Passed
Pull Request — dev (#1008)
by
unknown
01:43
created

add_ags_to_buildings()   A

Complexity

Conditions 1

Size

Total Lines 24
Code Lines 9

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 9
dl 0
loc 24
rs 9.95
c 0
b 0
f 0
cc 1
nop 2
1
"""
2
Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate new
3
PV rooftop generators for scenarios eGon2035 and eGon100RE.
4
Data cleaning: Drop duplicates and entries with missing critical data. Determine most
5
plausible capacity from multiple values given in MaStR data. Drop generators which don't
6
have any plausible capacity data (23.5MW > P > 0.1). Randomly and weighted add a
7
start-up date if it is missing. Extract zip and municipality from 'Standort' given in
8
MaStR data. Geocode unique zip and municipality combinations with Nominatim (1sec
9
delay). Drop generators for which geocoding failed or which are located outside the
10
municipalities of Germany. Add some visual sanity checks for cleaned data.
11
Allocation of MaStR data: Allocate each generator to an existing building from OSM.
12
Determine the quantile each generator and building is in depending on the capacity of
13
the generator and the area of the polygon of the building. Randomly distribute
14
generators within each municipality preferably within the same building area quantile as
15
the generators are capacity wise. If not enough buildings exists within a municipality
16
and quantile additional buildings from other quantiles are chosen randomly.
17
Desegregation of pv rooftop scenarios: The scenario data per federal state is linear
18
distributed to the mv grid districts according to the pv rooftop potential per mv grid
19
district. The rooftop potential is estimated from the building area given from the OSM
20
buildings. Grid districts, which are located in several federal states, are allocated PV
21
capacity according to their respective roof potential in the individual federal states.
22
The desegregation of PV plants within a grid districts respects existing plants from
23
MaStR, which did not reach their end of life. New PV plants are randomly and weighted
24
generated using a breakdown of MaStR data as generator basis. Plant metadata (e.g. plant
25
orientation) is also added random and weighted from MaStR data as basis.
26
"""
27
from __future__ import annotations
28
29
from collections import Counter
30
from functools import wraps
31
from pathlib import Path
32
from time import perf_counter
33
from typing import Any
34
35
from geoalchemy2 import Geometry
36
from geopy.extra.rate_limiter import RateLimiter
37
from geopy.geocoders import Nominatim
38
from loguru import logger
39
from numpy.random import RandomState, default_rng
40
from pyproj.crs.crs import CRS
41
from sqlalchemy import BigInteger, Column, Float, Integer, String
42
from sqlalchemy.dialects.postgresql import HSTORE
43
from sqlalchemy.ext.declarative import declarative_base
44
import geopandas as gpd
45
import numpy as np
46
import pandas as pd
47
48
from egon.data import config, db
49
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import (
50
    OsmBuildingsSynthetic,
51
)
52
from egon.data.datasets.scenario_capacities import EgonScenarioCapacities
53
from egon.data.datasets.zensus_vg250 import Vg250Gem
54
55
engine = db.engine()
56
Base = declarative_base()
57
SEED = int(config.settings()["egon-data"]["--random-seed"])
58
59
# TODO: move to yml
60
# mastr data
61
MASTR_RELEVANT_COLS = [
62
    "EinheitMastrNummer",
63
    "Bruttoleistung",
64
    "StatisikFlag",
65
    "Bruttoleistung_extended",
66
    "Nettonennleistung",
67
    "InstallierteLeistung",
68
    "zugeordneteWirkleistungWechselrichter",
69
    "EinheitBetriebsstatus",
70
    "Standort",
71
    "Bundesland",
72
    "Land",
73
    "Landkreis",
74
    "Gemeinde",
75
    "Postleitzahl",
76
    "Ort",
77
    "GeplantesInbetriebnahmedatum",
78
    "Inbetriebnahmedatum",
79
    "GemeinsamerWechselrichterMitSpeicher",
80
    "Lage",
81
    "Leistungsbegrenzung",
82
    "EinheitlicheAusrichtungUndNeigungswinkel",
83
    "Hauptausrichtung",
84
    "HauptausrichtungNeigungswinkel",
85
    "Nebenausrichtung",
86
]
87
88
MASTR_DTYPES = {
89
    "EinheitMastrNummer": str,
90
    "Bruttoleistung": float,
91
    "StatisikFlag": str,
92
    "Bruttoleistung_extended": float,
93
    "Nettonennleistung": float,
94
    "InstallierteLeistung": float,
95
    "zugeordneteWirkleistungWechselrichter": float,
96
    "EinheitBetriebsstatus": str,
97
    "Standort": str,
98
    "Bundesland": str,
99
    "Land": str,
100
    "Landkreis": str,
101
    "Gemeinde": str,
102
    # "Postleitzahl": int,  # fails because of nan values
103
    "Ort": str,
104
    "GemeinsamerWechselrichterMitSpeicher": str,
105
    "Lage": str,
106
    "Leistungsbegrenzung": str,
107
    # this will parse nan values as false wich is not always correct
108
    # "EinheitlicheAusrichtungUndNeigungswinkel": bool,
109
    "Hauptausrichtung": str,
110
    "HauptausrichtungNeigungswinkel": str,
111
    "Nebenausrichtung": str,
112
    "NebenausrichtungNeigungswinkel": str,
113
}
114
115
MASTR_PARSE_DATES = [
116
    "GeplantesInbetriebnahmedatum",
117
    "Inbetriebnahmedatum",
118
]
119
120
MASTR_INDEX_COL = "EinheitMastrNummer"
121
122
EPSG = 4326
123
SRID = 3035
124
125
# data cleaning
126
MAX_REALISTIC_PV_CAP = 23500
127
MIN_REALISTIC_PV_CAP = 0.1
128
ROUNDING = 1
129
130
# geopy
131
MIN_DELAY_SECONDS = 1
132
USER_AGENT = "rli_kh_geocoder"
133
134
# show additional logging information
135
VERBOSE = False
136
137
EXPORT_DIR = Path(__name__).resolve().parent / "data"
138
EXPORT_FILE = "mastr_geocoded.gpkg"
139
EXPORT_PATH = EXPORT_DIR / EXPORT_FILE
140
DRIVER = "GPKG"
141
142
# Number of quantiles
143
Q = 5
144
145
# Scenario Data
146
CARRIER = "solar_rooftop"
147
SCENARIOS = ["eGon2035", "eGon100RE"]
148
SCENARIO_TIMESTAMP = {
149
    "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"),
150
    "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"),
151
}
152
PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D")
153
154
# Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp
155
# https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf
156
MODUL_CAP = 0.4  # kWp
157
MODUL_SIZE = 1.096 * 1.754  # m²
158
PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE
159
160
# Estimation of usable roof area
161
# Factor for the conversion of building area to roof area
162
# estimation mean roof pitch: 35°
163
# estimation usable roof share: 80%
164
# estimation that only the south side of the building is used for pv
165
# see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf
166
# AREA_FACTOR = 1.221
167
# USABLE_ROOF_SHARE = 0.8
168
# SOUTH_SHARE = 0.5
169
# ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE
170
ROOF_FACTOR = 0.5
171
172
CAP_RANGES = [
173
    (0, 30),
174
    (30, 100),
175
    (100, float("inf")),
176
]
177
178
MIN_BUILDING_SIZE = 10.0
179
UPPER_QUNATILE = 0.95
180
LOWER_QUANTILE = 0.05
181
182
COLS_TO_RENAME = {
183
    "EinheitlicheAusrichtungUndNeigungswinkel": (
184
        "einheitliche_ausrichtung_und_neigungswinkel"
185
    ),
186
    "Hauptausrichtung": "hauptausrichtung",
187
    "HauptausrichtungNeigungswinkel": "hauptausrichtung_neigungswinkel",
188
}
189
190
COLS_TO_EXPORT = [
191
    "scenario",
192
    "bus_id",
193
    "building_id",
194
    "gens_id",
195
    "capacity",
196
    "einheitliche_ausrichtung_und_neigungswinkel",
197
    "hauptausrichtung",
198
    "hauptausrichtung_neigungswinkel",
199
    "voltage_level",
200
    "weather_cell_id",
201
]
202
203
# TODO
204
INCLUDE_SYNTHETIC_BUILDINGS = True
205
ONLY_BUILDINGS_WITH_DEMAND = True
206
TEST_RUN = False
207
208
209
def timer_func(func):
210
    @wraps(func)
211
    def timeit_wrapper(*args, **kwargs):
212
        start_time = perf_counter()
213
        result = func(*args, **kwargs)
214
        end_time = perf_counter()
215
        total_time = end_time - start_time
216
        logger.debug(
217
            f"Function {func.__name__} took {total_time:.4f} seconds."
218
        )
219
        return result
220
221
    return timeit_wrapper
222
223
224
@timer_func
225
def mastr_data(
226
    index_col: str | int | list[str] | list[int],
227
    usecols: list[str],
228
    dtype: dict[str, Any] | None,
229
    parse_dates: list[str] | None,
230
) -> pd.DataFrame:
231
    """
232
    Read MaStR data from csv.
