def calculate_max_pv_cap_per_building(
1692
    buildings_gdf: gpd.GeoDataFrame,
1693
    mastr_gdf: gpd.GeoDataFrame,
1694
    pv_cap_per_sq_m: float | int,
1695
    roof_factor: float | int,
1696
) -> gpd.GeoDataFrame:
1697
    """
1698
    Calculate the estimated maximum possible PV capacity per building.
1699
    Parameters
1700
    -----------
1701
    buildings_gdf : geopandas.GeoDataFrame
1702
        GeoDataFrame containing OSM buildings data.
1703
    mastr_gdf : geopandas.GeoDataFrame
1704
        GeoDataFrame containing geocoded MaStR data.
1705
    pv_cap_per_sq_m : float, int
1706
        Average expected, installable PV capacity per square meter.
1707
    roof_factor : float, int
1708
        Average for PV usable roof area share.
1709
    Returns
1710
    -------
1711
    geopandas.GeoDataFrame
1712
        GeoDataFrame containing OSM buildings data with estimated maximum PV
1713
        capacity.
1714
    """
1715
    gdf = (
1716
        buildings_gdf.reset_index()
1717
        .rename(columns={"index": "id"})
1718
        .merge(
1719
            mastr_gdf[
1720
                [
1721
                    "capacity",
1722
                    "end_of_life",
1723
                    "building_id",
1724
                    "EinheitlicheAusrichtungUndNeigungswinkel",
1725
                    "Hauptausrichtung",
1726
                    "HauptausrichtungNeigungswinkel",
1727
                ]
1728
            ],
1729
            how="left",
1730
            left_on="id",
1731
            right_on="building_id",
1732
        )
1733
        .set_index("id")
1734
        .drop(columns="building_id")
1735
    )
1736
1737
    return gdf.assign(
1738
        max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m),
1739
        end_of_life=gdf.end_of_life.fillna(True).astype(bool),
1740
        bus_id=gdf.bus_id.astype(int),
1741
    )
1742
1743
1744
def calculate_building_load_factor(
1745
    mastr_gdf: gpd.GeoDataFrame,
1746
    buildings_gdf: gpd.GeoDataFrame,
1747
    rounding: int = 4,
1748
) -> gpd.GeoDataFrame:
1749
    """
1750
    Calculate the roof load factor from existing PV systems.
1751
    Parameters
1752
    -----------
1753
    mastr_gdf : geopandas.GeoDataFrame
1754
        GeoDataFrame containing geocoded MaStR data.
1755
    buildings_gdf : geopandas.GeoDataFrame
1756
        GeoDataFrame containing OSM buildings data.
1757
    rounding : int
1758
        Rounding to use for load factor.
1759
    Returns
1760
    -------
1761
    geopandas.GeoDataFrame
1762
        GeoDataFrame containing geocoded MaStR data with calculated load factor.
1763
    """
1764
    gdf = mastr_gdf.merge(
1765
        buildings_gdf[["max_cap", "building_area"]]
1766
        .loc[~buildings_gdf["max_cap"].isna()]
1767
        .reset_index(),
1768
        how="left",
1769
        left_on="building_id",
1770
        right_on="id",
1771
    ).set_index("id")
1772
1773
    return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding))
1774
1775
1776
def get_probability_for_property(
1777
    mastr_gdf: gpd.GeoDataFrame,
1778
    cap_range: tuple[int | float, int | float],
1779
    prop: str,
1780
) -> tuple[np.array, np.array]:
1781
    """
1782
    Calculate the probability of the different options of a property of the
1783
    existing PV plants.
1784
    Parameters
1785
    -----------
1786
    mastr_gdf : geopandas.GeoDataFrame
1787
        GeoDataFrame containing geocoded MaStR data.
1788
    cap_range : tuple(int, int)
1789
        Capacity range of PV plants to look at.
1790
    prop : str
1791
        Property to calculate probabilities for. String needs to be in columns
1792
        of mastr_gdf.
1793
    Returns
1794
    -------
1795
    tuple
1796
        numpy.array
1797
            Unique values of property.
1798
        numpy.array
1799
            Probabilties per unique value.
1800
    """
1801
    cap_range_gdf = mastr_gdf.loc[
1802
        (mastr_gdf.capacity > cap_range[0])
1803
        & (mastr_gdf.capacity <= cap_range[1])
1804
    ]
1805
1806
    if prop == "load_factor":
1807
        cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1]
1808
1809
    count = Counter(
1810
        cap_range_gdf[prop].loc[
1811
            ~cap_range_gdf[prop].isna()
1812
            & ~cap_range_gdf[prop].isnull()
1813
            & ~(cap_range_gdf[prop] == "None")
1814
        ]
1815
    )
1816
1817
    values = np.array(list(count.keys()))
1818
    probabilities = np.fromiter(count.values(), dtype=float)
1819
    probabilities = probabilities / np.sum(probabilities)
1820
1821
    return values, probabilities
1822
1823
1824
@timer_func
1825
def probabilities(
1826
    mastr_gdf: gpd.GeoDataFrame,
1827
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1828
    properties: list[str] | None = None,
1829
) -> dict:
1830
    """
1831
    Calculate the probability of the different options of properties of the
1832
    existing PV plants.