233
234
    Parameters
235
    -----------
236
    index_col : str, int or list of str or int
237
        Column(s) to use as the row labels of the DataFrame.
238
    usecols : list of str
239
        Return a subset of the columns.
240
    dtype : dict of column (str) -> type (any), optional
241
        Data type for data or columns.
242
    parse_dates : list of names (str), optional
243
        Try to parse given columns to datetime.
244
    Returns
245
    -------
246
    pandas.DataFrame
247
        DataFrame containing MaStR data.
248
    """
249
    mastr_path = Path(
250
        config.datasets()["power_plants"]["sources"]["mastr_pv"]
251
    ).resolve()
252
253
    mastr_df = pd.read_csv(
254
        mastr_path,
255
        index_col=index_col,
256
        usecols=usecols,
257
        dtype=dtype,
258
        parse_dates=parse_dates,
259
    )
260
261
    mastr_df = mastr_df.loc[
262
        (mastr_df.StatisikFlag == "B")
263
        & (mastr_df.EinheitBetriebsstatus == "InBetrieb")
264
        & (mastr_df.Land == "Deutschland")
265
        & (mastr_df.Lage == "BaulicheAnlagen")
266
    ]
267
268
    if (
269
        config.settings()["egon-data"]["--dataset-boundary"]
270
        == "Schleswig-Holstein"
271
    ):
272
        init_len = len(mastr_df)
273
274
        mastr_df = mastr_df.loc[mastr_df.Bundesland == "SchleswigHolstein"]
275
276
        logger.info(
277
            f"Using only MaStR data within Schleswig-Holstein. "
278
            f"{init_len - len(mastr_df)} of {init_len} generators are dropped."
279
        )
280
281
    logger.debug("MaStR data loaded.")
282
283
    return mastr_df
284
285
286
@timer_func
287
def clean_mastr_data(
288
    mastr_df: pd.DataFrame,
289
    max_realistic_pv_cap: int | float,
290
    min_realistic_pv_cap: int | float,
291
    rounding: int,
292
    seed: int,
293
) -> pd.DataFrame:
294
    """
295
    Clean the MaStR data from implausible data.
296
297
    * Drop MaStR ID duplicates.
298
    * Drop generators with implausible capacities.
299
    * Drop generators without any kind of start-up date.
300
    * Clean up Standort column and capacity.
301
302
    Parameters
303
    -----------
304
    mastr_df : pandas.DataFrame
305
        DataFrame containing MaStR data.
306
    max_realistic_pv_cap : int or float
307
        Maximum capacity, which is considered to be realistic.
308
    min_realistic_pv_cap : int or float
309
        Minimum capacity, which is considered to be realistic.
310
    rounding : int
311
        Rounding to use when cleaning up capacity. E.g. when
312
        rounding is 1 a capacity of 9.93 will be rounded to 9.9.
313
    seed : int
314
        Seed to use for random operations with NumPy and pandas.
315
    Returns
316
    -------
317
    pandas.DataFrame
318
        DataFrame containing cleaned MaStR data.
319
    """
320
    init_len = len(mastr_df)
321
322
    # drop duplicates
323
    mastr_df = mastr_df.loc[~mastr_df.index.duplicated()]
324
325
    # drop invalid entries in standort
326
    index_to_drop = mastr_df.loc[
327
        (mastr_df.Standort.isna()) | (mastr_df.Standort.isnull())
328
    ].index
329
330
    mastr_df = mastr_df.loc[~mastr_df.index.isin(index_to_drop)]
331
332
    df = mastr_df[
333
        [
334
            "Bruttoleistung",
335
            "Bruttoleistung_extended",
336
            "Nettonennleistung",
337
            "zugeordneteWirkleistungWechselrichter",
338
            "InstallierteLeistung",
339
        ]
340
    ].round(rounding)
341
342
    # use only the smallest capacity rating if multiple are given
343
    mastr_df = mastr_df.assign(
344
        capacity=[
345
            most_plausible(p_tub, min_realistic_pv_cap)
346
            for p_tub in df.itertuples(index=False)
347
        ]
348
    )
349
350
    # drop generators without any capacity info
351
    # and capacity of zero
352
    # and if the capacity is > 23.5 MW, because
353
    # Germanies largest rooftop PV is 23 MW
354
    # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379
355
    mastr_df = mastr_df.loc[
356
        (~mastr_df.capacity.isna())
357
        & (mastr_df.capacity <= max_realistic_pv_cap)
358
        & (mastr_df.capacity > min_realistic_pv_cap)
359
    ]
360
361
    # get zip and municipality
362
    mastr_df[["zip_and_municipality", "drop_this"]] = pd.DataFrame(
363
        mastr_df.Standort.astype(str)
364
        .apply(
365
            zip_and_municipality_from_standort,
366
            args=(VERBOSE,),
367
        )
368
        .tolist(),
369
        index=mastr_df.index,
370
    )
371
372
    # drop invalid entries
373
    mastr_df = mastr_df.loc[mastr_df.drop_this].drop(columns="drop_this")
374
375
    # add ", Deutschland" just in case
376
    mastr_df = mastr_df.assign(
377
        zip_and_municipality=(mastr_df.zip_and_municipality + ", Deutschland")
378
    )
379
380
    # get consistent start-up date
381
    mastr_df = mastr_df.assign(
382
        start_up_date=mastr_df.Inbetriebnahmedatum,
383
    )
384
385
    mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
386
        mastr_df.start_up_date.isna()
387
    ].assign(
388
        start_up_date=mastr_df.GeplantesInbetriebnahmedatum.loc[
389
            mastr_df.start_up_date.isna()
390
        ]
391
    )
392
393
    # randomly and weighted fill missing start-up dates
394
    pool = mastr_df.loc[
395
        ~mastr_df.start_up_date.isna()
396
    ].start_up_date.to_numpy()
397
398
    size = len(mastr_df) - len(pool)
399
400
    if size > 0:
401
        np.random.seed(seed)
402
403
        choice = np.random.choice(
404
            pool,
405
            size=size,
406
            replace=False,
407
        )
408
409
        mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
410
            mastr_df.start_up_date.isna()
411
        ].assign(start_up_date=choice)
412
413
        logger.info(
414
            f"Randomly and weigthed added start-up date to {size} generators."
415
        )
416
417
    mastr_df = mastr_df.assign(
418
        start_up_date=pd.to_datetime(mastr_df.start_up_date, utc=True)
419
    )
420
421
    end_len = len(mastr_df)
422
    logger.debug(
423
        f"Dropped {init_len - end_len} "
424
        f"({((init_len - end_len) / init_len) * 100:g}%)"
425
        f" of {init_len} rows from MaStR DataFrame."
426
    )
427
428
    return mastr_df
429
430
431
def zip_and_municipality_from_standort(
432
    standort: str,
433
    verbose: bool = False,
434
) -> tuple[str, bool]:
435
    """
436
    Get zip code and municipality from Standort string split into a list.
437
    Parameters
438
    -----------
439
    standort : str
440
        Standort as given from MaStR data.
441
    verbose : bool
442
        Logs additional info if True.
443
    Returns
444
    -------
445
    str
446
        Standort with only the zip code and municipality
447
        as well a ', Germany' added.
448
    """
449
    if verbose:
450
        logger.debug(f"Uncleaned String: {standort}")
451
452
    standort_list = standort.split()
453
454
    found = False
455
    count = 0
456
457
    for count, elem in enumerate(standort_list):
458
        if len(elem) != 5:
459
            continue
460
        if not elem.isnumeric():
461
            continue
462
463
        found = True
464
465
        break
466
467
    if found:
468
        cleaned_str = " ".join(standort_list[count:])
469
470
        if verbose:
471
            logger.debug(f"Cleaned String:   {cleaned_str}")
472
473
        return cleaned_str, found
474
475
    logger.warning(
476
        "Couldn't identify zip code. This entry will be dropped."
477
        f" Original standort: {standort}."
478
    )
479
480
    return standort, found
481
482
483
def most_plausible(
484
    p_tub: tuple,
485
    min_realistic_pv_cap: int | float,
486
) -> float:
487
    """
488
    Try to determine the most plausible capacity.
489
    Try to determine the most plausible capacity from a given
490
    generator from MaStR data.
491
    Parameters
492
    -----------
493
    p_tub : tuple
494
        Tuple containing the different capacities given in
495
        the MaStR data.
496
    min_realistic_pv_cap : int or float
497
        Minimum capacity, which is considered to be realistic.
498
    Returns
499
    -------
500
    float
501
        Capacity of the generator estimated as the most realistic.
502
    """
503
    count = Counter(p_tub).most_common(3)
504
505
    if len(count) == 1:
506
        return count[0][0]
507
508
    val1 = count[0][0]
509
    val2 = count[1][0]
510
511
    if len(count) == 2:
512
        min_val = min(val1, val2)
513
        max_val = max(val1, val2)
514
    else:
515
        val3 = count[2][0]
516
517
        min_val = min(val1, val2, val3)
518
        max_val = max(val1, val2, val3)
519
520
    if min_val < min_realistic_pv_cap:
521
        return max_val
522
523
    return min_val
524
525
526
def geocoder(
527
    user_agent: str,
528
    min_delay_seconds: int,
529
) -> RateLimiter:
530
    """
531
    Setup Nominatim geocoding class.
532
    Parameters
533
    -----------
534
    user_agent : str
535
        The app name.
536
    min_delay_seconds : int
537
        Delay in seconds to use between requests to Nominatim.
538
        A minimum of 1 is advised.
539
    Returns
540
    -------
541
    geopy.extra.rate_limiter.RateLimiter
542
        Nominatim RateLimiter geocoding class to use for geocoding.
543
    """
544
    locator = Nominatim(user_agent=user_agent)
545
    return RateLimiter(
546
        locator.geocode,
547
        min_delay_seconds=min_delay_seconds,
548
    )
549
550
551
def geocoding_data(
552
    clean_mastr_df: pd.DataFrame,
553
) -> pd.DataFrame:
554
    """
555
    Setup DataFrame to geocode.
556
    Parameters
557
    -----------
558
    clean_mastr_df : pandas.DataFrame
559
        DataFrame containing cleaned MaStR data.
560
    Returns
561
    -------
562
    pandas.DataFrame
563
        DataFrame containing all unique combinations of
564
        zip codes with municipalities for geocoding.
565
    """
566
    return pd.DataFrame(
567
        data=clean_mastr_df.zip_and_municipality.unique(),
568
        columns=["zip_and_municipality"],
569
    )
570
571
572
@timer_func
573
def geocode_data(
574
    geocoding_df: pd.DataFrame,
575
    ratelimiter: RateLimiter,
576
    epsg: int,
577
) -> gpd.GeoDataFrame:
578
    """
579
    Geocode zip code and municipality.
580
    Extract latitude, longitude and altitude.
581
    Transfrom latitude and longitude to shapely
582
    Point and return a geopandas GeoDataFrame.
583
    Parameters
584
    -----------
585
    geocoding_df : pandas.DataFrame
586
        DataFrame containing all unique combinations of
587
        zip codes with municipalities for geocoding.
588
    ratelimiter : geopy.extra.rate_limiter.RateLimiter
589
        Nominatim RateLimiter geocoding class to use for geocoding.
590
    epsg : int
591
        EPSG ID to use as CRS.
592
    Returns
593
    -------
594
    geopandas.GeoDataFrame
595
        GeoDataFrame containing all unique combinations of
596
        zip codes with municipalities with matching geolocation.
597
    """
598
    logger.info(f"Geocoding {len(geocoding_df)} locations.")
599
600
    geocode_df = geocoding_df.assign(
601
        location=geocoding_df.zip_and_municipality.apply(ratelimiter)
602
    )
603
604
    geocode_df = geocode_df.assign(
605
        point=geocode_df.location.apply(
606
            lambda loc: tuple(loc.point) if loc else None
607
        )
608
    )
609
610
    geocode_df[["latitude", "longitude", "altitude"]] = pd.DataFrame(
611
        geocode_df.point.tolist(), index=geocode_df.index
612
    )
613
614
    return gpd.GeoDataFrame(
615
        geocode_df,
616
        geometry=gpd.points_from_xy(geocode_df.longitude, geocode_df.latitude),
617
        crs=f"EPSG:{epsg}",
618
    )
619
620
621
def merge_geocode_with_mastr(
622
    clean_mastr_df: pd.DataFrame, geocode_gdf: gpd.GeoDataFrame
623
) -> gpd.GeoDataFrame:
624
    """
625
    Merge geometry to original mastr data.
626
    Parameters
627
    -----------
628
    clean_mastr_df : pandas.DataFrame
629
        DataFrame containing cleaned MaStR data.
630
    geocode_gdf : geopandas.GeoDataFrame
631
        GeoDataFrame containing all unique combinations of
632
        zip codes with municipalities with matching geolocation.
633
    Returns
634
    -------
635
    gepandas.GeoDataFrame
636
        GeoDataFrame containing cleaned MaStR data with
637
        matching geolocation from geocoding.
638
    """
639
    return gpd.GeoDataFrame(
640
        clean_mastr_df.merge(
641
            geocode_gdf[["zip_and_municipality", "geometry"]],
642
            how="left",
643
            left_on="zip_and_municipality",
644
            right_on="zip_and_municipality",
645
        ),
646
        crs=geocode_gdf.crs,
647
    ).set_index(clean_mastr_df.index)
648
649
650
def drop_invalid_entries_from_gdf(
651
    gdf: gpd.GeoDataFrame,
652
) -> gpd.GeoDataFrame:
653
    """
654
    Drop invalid entries from geopandas GeoDataFrame.
655
    TODO: how to omit the logging from geos here???
656
    Parameters
657
    -----------
658
    gdf : geopandas.GeoDataFrame
659
        GeoDataFrame to be checked for validity.
660
    Returns
661
    -------
662
    gepandas.GeoDataFrame
663
        GeoDataFrame with rows with invalid geometries
664
        dropped.
665
    """
666
    valid_gdf = gdf.loc[gdf.is_valid]
667
668
    logger.debug(
669
        f"{len(gdf) - len(valid_gdf)} "
670
        f"({(len(gdf) - len(valid_gdf)) / len(gdf) * 100:g}%) "
671
        f"of {len(gdf)} values were invalid and are dropped."
672
    )
673
674
    return valid_gdf
675
676
677
@timer_func
678
def municipality_data() -> gpd.GeoDataFrame:
679
    """
680
    Get municipality data from eGo^n Database.
681
    Returns
682
    -------
683
    gepandas.GeoDataFrame
684
        GeoDataFrame with municipality data.
685
    """
686
    with db.session_scope() as session:
687
        query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom"))
688
689
    return gpd.read_postgis(
690
        query.statement, query.session.bind, index_col="ags"
691
    )
692
693
694
@timer_func
695
def add_ags_to_gens(
696
    valid_mastr_gdf: gpd.GeoDataFrame,
697
    municipalities_gdf: gpd.GeoDataFrame,
698
) -> gpd.GeoDataFrame:
699
    """
700
    Add information about AGS ID to generators.
701
    Parameters
702
    -----------
703
    valid_mastr_gdf : geopandas.GeoDataFrame
704
        GeoDataFrame with valid and cleaned MaStR data.
705
    municipalities_gdf : geopandas.GeoDataFrame
706
        GeoDataFrame with municipality data.
707
    Returns
708
    -------
709
    gepandas.GeoDataFrame
710
        GeoDataFrame with valid and cleaned MaStR data
711
        with AGS ID added.
712
    """
713
    return valid_mastr_gdf.sjoin(
714
        municipalities_gdf,
715
        how="left",
716
        predicate="intersects",
717
    ).rename(columns={"index_right": "ags"})
718
719
720
def drop_gens_outside_muns(
721
    valid_mastr_gdf: gpd.GeoDataFrame,
722
) -> gpd.GeoDataFrame:
723
    """
724
    Drop all generators outside of municipalities.
725
    Parameters
726
    -----------
727
    valid_mastr_gdf : geopandas.GeoDataFrame
728
        GeoDataFrame with valid and cleaned MaStR data.
729
    Returns
730
    -------
731
    gepandas.GeoDataFrame
732
        GeoDataFrame with valid and cleaned MaStR data
733
        with generatos without an AGS ID dropped.
734
    """
735
    gdf = valid_mastr_gdf.loc[~valid_mastr_gdf.ags.isna()]
736
737
    logger.debug(
738
        f"{len(valid_mastr_gdf) - len(gdf)} "
739
        f"({(len(valid_mastr_gdf) - len(gdf)) / len(valid_mastr_gdf) * 100:g}%) "
740
        f"of {len(valid_mastr_gdf)} values are outside of the municipalities"
741
        " and are therefore dropped."
742
    )
743
744
    return gdf
745
746
747
class EgonMastrPvRoofGeocoded(Base):
748
    __tablename__ = "egon_mastr_pv_roof_geocoded"
749
    __table_args__ = {"schema": "supply"}
750
751
    zip_and_municipality = Column(String, primary_key=True, index=True)
752
    location = Column(String)
753
    point = Column(String)
754
    latitude = Column(Float)
755
    longitude = Column(Float)
756
    altitude = Column(Float)
757
    geometry = Column(Geometry(srid=EPSG))
758
759
760
def create_geocoded_table(geocode_gdf):
761
    """
762
    Create geocoded table mastr pv rooftop
763
    Parameters
764
    -----------
765
    geocode_gdf : geopandas.GeoDataFrame
766
        GeoDataFrame containing geocoding information on pv rooftop locations.