1833
    Parameters
1834
    -----------
1835
    mastr_gdf : geopandas.GeoDataFrame
1836
        GeoDataFrame containing geocoded MaStR data.
1837
    cap_ranges : list(tuple(int, int))
1838
        List of capacity ranges to distinguish between. The first tuple should
1839
        start with a zero and the last one should end with infinite.
1840
    properties : list(str)
1841
        List of properties to calculate probabilities for. Strings needs to be
1842
        in columns of mastr_gdf.
1843
    Returns
1844
    -------
1845
    dict
1846
        Dictionary with values and probabilities per capacity range.
1847
    """
1848
    if cap_ranges is None:
1849
        cap_ranges = [
1850
            (0, 30),
1851
            (30, 100),
1852
            (100, float("inf")),
1853
        ]
1854
    if properties is None:
1855
        properties = [
1856
            "EinheitlicheAusrichtungUndNeigungswinkel",
1857
            "Hauptausrichtung",
1858
            "HauptausrichtungNeigungswinkel",
1859
            "load_factor",
1860
        ]
1861
1862
    prob_dict = {}
1863
1864
    for cap_range in cap_ranges:
1865
        prob_dict[cap_range] = {
1866
            "values": {},
1867
            "probabilities": {},
1868
        }
1869
1870
        for prop in properties:
1871
            v, p = get_probability_for_property(
1872
                mastr_gdf,
1873
                cap_range,
1874
                prop,
1875
            )
1876
1877
            prob_dict[cap_range]["values"][prop] = v
1878
            prob_dict[cap_range]["probabilities"][prop] = p
1879
1880
    return prob_dict
1881
1882
1883
def cap_share_per_cap_range(
1884
    mastr_gdf: gpd.GeoDataFrame,
1885
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1886
) -> dict[tuple[int | float, int | float], float]:
1887
    """
1888
    Calculate the share of PV capacity from the total PV capacity within
1889
    capacity ranges.
1890
    Parameters
1891
    -----------
1892
    mastr_gdf : geopandas.GeoDataFrame
1893
        GeoDataFrame containing geocoded MaStR data.
1894
    cap_ranges : list(tuple(int, int))
1895
        List of capacity ranges to distinguish between. The first tuple should
1896
        start with a zero and the last one should end with infinite.
1897
    Returns
1898
    -------
1899
    dict
1900
        Dictionary with share of PV capacity from the total PV capacity within
1901
        capacity ranges.
1902
    """
1903
    if cap_ranges is None:
1904
        cap_ranges = [
1905
            (0, 30),
1906
            (30, 100),
1907
            (100, float("inf")),
1908
        ]
1909
1910
    cap_share_dict = {}
1911
1912
    total_cap = mastr_gdf.capacity.sum()
1913
1914
    for cap_range in cap_ranges:
1915
        cap_share = (
1916
            mastr_gdf.loc[
1917
                (mastr_gdf.capacity > cap_range[0])
1918
                & (mastr_gdf.capacity <= cap_range[1])
1919
            ].capacity.sum()
1920
            / total_cap
1921
        )
1922
1923
        cap_share_dict[cap_range] = cap_share
1924
1925
    return cap_share_dict
1926
1927
1928
def mean_load_factor_per_cap_range(
1929
    mastr_gdf: gpd.GeoDataFrame,
1930
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1931
) -> dict[tuple[int | float, int | float], float]:
1932
    """
1933
    Calculate the mean roof load factor per capacity range from existing PV
1934
    plants.
1935
    Parameters
1936
    -----------
1937
    mastr_gdf : geopandas.GeoDataFrame
1938
        GeoDataFrame containing geocoded MaStR data.
1939
    cap_ranges : list(tuple(int, int))
1940
        List of capacity ranges to distinguish between. The first tuple should
1941
        start with a zero and the last one should end with infinite.
1942
    Returns
1943
    -------
1944
    dict
1945
        Dictionary with mean roof load factor per capacity range.
1946
    """
1947
    if cap_ranges is None:
1948
        cap_ranges = [
1949
            (0, 30),
1950
            (30, 100),
1951
            (100, float("inf")),
1952
        ]
1953
1954
    load_factor_dict = {}
1955
1956
    for cap_range in cap_ranges:
1957
        load_factor = mastr_gdf.loc[
1958
            (mastr_gdf.load_factor <= 1)
1959
            & (mastr_gdf.capacity > cap_range[0])
1960
            & (mastr_gdf.capacity <= cap_range[1])
1961
        ].load_factor.mean()
1962
1963
        load_factor_dict[cap_range] = load_factor
1964
1965
    return load_factor_dict
1966
1967
1968
def building_area_range_per_cap_range(
1969
    mastr_gdf: gpd.GeoDataFrame,
1970
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1971
    min_building_size: int | float = 10.0,
1972
    upper_quantile: float = 0.95,
1973
    lower_quantile: float = 0.05,
1974
) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]:
1975
    """
1976
    Estimate normal building area range per capacity range.
1977
    Calculate the mean roof load factor per capacity range from existing PV
1978
    plants.
1979
    Parameters
1980
    -----------
1981
    mastr_gdf : geopandas.GeoDataFrame
1982
        GeoDataFrame containing geocoded MaStR data.
1983
    cap_ranges : list(tuple(int, int))
1984
        List of capacity ranges to distinguish between. The first tuple should
1985
        start with a zero and the last one should end with infinite.
1986
    min_building_size : int, float
1987
        Minimal building size to consider for PV plants.
1988
    upper_quantile : float
1989
        Upper quantile to estimate maximum building size per capacity range.
1990
    lower_quantile : float
1991
        Lower quantile to estimate minimum building size per capacity range.
1992
    Returns
1993
    -------
1994
    dict
1995
        Dictionary with estimated normal building area range per capacity
1996
        range.
1997
    """
1998
    if cap_ranges is None:
1999
        cap_ranges = [
2000
            (0, 30),
2001
            (30, 100),
2002
            (100, float("inf")),
2003
        ]
2004
2005
    building_area_range_dict = {}
2006
2007
    n_ranges = len(cap_ranges)
2008
2009
    for count, cap_range in enumerate(cap_ranges):
2010
        cap_range_gdf = mastr_gdf.loc[
2011
            (mastr_gdf.capacity > cap_range[0])
2012
            & (mastr_gdf.capacity <= cap_range[1])
2013
        ]
2014
2015
        if count == 0:
2016
            building_area_range_dict[cap_range] = (
2017
                min_building_size,
2018
                cap_range_gdf.building_area.quantile(upper_quantile),
2019
            )
2020
        elif count == n_ranges - 1:
2021
            building_area_range_dict[cap_range] = (
2022
                cap_range_gdf.building_area.quantile(lower_quantile),
2023
                float("inf"),
2024
            )
2025
        else:
2026
            building_area_range_dict[cap_range] = (
2027
                cap_range_gdf.building_area.quantile(lower_quantile),
2028
                cap_range_gdf.building_area.quantile(upper_quantile),
2029
            )
2030
2031
    values = list(building_area_range_dict.values())
2032
2033
    building_area_range_normed_dict = {}
2034
2035
    for count, (cap_range, (min_area, max_area)) in enumerate(
2036
        building_area_range_dict.items()
2037
    ):
2038
        if count == 0:
2039
            building_area_range_normed_dict[cap_range] = (
2040
                min_area,
2041
                np.mean((values[count + 1][0], max_area)),
2042
            )
2043
        elif count == n_ranges - 1:
2044
            building_area_range_normed_dict[cap_range] = (
2045
                np.mean((values[count - 1][1], min_area)),
2046
                max_area,
2047
            )
2048
        else:
2049
            building_area_range_normed_dict[cap_range] = (
2050
                np.mean((values[count - 1][1], min_area)),
2051
                np.mean((values[count + 1][0], max_area)),
2052
            )
2053
2054
    return building_area_range_normed_dict
2055
2056
2057
@timer_func
2058
def desaggregate_pv_in_mv_grid(
2059
    buildings_gdf: gpd.GeoDataFrame,
2060
    pv_cap: float | int,
2061
    **kwargs,
2062
) -> gpd.GeoDataFrame:
2063
    """
2064
    Desaggregate PV capacity on buildings within a given grid district.
2065
    Parameters
2066
    -----------
2067
    buildings_gdf : geopandas.GeoDataFrame
2068
        GeoDataFrame containing buildings within the grid district.
2069
    pv_cap : float, int
2070
        PV capacity to desaggregate.
2071
    Other Parameters
2072
    -----------
2073
    prob_dict : dict
2074
        Dictionary with values and probabilities per capacity range.
2075
    cap_share_dict : dict
2076
        Dictionary with share of PV capacity from the total PV capacity within
2077
        capacity ranges.
2078
    building_area_range_dict : dict
2079
        Dictionary with estimated normal building area range per capacity
2080
        range.
2081
    load_factor_dict : dict
2082
        Dictionary with mean roof load factor per capacity range.
2083
    seed : int
2084
        Seed to use for random operations with NumPy and pandas.
2085
    pv_cap_per_sq_m : float, int
2086
        Average expected, installable PV capacity per square meter.