767
    """
768
    EgonMastrPvRoofGeocoded.__table__.drop(bind=engine, checkfirst=True)
769
    EgonMastrPvRoofGeocoded.__table__.create(bind=engine, checkfirst=True)
770
771
    geocode_gdf.to_postgis(
772
        name=EgonMastrPvRoofGeocoded.__table__.name,
773
        schema=EgonMastrPvRoofGeocoded.__table__.schema,
774
        con=db.engine(),
775
        if_exists="append",
776
        index=False,
777
        # dtype={}
778
    )
779
780
781
def geocoded_data_from_db(
782
    epsg: str | int,
783
) -> gpd.GeoDataFrame:
784
    """
785
    Read OSM buildings data from eGo^n Database.
786
    Parameters
787
    -----------
788
    to_crs : pyproj.crs.crs.CRS
789
        CRS to transform geometries to.
790
    Returns
791
    -------
792
    geopandas.GeoDataFrame
793
        GeoDataFrame containing OSM buildings data.
794
    """
795
    with db.session_scope() as session:
796
        query = session.query(
797
            EgonMastrPvRoofGeocoded.zip_and_municipality,
798
            EgonMastrPvRoofGeocoded.geometry,
799
        )
800
801
    return gpd.read_postgis(
802
        query.statement, query.session.bind, geom_col="geometry"
803
    ).to_crs(f"EPSG:{epsg}")
804
805
806
def load_mastr_data():
807
    """Read PV rooftop data from MaStR CSV
808
    Note: the source will be replaced as soon as the MaStR data is available
809
    in DB.
810
    Returns
811
    -------
812
    geopandas.GeoDataFrame
813
        GeoDataFrame containing MaStR data with geocoded locations.
814
    """
815
    mastr_df = mastr_data(
816
        MASTR_INDEX_COL,
817
        MASTR_RELEVANT_COLS,
818
        MASTR_DTYPES,
819
        MASTR_PARSE_DATES,
820
    )
821
822
    clean_mastr_df = clean_mastr_data(
823
        mastr_df,
824
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
825
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
826
        seed=SEED,
827
        rounding=ROUNDING,
828
    )
829
830
    geocode_gdf = geocoded_data_from_db(EPSG)
831
832
    mastr_gdf = merge_geocode_with_mastr(clean_mastr_df, geocode_gdf)
833
834
    valid_mastr_gdf = drop_invalid_entries_from_gdf(mastr_gdf)
835
836
    municipalities_gdf = municipality_data()
837
838
    valid_mastr_gdf = add_ags_to_gens(valid_mastr_gdf, municipalities_gdf)
839
840
    return drop_gens_outside_muns(valid_mastr_gdf)
841
842
843
class OsmBuildingsFiltered(Base):
844
    __tablename__ = "osm_buildings_filtered"
845
    __table_args__ = {"schema": "openstreetmap"}
846
847
    osm_id = Column(BigInteger)
848
    amenity = Column(String)
849
    building = Column(String)
850
    name = Column(String)
851
    geom = Column(Geometry(srid=SRID), index=True)
852
    area = Column(Float)
853
    geom_point = Column(Geometry(srid=SRID), index=True)
854
    tags = Column(HSTORE)
855
    id = Column(BigInteger, primary_key=True, index=True)
856
857
858
@timer_func
859
def osm_buildings(
860
    to_crs: CRS,
861
) -> gpd.GeoDataFrame:
862
    """
863
    Read OSM buildings data from eGo^n Database.
864
    Parameters
865
    -----------
866
    to_crs : pyproj.crs.crs.CRS
867
        CRS to transform geometries to.
868
    Returns
869
    -------
870
    geopandas.GeoDataFrame
871
        GeoDataFrame containing OSM buildings data.
872
    """
873
    with db.session_scope() as session:
874
        query = session.query(
875
            OsmBuildingsFiltered.id,
876
            OsmBuildingsFiltered.area,
877
            OsmBuildingsFiltered.geom_point.label("geom"),
878
        )
879
880
    return gpd.read_postgis(
881
        query.statement, query.session.bind, index_col="id"
882
    ).to_crs(to_crs)
883
884
885
@timer_func
886
def synthetic_buildings(
887
    to_crs: CRS,
888
) -> gpd.GeoDataFrame:
889
    """
890
    Read synthetic buildings data from eGo^n Database.
891
    Parameters
892
    -----------
893
    to_crs : pyproj.crs.crs.CRS
894
        CRS to transform geometries to.
895
    Returns
896
    -------
897
    geopandas.GeoDataFrame
898
        GeoDataFrame containing OSM buildings data.
899
    """
900
    with db.session_scope() as session:
901
        query = session.query(
902
            OsmBuildingsSynthetic.id,
903
            OsmBuildingsSynthetic.area,
904
            OsmBuildingsSynthetic.geom_point.label("geom"),
905
        )
906
907
    return gpd.read_postgis(
908
        query.statement, query.session.bind, index_col="id"
909
    ).to_crs(to_crs)
910
911
912
@timer_func
913
def add_ags_to_buildings(
914
    buildings_gdf: gpd.GeoDataFrame,
915
    municipalities_gdf: gpd.GeoDataFrame,
916
) -> gpd.GeoDataFrame:
917
    """
918
    Add information about AGS ID to buildings.
919
    Parameters
920
    -----------
921
    buildings_gdf : geopandas.GeoDataFrame
922
        GeoDataFrame containing OSM buildings data.
923
    municipalities_gdf : geopandas.GeoDataFrame
924
        GeoDataFrame with municipality data.
925
    Returns
926
    -------
927
    gepandas.GeoDataFrame
928
        GeoDataFrame containing OSM buildings data
929
        with AGS ID added.
930
    """
931
    return buildings_gdf.sjoin(
932
        municipalities_gdf,
933
        how="left",
934
        predicate="intersects",
935
    ).rename(columns={"index_right": "ags"})
936
937
938
def drop_buildings_outside_muns(
939
    buildings_gdf: gpd.GeoDataFrame,
940
) -> gpd.GeoDataFrame:
941
    """
942
    Drop all buildings outside of municipalities.
943
    Parameters
944
    -----------
945
    buildings_gdf : geopandas.GeoDataFrame
946
        GeoDataFrame containing OSM buildings data.
947
    Returns
948
    -------
949
    gepandas.GeoDataFrame
950
        GeoDataFrame containing OSM buildings data
951
        with buildings without an AGS ID dropped.
952
    """
953
    gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()]
954
955
    logger.debug(
956
        f"{len(buildings_gdf) - len(gdf)} "
957
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
958
        f"of {len(buildings_gdf)} values are outside of the municipalities "
959
        "and are therefore dropped."
960
    )
961
962
    return gdf
963
964
965
def egon_building_peak_loads():
966
    sql = """
967
    SELECT building_id
968
    FROM demand.egon_building_electricity_peak_loads
969
    WHERE scenario = 'eGon2035'
970
    """
971
972
    return (
973
        db.select_dataframe(sql).building_id.astype(int).sort_values().unique()
974
    )
975
976
977
@timer_func
978
def load_building_data():
979
    """
980
    Read buildings from DB
981
    Tables:
982
983
    * `openstreetmap.osm_buildings_filtered` (from OSM)
984
    * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us)
985
986
    Use column `id` for both as it is unique hence you concat both datasets. If
987
    INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be loaded.
988
989
    Returns
990
    -------
991
    gepandas.GeoDataFrame
992
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
993
        dropped.
994
    """
995
996
    municipalities_gdf = municipality_data()
997
998
    osm_buildings_gdf = osm_buildings(municipalities_gdf.crs)
999
1000
    if INCLUDE_SYNTHETIC_BUILDINGS:
1001
        synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs)
1002
1003
        buildings_gdf = gpd.GeoDataFrame(
1004
            pd.concat(
1005
                [
1006
                    osm_buildings_gdf,
1007
                    synthetic_buildings_gdf,
1008
                ]
1009
            ),
1010
            geometry="geom",
1011
            crs=osm_buildings_gdf.crs,
1012
        ).rename(columns={"area": "building_area"})
1013
1014
        buildings_gdf.index = buildings_gdf.index.astype(int)
1015
1016
    else:
1017
        buildings_gdf = osm_buildings_gdf.rename(
1018
            columns={"area": "building_area"}
1019
        )
1020
1021
    if ONLY_BUILDINGS_WITH_DEMAND:
1022
        building_ids = egon_building_peak_loads()
1023
1024
        init_len = len(building_ids)
1025
1026
        building_ids = np.intersect1d(
1027
            list(map(int, building_ids)),
1028
            list(map(int, buildings_gdf.index.to_numpy())),
1029
        )
1030
1031
        end_len = len(building_ids)
1032
1033
        logger.debug(
1034
            f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) of buildings have "
1035
            f"peak load."