2087
    Returns
2088
    -------
2089
    geopandas.GeoDataFrame
2090
        GeoDataFrame containing OSM building data with desaggregated PV
2091
        plants.
2092
    """
2093
    bus_id = int(buildings_gdf.bus_id.iat[0])
2094
2095
    rng = default_rng(seed=kwargs["seed"])
2096
    random_state = RandomState(seed=kwargs["seed"])
2097
2098
    results_df = pd.DataFrame(columns=buildings_gdf.columns)
2099
2100
    for cap_range, share in kwargs["cap_share_dict"].items():
2101
        pv_cap_range = pv_cap * share
2102
2103
        b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range]
2104
2105
        cap_range_buildings_gdf = buildings_gdf.loc[
2106
            ~buildings_gdf.index.isin(results_df.index)
2107
            & (buildings_gdf.building_area > b_area_min)
2108
            & (buildings_gdf.building_area <= b_area_max)
2109
        ]
2110
2111
        mean_load_factor = kwargs["load_factor_dict"][cap_range]
2112
        cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2113
            mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2114
            load_factor=np.nan,
2115
            capacity=np.nan,
2116
        )
2117
2118
        total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2119
2120
        if total_mean_cap == 0:
2121
            logger.warning(
2122
                f"There are no matching roof for capacity range {cap_range} "
2123
                f"kW in grid {bus_id}. Using all buildings as fallback."
2124
            )
2125
2126
            cap_range_buildings_gdf = buildings_gdf.loc[
2127
                ~buildings_gdf.index.isin(results_df.index)
2128
            ]
2129
2130
            if len(cap_range_buildings_gdf) == 0:
2131
                logger.warning(
2132
                    "There are no roofes available for capacity range "
2133
                    f"{cap_range} kW in grid {bus_id}. Allowing dual use."
2134
                )
2135
                cap_range_buildings_gdf = buildings_gdf.copy()
2136
2137
            cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2138
                mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2139
                load_factor=np.nan,
2140
                capacity=np.nan,
2141
            )
2142
2143
            total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2144
2145
        elif total_mean_cap < pv_cap_range:
2146
            logger.warning(
2147
                f"Average roof utilization of the roof area in grid {bus_id} "
2148
                f"and capacity range {cap_range} kW is not sufficient. The "
2149
                "roof utilization will be above average."
2150
            )
2151
2152
        frac = max(
2153
            pv_cap_range / total_mean_cap,
2154
            1 / len(cap_range_buildings_gdf),
2155
        )
2156
2157
        samples_gdf = cap_range_buildings_gdf.sample(
2158
            frac=min(1, frac),
2159
            random_state=random_state,
2160
        )
2161
2162
        cap_range_dict = kwargs["prob_dict"][cap_range]
2163
2164
        values_dict = cap_range_dict["values"]
2165
        p_dict = cap_range_dict["probabilities"]
2166
2167
        load_factors = rng.choice(
2168
            a=values_dict["load_factor"],
2169
            size=len(samples_gdf),
2170
            p=p_dict["load_factor"],
2171
        )
2172
2173
        samples_gdf = samples_gdf.assign(
2174
            load_factor=load_factors,
2175
            capacity=(
2176
                samples_gdf.building_area
2177
                * load_factors
2178
                * kwargs["pv_cap_per_sq_m"]
2179
            ).clip(lower=0.4),
2180
        )
2181
2182
        missing_factor = pv_cap_range / samples_gdf.capacity.sum()
2183
2184
        samples_gdf = samples_gdf.assign(
2185
            capacity=(samples_gdf.capacity * missing_factor),
2186
            load_factor=(samples_gdf.load_factor * missing_factor),
2187
        )
2188
2189
        assert np.isclose(
2190
            samples_gdf.capacity.sum(),
2191
            pv_cap_range,
2192
            rtol=1e-03,
2193
        ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}"
2194
2195
        results_df = pd.concat(
2196
            [
2197
                results_df,
2198
                samples_gdf,
2199
            ],
2200
        )
2201
2202
    total_missing_factor = pv_cap / results_df.capacity.sum()
2203
2204
    results_df = results_df.assign(
2205
        capacity=(results_df.capacity * total_missing_factor),
2206
    )
2207
2208
    assert np.isclose(
2209
        results_df.capacity.sum(),
2210
        pv_cap,
2211
        rtol=1e-03,
2212
    ), f"{results_df.capacity.sum()} != {pv_cap}"
2213
2214
    return gpd.GeoDataFrame(
2215
        results_df,
2216
        crs=samples_gdf.crs,
0 ignored issues
show
introduced by
The variable samples_gdf does not seem to be defined in case the for loop on line 2100 is not entered. Are you sure this can never be the case?
Loading history...
2217
        geometry="geom",
2218
    )
2219
2220
2221
@timer_func
2222
def desaggregate_pv(
2223
    buildings_gdf: gpd.GeoDataFrame,
2224
    cap_df: pd.DataFrame,
2225
    **kwargs,
2226
) -> gpd.GeoDataFrame:
2227
    """
2228
    Desaggregate PV capacity on buildings within a given grid district.
2229
    Parameters
2230
    -----------
2231
    buildings_gdf : geopandas.GeoDataFrame
2232
        GeoDataFrame containing OSM buildings data.
2233
    cap_df : pandas.DataFrame
2234
        DataFrame with total rooftop capacity per mv grid.
2235
    Other Parameters
2236
    -----------
2237
    prob_dict : dict
2238
        Dictionary with values and probabilities per capacity range.
2239
    cap_share_dict : dict
2240
        Dictionary with share of PV capacity from the total PV capacity within
2241
        capacity ranges.
2242
    building_area_range_dict : dict
2243
        Dictionary with estimated normal building area range per capacity
2244
        range.
2245
    load_factor_dict : dict
2246
        Dictionary with mean roof load factor per capacity range.
2247
    seed : int
2248
        Seed to use for random operations with NumPy and pandas.
2249
    pv_cap_per_sq_m : float, int
2250
        Average expected, installable PV capacity per square meter.
2251
    Returns
2252
    -------
2253
    geopandas.GeoDataFrame
2254
        GeoDataFrame containing OSM building data with desaggregated PV
2255
        plants.
2256
    """
2257
    allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life]
2258
2259
    building_bus_ids = set(buildings_gdf.bus_id)
2260
    cap_bus_ids = set(cap_df.index)
2261
2262
    logger.debug(
2263
        f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from capacity: "
2264
        f"{len(cap_bus_ids)}"
2265
    )
2266
2267
    if len(building_bus_ids) > len(cap_bus_ids):
2268
        missing = building_bus_ids - cap_bus_ids
2269
    else:
2270
        missing = cap_bus_ids - building_bus_ids
2271
2272
    logger.debug(str(missing))
2273
2274
    bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids))
2275
2276
    # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index)
2277
2278
    for bus_id in bus_ids:
2279
        buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id]
2280
2281
        pv_installed_gdf = buildings_grid_gdf.loc[
2282
            ~buildings_grid_gdf.end_of_life
2283
        ]
2284
2285
        pv_installed = pv_installed_gdf.capacity.sum()
2286
2287
        pot_buildings_gdf = buildings_grid_gdf.drop(
2288
            index=pv_installed_gdf.index
2289
        )
2290
2291
        if len(pot_buildings_gdf) == 0:
2292
            logger.error(
2293
                f"In grid {bus_id} there are no potential buildings to allocate "
2294
                "PV capacity to. The grid is skipped. This message should only "
2295
                "appear doing test runs with few buildings."
2296
            )
2297
2298
            continue
2299
2300
        pv_target = cap_df.at[bus_id, "capacity"] * 1000
2301
2302
        logger.debug(f"pv_target: {pv_target}")
2303
2304
        pv_missing = pv_target - pv_installed
2305
2306
        if pv_missing <= 0:
2307
            logger.info(
2308
                f"In grid {bus_id} there is more PV installed ({pv_installed: g}) in "
2309
                f"status Quo than allocated within the scenario ({pv_target: g}). No "
2310
                f"new generators are added."
2311
            )
2312
2313
            continue
2314
2315
        if pot_buildings_gdf.max_cap.sum() < pv_missing:
2316
            logger.error(
2317
                f"In grid {bus_id} there is less PV potential ("
2318
                f"{pot_buildings_gdf.max_cap.sum():g} kW) than allocated PV  capacity "
2319
                f"({pv_missing:g} kW). The average roof utilization will be very high."
2320
            )
2321
2322
        gdf = desaggregate_pv_in_mv_grid(
2323
            buildings_gdf=pot_buildings_gdf,
2324
            pv_cap=pv_missing,
2325
            **kwargs,
2326
        )
2327
2328
        logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}")
2329
        logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}")
2330
        logger.debug(
2331
            f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}"
2332
        )
2333
2334
        if not np.isclose(
2335
            gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3
2336
        ):
2337
            logger.warning(
2338
                f"The desired capacity and actual capacity in grid {bus_id} differ.\n"
2339
                f"Desired cap: {pv_target}\nActual cap: "
2340
                f"{gdf.capacity.sum() + pv_installed}"
2341
            )
2342
2343
        allocated_buildings_gdf = pd.concat(
2344
            [
2345
                allocated_buildings_gdf,
2346
                gdf,
2347
            ]
2348
        )
2349
2350
    logger.debug("Desaggregated scenario.")