1036
        )
1037
1038
        buildings_gdf = buildings_gdf.loc[building_ids]
1039
1040
    buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf)
1041
1042
    buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf)
1043
1044
    grid_districts_gdf = grid_districts(EPSG)
1045
1046
    federal_state_gdf = federal_state_data(grid_districts_gdf.crs)
1047
1048
    grid_federal_state_gdf = overlay_grid_districts_with_counties(
1049
        grid_districts_gdf,
1050
        federal_state_gdf,
1051
    )
1052
1053
    buildings_overlay_gdf = add_overlay_id_to_buildings(
1054
        buildings_ags_gdf,
1055
        grid_federal_state_gdf,
1056
    )
1057
1058
    logger.debug("Loaded buildings.")
1059
1060
    buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf)
1061
1062
    # overwrite bus_id with data from new table
1063
    sql = "SELECT building_id, bus_id FROM boundaries.egon_map_zensus_mvgd_buildings"
1064
    map_building_bus_df = db.select_dataframe(sql)
1065
1066
    building_ids = np.intersect1d(
1067
        list(map(int, map_building_bus_df.building_id.unique())),
1068
        list(map(int, buildings_overlay_gdf.index.to_numpy())),
1069
    )
1070
1071
    buildings_within_gdf = buildings_overlay_gdf.loc[building_ids]
1072
1073
    return (
1074
        buildings_within_gdf.reset_index()
1075
        .drop(columns=["bus_id"])
1076
        .merge(
1077
            how="left",
1078
            right=map_building_bus_df,
1079
            left_on="id",
1080
            right_on="building_id",
1081
        )
1082
        .drop(columns=["building_id"])
1083
        .set_index("id")
1084
        .sort_index()
1085
    )
1086
1087
1088
@timer_func
1089
def sort_and_qcut_df(
1090
    df: pd.DataFrame | gpd.GeoDataFrame,
1091
    col: str,
1092
    q: int,
1093
) -> pd.DataFrame | gpd.GeoDataFrame:
1094
    """
1095
    Determine the quantile of a given attribute in a (Geo)DataFrame.
1096
    Sort the (Geo)DataFrame in ascending order for the given attribute.
1097
    Parameters
1098
    -----------
1099
    df : pandas.DataFrame or geopandas.GeoDataFrame
1100
        (Geo)DataFrame to sort and qcut.
1101
    col : str
1102
        Name of the attribute to sort and qcut the (Geo)DataFrame on.
1103
    q : int
1104
        Number of quantiles.
1105
    Returns
1106
    -------
1107
    pandas.DataFrame or gepandas.GeoDataFrame
1108
        Sorted and qcut (Geo)DataFrame.
1109
    """
1110
    df = df.sort_values(col, ascending=True)
1111
1112
    return df.assign(
1113
        quant=pd.qcut(
1114
            df[col],
1115
            q=q,
1116
            labels=range(q),
1117
        )
1118
    )
1119
1120
1121
@timer_func
1122
def allocate_pv(
1123
    q_mastr_gdf: gpd.GeoDataFrame,
1124
    q_buildings_gdf: gpd.GeoDataFrame,
1125
    seed: int,
1126
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1127
    """
1128
    Allocate the MaStR pv generators to the OSM buildings.
1129
    This will determine a building for each pv generator if there are more
1130
    buildings than generators within a given AGS. Primarily generators are
1131
    distributed with the same qunatile as the buildings. Multiple assignment
1132
    is excluded.
1133
    Parameters
1134
    -----------
1135
    q_mastr_gdf : geopandas.GeoDataFrame
1136
        GeoDataFrame containing geocoded and qcut MaStR data.
1137
    q_buildings_gdf : geopandas.GeoDataFrame
1138
        GeoDataFrame containing qcut OSM buildings data.
1139
    seed : int
1140
        Seed to use for random operations with NumPy and pandas.
1141
    Returns
1142
    -------
1143
    tuple with two geopandas.GeoDataFrame s
1144
        GeoDataFrame containing MaStR data allocated to building IDs.
1145
        GeoDataFrame containing building data allocated to MaStR IDs.
1146
    """
1147
    rng = default_rng(seed=seed)
1148
1149
    q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan)
1150
    q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan)
1151
1152
    ags_list = q_buildings_gdf.ags.unique()
1153
1154
    if TEST_RUN:
1155
        ags_list = ags_list[:250]
1156
1157
    num_ags = len(ags_list)
1158
1159
    t0 = perf_counter()
1160
1161
    for count, ags in enumerate(ags_list):
1162
1163
        buildings = q_buildings_gdf.loc[
1164
            (q_buildings_gdf.ags == ags) & (q_buildings_gdf.gens_id.isna())
1165
        ]
1166
        gens = q_mastr_gdf.loc[
1167
            (q_mastr_gdf.ags == ags) & (q_mastr_gdf.building_id.isna())
1168
        ]
1169
1170
        len_build = len(buildings)
1171
        len_gens = len(gens)
1172
1173
        if len_build < len_gens:
1174
            gens = gens.sample(len_build, random_state=RandomState(seed=seed))
1175
            logger.error(
1176
                f"There are {len_gens} generators and only {len_build}"
1177
                f" buildings in AGS {ags}. {len_gens - len(gens)} "
1178
                "generators were truncated to match the amount of buildings."
1179
            )
1180
1181
            assert len_build == len(gens)
1182
1183
        for quant in gens.quant.unique():
1184
            q_buildings = buildings.loc[
1185
                (buildings.quant == quant) & (buildings.gens_id.isna())
1186
            ]
1187
            q_gens = gens.loc[gens.quant == quant]
1188
1189
            len_build = len(q_buildings)
1190
            len_gens = len(q_gens)
1191
1192
            if len_build < len_gens:
1193
                delta = len_gens - len_build
1194
1195
                logger.warning(
1196
                    f"There are {len_gens} generators and only {len_build} "
1197
                    f"buildings in AGS {ags} and quantile {quant}. {delta} "
1198
                    f"buildings from AGS {ags} will be added randomly."
1199
                )
1200
1201
                add_buildings = pd.Index(
1202
                    rng.choice(
1203
                        buildings.loc[
1204
                            (buildings.quant != quant)
1205
                            & (buildings.gens_id.isna())
1206
                        ].index,
1207
                        size=delta,
1208
                        replace=False,
1209
                    )
1210
                )
1211
1212
                q_buildings = buildings.loc[
1213
                    q_buildings.index.append(add_buildings)
1214
                ]
1215
1216
                assert len(q_buildings) == len_gens
1217
1218
            chosen_buildings = pd.Index(
1219
                rng.choice(
1220
                    q_buildings.index,
1221
                    size=len_gens,
1222
                    replace=False,
1223
                )
1224
            )
1225
1226
            q_mastr_gdf.loc[q_gens.index, "building_id"] = chosen_buildings
1227
            q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index
1228
1229
        if count % 100 == 0:
1230
            logger.debug(
1231
                f"Allocation of {count / num_ags * 100:g} % of AGS done. It took "
1232
                f"{perf_counter() - t0:g} seconds."
1233
            )
1234
1235
            t0 = perf_counter()
1236
1237
    assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()]
1238
1239
    q_mastr_gdf.loc[
1240
        assigned_buildings.gens_id, "building_id"
1241
    ] = assigned_buildings.index
1242
1243
    logger.debug("Allocated status quo generators to buildings.")
1244
1245
    return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf)
1246
1247
1248
def frame_to_numeric(
1249
    df: pd.DataFrame | gpd.GeoDataFrame,
1250
) -> pd.DataFrame | gpd.GeoDataFrame:
1251
    """
1252
    Try to convert all columns of a DataFrame to numeric ignoring errors.
1253
    Parameters
1254
    ----------
1255
    df : pandas.DataFrame or geopandas.GeoDataFrame
1256
    Returns
1257
    -------
1258
    pandas.DataFrame or geopandas.GeoDataFrame
1259
    """
1260
    if str(df.index.dtype) == "object":
1261
        df.index = pd.to_numeric(df.index, errors="ignore")
1262
1263
    for col in df.columns:
1264
        if str(df[col].dtype) == "object":
1265
            df[col] = pd.to_numeric(df[col], errors="ignore")
1266
1267
    return df
1268
1269
1270
def validate_output(
1271
    desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame,
1272
    desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame,
1273
) -> None:
1274
    """
1275
    Validate output.
1276
1277
    * Validate that there are exactly as many buildings with a pv system as there are
1278
      pv systems with a building
1279
    * Validate that the building IDs with a pv system are the same building IDs as
1280
      assigned to the pv systems
1281
    * Validate that the pv system IDs with a building are the same pv system IDs as
1282
      assigned to the buildings
1283
1284
    Parameters
1285
    -----------
1286
    desagg_mastr_gdf : geopandas.GeoDataFrame
1287
        GeoDataFrame containing MaStR data allocated to building IDs.
1288
    desagg_buildings_gdf : geopandas.GeoDataFrame
1289
        GeoDataFrame containing building data allocated to MaStR IDs.
1290
    """
1291
    assert len(
1292
        desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()]
1293
    ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()])
1294
    assert (
1295
        np.sort(
1296
            desagg_mastr_gdf.loc[
1297
                ~desagg_mastr_gdf.building_id.isna()
1298
            ].building_id.unique()
1299
        )
1300
        == np.sort(
1301
            desagg_buildings_gdf.loc[
1302
                ~desagg_buildings_gdf.gens_id.isna()
1303
            ].index.unique()
1304
        )
1305
    ).all()
1306
    assert (
1307
        np.sort(
1308
            desagg_mastr_gdf.loc[
1309
                ~desagg_mastr_gdf.building_id.isna()
1310
            ].index.unique()
1311
        )
1312
        == np.sort(
1313
            desagg_buildings_gdf.loc[
1314
                ~desagg_buildings_gdf.gens_id.isna()
1315
            ].gens_id.unique()
1316
        )
1317
    ).all()
1318
1319
    logger.debug("Validated output.")
1320
1321
1322
def drop_unallocated_gens(
1323
    gdf: gpd.GeoDataFrame,
1324
) -> gpd.GeoDataFrame:
1325
    """
1326
    Drop generators which did not get allocated.
1327
1328
    Parameters
1329
    -----------
1330
    gdf : geopandas.GeoDataFrame
1331
        GeoDataFrame containing MaStR data allocated to building IDs.
1332
    Returns
1333
    -------
1334
    geopandas.GeoDataFrame
1335
        GeoDataFrame containing MaStR data with generators dropped which did not get
1336
        allocated.
1337
    """
1338
    init_len = len(gdf)
1339
    gdf = gdf.loc[~gdf.building_id.isna()]
1340
    end_len = len(gdf)
1341
1342
    logger.debug(
1343
        f"Dropped {init_len - end_len} "
1344
        f"({((init_len - end_len) / init_len) * 100:g}%)"
1345
        f" of {init_len} unallocated rows from MaStR DataFrame."
1346
    )
1347
1348
    return gdf
1349
1350
1351
@timer_func
1352
def allocate_to_buildings(
1353
    mastr_gdf: gpd.GeoDataFrame,
1354
    buildings_gdf: gpd.GeoDataFrame,
1355
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1356
    """
1357
    Allocate status quo pv rooftop generators to buildings.
1358
    Parameters
1359
    -----------
1360
    mastr_gdf : geopandas.GeoDataFrame
1361
        GeoDataFrame containing MaStR data with geocoded locations.
1362
    buildings_gdf : geopandas.GeoDataFrame
1363
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
1364
        dropped.
1365
    Returns
1366
    -------
1367
    tuple with two geopandas.GeoDataFrame s
1368
        GeoDataFrame containing MaStR data allocated to building IDs.
1369
        GeoDataFrame containing building data allocated to MaStR IDs.
1370
    """
1371
    logger.debug("Starting allocation of status quo.")
1372
1373
    q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q)
1374
    q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q)
1375
1376
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv(
1377
        q_mastr_gdf, q_buildings_gdf, SEED
1378
    )
1379
1380
    validate_output(desagg_mastr_gdf, desagg_buildings_gdf)
1381
1382
    return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf
1383
1384
1385
@timer_func
1386
def grid_districts(
1387
    epsg: int,
1388
) -> gpd.GeoDataFrame:
1389
    """
1390
    Load mv grid district geo data from eGo^n Database as
1391
    geopandas.GeoDataFrame.
1392
    Parameters
1393
    -----------
1394
    epsg : int
1395
        EPSG ID to use as CRS.
1396
    Returns
1397
    -------
1398
    geopandas.GeoDataFrame
1399
        GeoDataFrame containing mv grid district ID and geo shapes data.
1400
    """
1401
    gdf = db.select_geodataframe(
1402
        """
1403
        SELECT bus_id, geom
1404
        FROM grid.egon_mv_grid_district
1405
        ORDER BY bus_id
1406
        """,
1407
        index_col="bus_id",
1408
        geom_col="geom",
1409
        epsg=epsg,
1410
    )
1411
1412
    gdf.index = gdf.index.astype(int)
1413
1414
    logger.debug("Grid districts loaded.")
1415
1416
    return gdf
1417
1418
1419
def scenario_data(
1420
    carrier: str = "solar_rooftop",
1421
    scenario: str = "eGon2035",
1422
) -> pd.DataFrame:
1423
    """
1424
    Get scenario capacity data from eGo^n Database.
1425
    Parameters
1426
    -----------
1427
    carrier : str
1428
        Carrier type to filter table by.
1429
    scenario : str
1430
        Scenario to filter table by.
1431
    Returns
1432
    -------
1433
    geopandas.GeoDataFrame
1434
        GeoDataFrame with scenario capacity data in GW.
1435
    """
1436
    with db.session_scope() as session:
1437
        query = session.query(EgonScenarioCapacities).filter(
1438
            EgonScenarioCapacities.carrier == carrier,
1439
            EgonScenarioCapacities.scenario_name == scenario,
1440
        )
1441
1442
    df = pd.read_sql(
1443
        query.statement, query.session.bind, index_col="index"
1444
    ).sort_index()
1445
1446
    logger.debug("Scenario capacity data loaded.")
1447
1448
    return df
1449
1450
1451 View Code Duplication
class Vg250Lan(Base):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
1452
    __tablename__ = "vg250_lan"
1453
    __table_args__ = {"schema": "boundaries"}
1454
1455
    id = Column(BigInteger, primary_key=True, index=True)
1456
    ade = Column(BigInteger)
1457
    gf = Column(BigInteger)
1458
    bsg = Column(BigInteger)
1459
    ars = Column(String)
1460
    ags = Column(String)
1461
    sdv_ars = Column(String)
1462
    gen = Column(String)
1463
    bez = Column(String)
1464
    ibz = Column(BigInteger)
1465
    bem = Column(String)
1466
    nbd = Column(String)
1467
    sn_l = Column(String)
1468
    sn_r = Column(String)
1469
    sn_k = Column(String)
1470
    sn_v1 = Column(String)
1471
    sn_v2 = Column(String)
1472
    sn_g = Column(String)
1473
    fk_s3 = Column(String)
1474
    nuts = Column(String)
1475
    ars_0 = Column(String)
1476
    ags_0 = Column(String)
1477
    wsk = Column(String)
1478
    debkg_id = Column(String)
1479
    rs = Column(String)
1480
    sdv_rs = Column(String)
1481
    rs_0 = Column(String)
1482
    geometry = Column(Geometry(srid=EPSG), index=True)
1483
1484
1485
def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame:
1486
    """
1487
    Get feder state data from eGo^n Database.
1488
    Parameters
1489
    -----------
1490
    to_crs : pyproj.crs.crs.CRS
1491
        CRS to transform geometries to.
1492
    Returns
1493
    -------
1494
    geopandas.GeoDataFrame
1495
        GeoDataFrame with federal state data.
1496
    """
1497
    with db.session_scope() as session:
1498
        query = session.query(
1499
            Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom")
1500
        )
1501
1502
        gdf = gpd.read_postgis(
1503
            query.statement, session.connection(), index_col="id"
1504
        ).to_crs(to_crs)
1505
1506
    logger.debug("Federal State data loaded.")
1507
1508
    return gdf
1509
1510
1511
@timer_func
1512
def overlay_grid_districts_with_counties(
1513
    mv_grid_district_gdf: gpd.GeoDataFrame,
1514
    federal_state_gdf: gpd.GeoDataFrame,
1515
) -> gpd.GeoDataFrame:
1516
    """
1517
    Calculate the intersections of mv grid districts and counties.
1518
    Parameters
1519
    -----------
1520
    mv_grid_district_gdf : gpd.GeoDataFrame
1521
        GeoDataFrame containing mv grid district ID and geo shapes data.
1522
    federal_state_gdf : gpd.GeoDataFrame
1523
        GeoDataFrame with federal state data.
1524
    Returns
1525
    -------
1526
    geopandas.GeoDataFrame
1527
        GeoDataFrame containing OSM buildings data.
1528
    """
1529
    logger.debug(
1530
        "Calculating intersection overlay between mv grid districts and "
1531
        "counties. This may take a while..."
1532
    )
1533
1534
    gdf = gpd.overlay(
1535
        federal_state_gdf.to_crs(mv_grid_district_gdf.crs),
1536
        mv_grid_district_gdf.reset_index(),
1537
        how="intersection",
1538
        keep_geom_type=True,
1539
    )
1540
1541
    logger.debug("Done!")
1542
1543
    return gdf
1544
1545
1546
@timer_func
1547
def add_overlay_id_to_buildings(
1548
    buildings_gdf: gpd.GeoDataFrame,
1549
    grid_federal_state_gdf: gpd.GeoDataFrame,
1550
) -> gpd.GeoDataFrame:
1551
    """
1552
    Add information about overlay ID to buildings.