2351
    logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}")
2352
    logger.debug(
2353
        f"Generator capacity: {allocated_buildings_gdf.capacity.sum(): g}"
2354
    )
2355
2356
    return gpd.GeoDataFrame(
2357
        allocated_buildings_gdf,
2358
        crs=gdf.crs,
0 ignored issues
show
introduced by
The variable gdf does not seem to be defined for all execution paths.
Loading history...
2359
        geometry="geom",
2360
    )
2361
2362
2363
@timer_func
2364
def add_buildings_meta_data(
2365
    buildings_gdf: gpd.GeoDataFrame,
2366
    prob_dict: dict,
2367
    seed: int,
2368
) -> gpd.GeoDataFrame:
2369
    """
2370
    Randomly add additional metadata to desaggregated PV plants.
2371
    Parameters
2372
    -----------
2373
    buildings_gdf : geopandas.GeoDataFrame
2374
        GeoDataFrame containing OSM buildings data with desaggregated PV
2375
        plants.
2376
    prob_dict : dict
2377
        Dictionary with values and probabilities per capacity range.
2378
    seed : int
2379
        Seed to use for random operations with NumPy and pandas.
2380
    Returns
2381
    -------
2382
    geopandas.GeoDataFrame
2383
        GeoDataFrame containing OSM building data with desaggregated PV
2384
        plants.
2385
    """
2386
    rng = default_rng(seed=seed)
2387
    buildings_gdf = buildings_gdf.reset_index().rename(
2388
        columns={
2389
            "index": "building_id",
2390
        }
2391
    )
2392
2393
    for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items():
2394
        cap_range_gdf = buildings_gdf.loc[
2395
            (buildings_gdf.capacity >= min_cap)
2396
            & (buildings_gdf.capacity < max_cap)
2397
        ]
2398
2399
        for key, values in cap_range_prob_dict["values"].items():
2400
            if key == "load_factor":
2401
                continue
2402
2403
            gdf = cap_range_gdf.loc[
2404
                cap_range_gdf[key].isna()
2405
                | cap_range_gdf[key].isnull()
2406
                | (cap_range_gdf[key] == "None")
2407
            ]
2408
2409
            key_vals = rng.choice(
2410
                a=values,
2411
                size=len(gdf),
2412
                p=cap_range_prob_dict["probabilities"][key],
2413
            )
2414
2415
            buildings_gdf.loc[gdf.index, key] = key_vals
2416
2417
    return buildings_gdf
2418
2419
2420
def add_voltage_level(
2421
    buildings_gdf: gpd.GeoDataFrame,
2422
) -> gpd.GeoDataFrame:
2423
    """
2424
    Add voltage level derived from generator capacity to the power plants.
2425
    Parameters
2426
    -----------
2427
    buildings_gdf : geopandas.GeoDataFrame
2428
        GeoDataFrame containing OSM buildings data with desaggregated PV
2429
        plants.
2430
    Returns
2431
    -------
2432
    geopandas.GeoDataFrame
2433
        GeoDataFrame containing OSM building data with voltage level per generator.
2434
    """
2435
2436
    def voltage_levels(p: float) -> int:
2437
        if p < 100:
2438
            return 7
2439
        elif p < 200:
2440
            return 6
2441
        elif p < 5500:
2442
            return 5
2443
        elif p < 20000:
2444
            return 4
2445
        elif p < 120000:
2446
            return 3
2447
        return 1
2448
2449
    return buildings_gdf.assign(
2450
        voltage_level=buildings_gdf.capacity.apply(voltage_levels)
2451
    )
2452
2453
2454
def add_start_up_date(
2455
    buildings_gdf: gpd.GeoDataFrame,
2456
    start: pd.Timestamp,
2457
    end: pd.Timestamp,
2458
    seed: int,
2459
):
2460
    """
2461
    Randomly and linear add start-up date to new pv generators.
2462
    Parameters
2463
    ----------
2464
    buildings_gdf : geopandas.GeoDataFrame
2465
        GeoDataFrame containing OSM buildings data with desaggregated PV
2466
        plants.
2467
    start : pandas.Timestamp
2468
        Minimum Timestamp to use.
2469
    end : pandas.Timestamp
2470
        Maximum Timestamp to use.
2471
    seed : int
2472
        Seed to use for random operations with NumPy and pandas.
2473
    Returns
2474
    -------
2475
    geopandas.GeoDataFrame
2476
        GeoDataFrame containing OSM buildings data with start-up date added.
2477
    """
2478
    rng = default_rng(seed=seed)
2479
2480
    date_range = pd.date_range(start=start, end=end, freq="1D")
2481
2482
    return buildings_gdf.assign(
2483
        start_up_date=rng.choice(date_range, size=len(buildings_gdf))
2484
    )
2485
2486
2487
@timer_func
2488
def allocate_scenarios(
2489
    mastr_gdf: gpd.GeoDataFrame,
2490
    valid_buildings_gdf: gpd.GeoDataFrame,
2491
    last_scenario_gdf: gpd.GeoDataFrame,
2492
    scenario: str,
2493
):
2494
    """
2495
    Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings.
2496
    Parameters
2497
    ----------
2498
    mastr_gdf : geopandas.GeoDataFrame
2499
        GeoDataFrame containing geocoded MaStR data.
2500
    valid_buildings_gdf : geopandas.GeoDataFrame
2501
        GeoDataFrame containing OSM buildings data.
2502
    last_scenario_gdf : geopandas.GeoDataFrame
2503
        GeoDataFrame containing OSM buildings matched with pv generators from temporal
2504
        preceding scenario.
2505
    scenario : str
2506
        Scenario to desaggrgate and allocate.
2507
    Returns
2508
    -------
2509
    tuple
2510
        geopandas.GeoDataFrame
2511
            GeoDataFrame containing OSM buildings matched with pv generators.
2512
        pandas.DataFrame
2513
            DataFrame containing pv rooftop capacity per grid id.
2514
    """
2515
    cap_per_bus_id_df = cap_per_bus_id(scenario)
2516
2517
    logger.debug(
2518
        f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}"
2519
    )
2520
2521
    last_scenario_gdf = determine_end_of_life_gens(
2522
        last_scenario_gdf,
2523
        SCENARIO_TIMESTAMP[scenario],
2524
        PV_ROOFTOP_LIFETIME,
2525
    )
2526
2527
    buildings_gdf = calculate_max_pv_cap_per_building(
2528
        valid_buildings_gdf,
2529
        last_scenario_gdf,
2530
        PV_CAP_PER_SQ_M,
2531
        ROOF_FACTOR,
2532
    )
2533
2534
    mastr_gdf = calculate_building_load_factor(
2535
        mastr_gdf,
2536
        buildings_gdf,
2537
    )
2538
2539
    probabilities_dict = probabilities(
2540
        mastr_gdf,
2541
        cap_ranges=CAP_RANGES,
2542
    )
2543
2544
    cap_share_dict = cap_share_per_cap_range(
2545
        mastr_gdf,
2546
        cap_ranges=CAP_RANGES,
2547
    )
2548
2549
    load_factor_dict = mean_load_factor_per_cap_range(
2550
        mastr_gdf,
2551
        cap_ranges=CAP_RANGES,
2552
    )
2553
2554
    building_area_range_dict = building_area_range_per_cap_range(
2555
        mastr_gdf,
2556
        cap_ranges=CAP_RANGES,
2557
        min_building_size=MIN_BUILDING_SIZE,
2558
        upper_quantile=UPPER_QUNATILE,
2559
        lower_quantile=LOWER_QUANTILE,
2560
    )
2561
2562
    allocated_buildings_gdf = desaggregate_pv(
2563
        buildings_gdf=buildings_gdf,
2564
        cap_df=cap_per_bus_id_df,
2565
        prob_dict=probabilities_dict,
2566
        cap_share_dict=cap_share_dict,
2567
        building_area_range_dict=building_area_range_dict,
2568
        load_factor_dict=load_factor_dict,
2569
        seed=SEED,
2570
        pv_cap_per_sq_m=PV_CAP_PER_SQ_M,
2571
    )
2572
2573
    allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario)
2574
2575
    meta_buildings_gdf = frame_to_numeric(
2576
        add_buildings_meta_data(
2577
            allocated_buildings_gdf,
2578
            probabilities_dict,
2579
            SEED,
2580
        )
2581
    )
2582
2583
    return (
2584
        add_start_up_date(
2585
            meta_buildings_gdf,
2586
            start=last_scenario_gdf.start_up_date.max(),
2587
            end=SCENARIO_TIMESTAMP[scenario],
2588
            seed=SEED,
2589
        ),
2590
        cap_per_bus_id_df,
2591
    )
2592
2593
2594
class EgonPowerPlantPvRoofBuildingScenario(Base):
2595
    __tablename__ = "egon_power_plants_pv_roof_building"
2596
    __table_args__ = {"schema": "supply"}
2597
2598
    index = Column(Integer, primary_key=True, index=True)
2599
    scenario = Column(String)
2600
    bus_id = Column(Integer, nullable=True)
2601
    building_id = Column(Integer)
2602
    gens_id = Column(String, nullable=True)
2603
    capacity = Column(Float)
2604
    einheitliche_ausrichtung_und_neigungswinkel = Column(Float)
2605
    hauptausrichtung = Column(String)
2606
    hauptausrichtung_neigungswinkel = Column(String)
2607
    voltage_level = Column(Integer)
2608
    weather_cell_id = Column(Integer)
2609
2610
2611
def create_scenario_table(buildings_gdf):
2612
    """Create mapping table pv_unit <-> building for scenario"""
2613
    EgonPowerPlantPvRoofBuildingScenario.__table__.drop(
2614
        bind=engine, checkfirst=True
2615
    )
2616
    EgonPowerPlantPvRoofBuildingScenario.__table__.create(
2617
        bind=engine, checkfirst=True
2618
    )
2619
2620
    buildings_gdf.rename(columns=COLS_TO_RENAME).assign(
2621
        capacity=buildings_gdf.capacity.div(10**3)  # kW -> MW
2622
    )[COLS_TO_EXPORT].reset_index().to_sql(
2623
        name=EgonPowerPlantPvRoofBuildingScenario.__table__.name,
2624
        schema=EgonPowerPlantPvRoofBuildingScenario.__table__.schema,
2625
        con=db.engine(),
2626
        if_exists="append",
2627
        index=False,
2628
    )
2629
2630
2631
def geocode_mastr_data():
2632
    """
2633
    Read PV rooftop data from MaStR CSV
2634
    TODO: the source will be replaced as soon as the MaStR data is available
2635
     in DB.