1553
    Parameters
1554
    -----------
1555
    buildings_gdf : geopandas.GeoDataFrame
1556
        GeoDataFrame containing OSM buildings data.
1557
    grid_federal_state_gdf : geopandas.GeoDataFrame
1558
        GeoDataFrame with intersection shapes between counties and grid districts.
1559
    Returns
1560
    -------
1561
    geopandas.GeoDataFrame
1562
        GeoDataFrame containing OSM buildings data with overlay ID added.
1563
    """
1564
    gdf = (
1565
        buildings_gdf.to_crs(grid_federal_state_gdf.crs)
1566
        .sjoin(
1567
            grid_federal_state_gdf,
1568
            how="left",
1569
            predicate="intersects",
1570
        )
1571
        .rename(columns={"index_right": "overlay_id"})
1572
    )
1573
1574
    logger.debug("Added overlay ID to OSM buildings.")
1575
1576
    return gdf
1577
1578
1579
def drop_buildings_outside_grids(
1580
    buildings_gdf: gpd.GeoDataFrame,
1581
) -> gpd.GeoDataFrame:
1582
    """
1583
    Drop all buildings outside of grid areas.
1584
    Parameters
1585
    -----------
1586
    buildings_gdf : geopandas.GeoDataFrame
1587
        GeoDataFrame containing OSM buildings data.
1588
    Returns
1589
    -------
1590
    gepandas.GeoDataFrame
1591
        GeoDataFrame containing OSM buildings data
1592
        with buildings without an bus ID dropped.
1593
    """
1594
    gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()]
1595
1596
    logger.debug(
1597
        f"{len(buildings_gdf) - len(gdf)} "
1598
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
1599
        f"of {len(buildings_gdf)} values are outside of the grid areas "
1600
        "and are therefore dropped."
1601
    )
1602
1603
    return gdf
1604
1605
1606
def cap_per_bus_id(
1607
    scenario: str,
1608
) -> pd.DataFrame:
1609
    """
1610
    Get table with total pv rooftop capacity per grid district.
1611
1612
    Parameters
1613
    -----------
1614
    scenario : str
1615
        Scenario name.
1616
    Returns
1617
    -------
1618
    pandas.DataFrame
1619
        DataFrame with total rooftop capacity per mv grid.
1620
    """
1621
    targets = config.datasets()["solar_rooftop"]["targets"]
1622
1623
    sql = f"""
1624
    SELECT bus as bus_id, p_nom as capacity
1625
    FROM {targets['generators']['schema']}.{targets['generators']['table']}
1626
    WHERE carrier = 'solar_rooftop'
1627
    AND scn_name = '{scenario}'
1628
    """
1629
1630
    return db.select_dataframe(sql, index_col="bus_id")
1631
1632
    # overlay_gdf = overlay_gdf.assign(capacity=np.nan)
1633
    #
1634
    # for cap, nuts in scenario_df[["capacity", "nuts"]].itertuples(index=False):
1635
    #     nuts_gdf = overlay_gdf.loc[overlay_gdf.nuts == nuts]
1636
    #
1637
    #     capacity = nuts_gdf.building_area.multiply(
1638
    #         cap / nuts_gdf.building_area.sum()
1639
    #     )
1640
    #
1641
    #     overlay_gdf.loc[nuts_gdf.index] = overlay_gdf.loc[
1642
    #         nuts_gdf.index
1643
    #     ].assign(capacity=capacity.multiply(conversion).to_numpy())
1644
    #
1645
    # return overlay_gdf[["bus_id", "capacity"]].groupby("bus_id").sum()
1646
1647
1648
def determine_end_of_life_gens(
1649
    mastr_gdf: gpd.GeoDataFrame,
1650
    scenario_timestamp: pd.Timestamp,
1651
    pv_rooftop_lifetime: pd.Timedelta,
1652
) -> gpd.GeoDataFrame:
1653
    """
1654
    Determine if an old PV system has reached its end of life.
1655
    Parameters
1656
    -----------
1657
    mastr_gdf : geopandas.GeoDataFrame
1658
        GeoDataFrame containing geocoded MaStR data.
1659
    scenario_timestamp : pandas.Timestamp
1660
        Timestamp at which the scenario takes place.
1661
    pv_rooftop_lifetime : pandas.Timedelta
1662
        Average expected lifetime of PV rooftop systems.
1663
    Returns
1664
    -------
1665
    geopandas.GeoDataFrame
1666
        GeoDataFrame containing geocoded MaStR data and info if the system
1667
        has reached its end of life.
1668
    """
1669
    before = mastr_gdf.capacity.sum()
1670
1671
    mastr_gdf = mastr_gdf.assign(
1672
        age=scenario_timestamp - mastr_gdf.start_up_date
1673
    )
1674
1675
    mastr_gdf = mastr_gdf.assign(
1676
        end_of_life=pv_rooftop_lifetime < mastr_gdf.age
1677
    )
1678
1679
    after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum()
1680
1681
    logger.debug(
1682
        "Determined if pv rooftop systems reached their end of life.\nTotal capacity: "
1683
        f"{before}\nActive capacity: {after}"
1684
    )
1685
1686
    return mastr_gdf
1687
1688
1689
def calculate_max_pv_cap_per_building(
1690
    buildings_gdf: gpd.GeoDataFrame,
1691
    mastr_gdf: gpd.GeoDataFrame,
1692
    pv_cap_per_sq_m: float | int,
1693
    roof_factor: float | int,
1694
) -> gpd.GeoDataFrame:
1695
    """
1696
    Calculate the estimated maximum possible PV capacity per building.
1697
    Parameters
1698
    -----------
1699
    buildings_gdf : geopandas.GeoDataFrame
1700
        GeoDataFrame containing OSM buildings data.
1701
    mastr_gdf : geopandas.GeoDataFrame
1702
        GeoDataFrame containing geocoded MaStR data.
1703
    pv_cap_per_sq_m : float, int
1704
        Average expected, installable PV capacity per square meter.
1705
    roof_factor : float, int
1706
        Average for PV usable roof area share.
1707
    Returns
1708
    -------
1709
    geopandas.GeoDataFrame
1710
        GeoDataFrame containing OSM buildings data with estimated maximum PV
1711
        capacity.
1712
    """
1713
    gdf = (
1714
        buildings_gdf.reset_index()
1715
        .rename(columns={"index": "id"})
1716
        .merge(
1717
            mastr_gdf[
1718
                [
1719
                    "capacity",
1720
                    "end_of_life",
1721
                    "building_id",
1722
                    "EinheitlicheAusrichtungUndNeigungswinkel",
1723
                    "Hauptausrichtung",
1724
                    "HauptausrichtungNeigungswinkel",
1725
                ]
1726
            ],
1727
            how="left",
1728
            left_on="id",
1729
            right_on="building_id",
1730
        )
1731
        .set_index("id")
1732
        .drop(columns="building_id")
1733
    )
1734
1735
    return gdf.assign(
1736
        max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m),
1737
        end_of_life=gdf.end_of_life.fillna(True).astype(bool),
1738
        bus_id=gdf.bus_id.astype(int),
1739
    )
1740
1741
1742
def calculate_building_load_factor(
1743
    mastr_gdf: gpd.GeoDataFrame,
1744
    buildings_gdf: gpd.GeoDataFrame,
1745
    rounding: int = 4,
1746
) -> gpd.GeoDataFrame:
1747
    """
1748
    Calculate the roof load factor from existing PV systems.
1749
    Parameters
1750
    -----------
1751
    mastr_gdf : geopandas.GeoDataFrame
1752
        GeoDataFrame containing geocoded MaStR data.
1753
    buildings_gdf : geopandas.GeoDataFrame
1754
        GeoDataFrame containing OSM buildings data.
1755
    rounding : int
1756
        Rounding to use for load factor.
1757
    Returns
1758
    -------
1759
    geopandas.GeoDataFrame
1760
        GeoDataFrame containing geocoded MaStR data with calculated load factor.
1761
    """
1762
    gdf = mastr_gdf.merge(
1763
        buildings_gdf[["max_cap", "building_area"]].loc[
1764
            ~buildings_gdf["max_cap"].isna()
1765
        ],
1766
        how="left",
1767
        left_on="building_id",
1768
        right_index=True,
1769
    )
1770
1771
    return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding))
1772
1773
1774
def get_probability_for_property(
1775
    mastr_gdf: gpd.GeoDataFrame,
1776
    cap_range: tuple[int | float, int | float],
1777
    prop: str,
1778
) -> tuple[np.array, np.array]:
1779
    """
1780
    Calculate the probability of the different options of a property of the
1781
    existing PV plants.
1782
    Parameters
1783
    -----------
1784
    mastr_gdf : geopandas.GeoDataFrame
1785
        GeoDataFrame containing geocoded MaStR data.
1786
    cap_range : tuple(int, int)
1787
        Capacity range of PV plants to look at.
1788
    prop : str
1789
        Property to calculate probabilities for. String needs to be in columns
1790
        of mastr_gdf.