2636
    """
2637
    mastr_df = mastr_data(
2638
        MASTR_INDEX_COL,
2639
        MASTR_RELEVANT_COLS,
2640
        MASTR_DTYPES,
2641
        MASTR_PARSE_DATES,
2642
    )
2643
2644
    clean_mastr_df = clean_mastr_data(
2645
        mastr_df,
2646
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
2647
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
2648
        seed=SEED,
2649
        rounding=ROUNDING,
2650
    )
2651
2652
    geocoding_df = geocoding_data(clean_mastr_df)
2653
2654
    ratelimiter = geocoder(USER_AGENT, MIN_DELAY_SECONDS)
2655
2656
    geocode_gdf = geocode_data(geocoding_df, ratelimiter, EPSG)
2657
2658
    create_geocoded_table(geocode_gdf)
2659
2660
2661
def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
2662
    sql = """
2663
    SELECT building_id, zensus_population_id
2664
    FROM boundaries.egon_map_zensus_mvgd_buildings
2665
    """
2666
2667
    buildings_gdf = (
2668
        buildings_gdf.reset_index()
2669
        .merge(
2670
            right=db.select_dataframe(sql),
2671
            how="left",
2672
            left_on="id",
2673
            right_on="building_id",
2674
        )
2675
        .set_index("id")
2676
    )
2677
2678
    sql = """
2679
    SELECT zensus_population_id, w_id as weather_cell_id
2680
    FROM boundaries.egon_map_zensus_weather_cell
2681
    """
2682
2683
    buildings_gdf = buildings_gdf.merge(
2684
        right=db.select_dataframe(sql),
2685
        how="left",
2686
        on="zensus_population_id",
2687
    )
2688
2689
    if buildings_gdf.weather_cell_id.isna().any():
2690
        raise ValueError(
2691
            f"Following buildings don't have a weather cell id: "
2692
            f"{buildings_gdf.loc[buildings_gdf.weather_cell_id.isna()].building_id.tolist()}"
2693
        )
2694
2695
    return buildings_gdf
2696
2697
2698
def pv_rooftop_to_buildings():
2699
    """Main script, executed as task"""
2700
2701
    mastr_gdf = load_mastr_data()
2702
2703
    buildings_gdf = load_building_data()
2704
2705
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings(
2706
        mastr_gdf, buildings_gdf
2707
    )
2708
2709
    all_buildings_gdf = (
2710
        desagg_mastr_gdf.assign(scenario="status_quo")
2711
        .reset_index()
2712
        .rename(columns={"geometry": "geom", "EinheitMastrNummer": "gens_id"})
2713
    )
2714
2715
    scenario_buildings_gdf = all_buildings_gdf.copy()
2716
2717
    cap_per_bus_id_df = pd.DataFrame()
2718
2719
    for scenario in SCENARIOS:
2720
        logger.debug(f"Desaggregating scenario {scenario}.")
2721
        (
2722
            scenario_buildings_gdf,
2723
            cap_per_bus_id_scenario_df,
2724
        ) = allocate_scenarios(  # noqa: F841
2725
            desagg_mastr_gdf,
2726
            desagg_buildings_gdf,
2727
            scenario_buildings_gdf,
2728
            scenario,
2729
        )
2730
2731
        all_buildings_gdf = gpd.GeoDataFrame(
2732
            pd.concat(
2733
                [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True
2734
            ),
2735
            crs=scenario_buildings_gdf.crs,
2736
            geometry="geom",
2737
        )
2738
2739
        cap_per_bus_id_df = pd.concat(
2740
            [cap_per_bus_id_df, cap_per_bus_id_scenario_df]
2741
        )
2742
2743
    # add weather cell
2744
    all_buildings_gdf = add_weather_cell_id(all_buildings_gdf)
2745
2746
    # export scenario
2747
    create_scenario_table(add_voltage_level(all_buildings_gdf))
2748