1791
    Returns
1792
    -------
1793
    tuple
1794
        numpy.array
1795
            Unique values of property.
1796
        numpy.array
1797
            Probabilties per unique value.
1798
    """
1799
    cap_range_gdf = mastr_gdf.loc[
1800
        (mastr_gdf.capacity > cap_range[0])
1801
        & (mastr_gdf.capacity <= cap_range[1])
1802
    ]
1803
1804
    if prop == "load_factor":
1805
        cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1]
1806
1807
    count = Counter(
1808
        cap_range_gdf[prop].loc[
1809
            ~cap_range_gdf[prop].isna()
1810
            & ~cap_range_gdf[prop].isnull()
1811
            & ~(cap_range_gdf[prop] == "None")
1812
        ]
1813
    )
1814
1815
    values = np.array(list(count.keys()))
1816
    probabilities = np.fromiter(count.values(), dtype=float)
1817
    probabilities = probabilities / np.sum(probabilities)
1818
1819
    return values, probabilities
1820
1821
1822
@timer_func
1823
def probabilities(
1824
    mastr_gdf: gpd.GeoDataFrame,
1825
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1826
    properties: list[str] | None = None,
1827
) -> dict:
1828
    """
1829
    Calculate the probability of the different options of properties of the
1830
    existing PV plants.
1831
    Parameters
1832
    -----------
1833
    mastr_gdf : geopandas.GeoDataFrame
1834
        GeoDataFrame containing geocoded MaStR data.
1835
    cap_ranges : list(tuple(int, int))
1836
        List of capacity ranges to distinguish between. The first tuple should
1837
        start with a zero and the last one should end with infinite.
1838
    properties : list(str)
1839
        List of properties to calculate probabilities for. Strings needs to be
1840
        in columns of mastr_gdf.
1841
    Returns
1842
    -------
1843
    dict
1844
        Dictionary with values and probabilities per capacity range.
1845
    """
1846
    if cap_ranges is None:
1847
        cap_ranges = [
1848
            (0, 30),
1849
            (30, 100),
1850
            (100, float("inf")),
1851
        ]
1852
    if properties is None:
1853
        properties = [
1854
            "EinheitlicheAusrichtungUndNeigungswinkel",
1855
            "Hauptausrichtung",
1856
            "HauptausrichtungNeigungswinkel",
1857
            "load_factor",
1858
        ]
1859
1860
    prob_dict = {}
1861
1862
    for cap_range in cap_ranges:
1863
        prob_dict[cap_range] = {
1864
            "values": {},
1865
            "probabilities": {},
1866
        }
1867
1868
        for prop in properties:
1869
            v, p = get_probability_for_property(
1870
                mastr_gdf,
1871
                cap_range,
1872
                prop,
1873
            )
1874
1875
            prob_dict[cap_range]["values"][prop] = v
1876
            prob_dict[cap_range]["probabilities"][prop] = p
1877
1878
    return prob_dict
1879
1880
1881
def cap_share_per_cap_range(
1882
    mastr_gdf: gpd.GeoDataFrame,
1883
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1884
) -> dict[tuple[int | float, int | float], float]:
1885
    """
1886
    Calculate the share of PV capacity from the total PV capacity within
1887
    capacity ranges.
1888
    Parameters
1889
    -----------
1890
    mastr_gdf : geopandas.GeoDataFrame
1891
        GeoDataFrame containing geocoded MaStR data.
1892
    cap_ranges : list(tuple(int, int))
1893
        List of capacity ranges to distinguish between. The first tuple should
1894
        start with a zero and the last one should end with infinite.
1895
    Returns
1896
    -------
1897
    dict
1898
        Dictionary with share of PV capacity from the total PV capacity within
1899
        capacity ranges.
1900
    """
1901
    if cap_ranges is None:
1902
        cap_ranges = [
1903
            (0, 30),
1904
            (30, 100),
1905
            (100, float("inf")),
1906
        ]
1907
1908
    cap_share_dict = {}
1909
1910
    total_cap = mastr_gdf.capacity.sum()
1911
1912
    for cap_range in cap_ranges:
1913
        cap_share = (
1914
            mastr_gdf.loc[
1915
                (mastr_gdf.capacity > cap_range[0])
1916
                & (mastr_gdf.capacity <= cap_range[1])
1917
            ].capacity.sum()
1918
            / total_cap
1919
        )
1920
1921
        cap_share_dict[cap_range] = cap_share
1922
1923
    return cap_share_dict
1924
1925
1926
def mean_load_factor_per_cap_range(
1927
    mastr_gdf: gpd.GeoDataFrame,
1928
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1929
) -> dict[tuple[int | float, int | float], float]:
1930
    """
1931
    Calculate the mean roof load factor per capacity range from existing PV
1932
    plants.
1933
    Parameters
1934
    -----------
1935
    mastr_gdf : geopandas.GeoDataFrame
1936
        GeoDataFrame containing geocoded MaStR data.
1937
    cap_ranges : list(tuple(int, int))
1938
        List of capacity ranges to distinguish between. The first tuple should
1939
        start with a zero and the last one should end with infinite.
1940
    Returns
1941
    -------
1942
    dict
1943
        Dictionary with mean roof load factor per capacity range.
1944
    """
1945
    if cap_ranges is None:
1946
        cap_ranges = [
1947
            (0, 30),
1948
            (30, 100),
1949
            (100, float("inf")),
1950
        ]
1951
1952
    load_factor_dict = {}
1953
1954
    for cap_range in cap_ranges:
1955
        load_factor = mastr_gdf.loc[
1956
            (mastr_gdf.load_factor <= 1)
1957
            & (mastr_gdf.capacity > cap_range[0])
1958
            & (mastr_gdf.capacity <= cap_range[1])
1959
        ].load_factor.mean()
1960
1961
        load_factor_dict[cap_range] = load_factor
1962
1963
    return load_factor_dict
1964
1965
1966
def building_area_range_per_cap_range(
1967
    mastr_gdf: gpd.GeoDataFrame,
1968
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1969
    min_building_size: int | float = 10.0,
1970
    upper_quantile: float = 0.95,
1971
    lower_quantile: float = 0.05,
1972
) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]:
1973
    """
1974
    Estimate normal building area range per capacity range.
1975
    Calculate the mean roof load factor per capacity range from existing PV
1976
    plants.
1977
    Parameters
1978
    -----------
1979
    mastr_gdf : geopandas.GeoDataFrame
1980
        GeoDataFrame containing geocoded MaStR data.
1981
    cap_ranges : list(tuple(int, int))
1982
        List of capacity ranges to distinguish between. The first tuple should
1983
        start with a zero and the last one should end with infinite.
1984
    min_building_size : int, float
1985
        Minimal building size to consider for PV plants.
1986
    upper_quantile : float
1987
        Upper quantile to estimate maximum building size per capacity range.
1988
    lower_quantile : float
1989
        Lower quantile to estimate minimum building size per capacity range.
1990
    Returns
1991
    -------
1992
    dict
1993
        Dictionary with estimated normal building area range per capacity
1994
        range.
1995
    """
1996
    if cap_ranges is None:
1997
        cap_ranges = [
1998
            (0, 30),
1999
            (30, 100),
2000
            (100, float("inf")),
2001
        ]
2002
2003
    building_area_range_dict = {}
2004
2005
    n_ranges = len(cap_ranges)
2006
2007
    for count, cap_range in enumerate(cap_ranges):
2008
        cap_range_gdf = mastr_gdf.loc[
2009
            (mastr_gdf.capacity > cap_range[0])
2010
            & (mastr_gdf.capacity <= cap_range[1])
2011
        ]
2012
2013
        if count == 0:
2014
            building_area_range_dict[cap_range] = (
2015
                min_building_size,
2016
                cap_range_gdf.building_area.quantile(upper_quantile),
2017
            )
2018
        elif count == n_ranges - 1:
2019
            building_area_range_dict[cap_range] = (
2020
                cap_range_gdf.building_area.quantile(lower_quantile),
2021
                float("inf"),
2022
            )
2023
        else:
2024
            building_area_range_dict[cap_range] = (
2025
                cap_range_gdf.building_area.quantile(lower_quantile),
2026
                cap_range_gdf.building_area.quantile(upper_quantile),
2027
            )
2028
2029
    values = list(building_area_range_dict.values())
2030
2031
    building_area_range_normed_dict = {}
2032
2033
    for count, (cap_range, (min_area, max_area)) in enumerate(
2034
        building_area_range_dict.items()
2035
    ):
2036
        if count == 0:
2037
            building_area_range_normed_dict[cap_range] = (
2038
                min_area,
2039
                np.mean((values[count + 1][0], max_area)),
2040
            )
2041
        elif count == n_ranges - 1:
2042
            building_area_range_normed_dict[cap_range] = (
2043
                np.mean((values[count - 1][1], min_area)),
2044
                max_area,
2045
            )
2046
        else:
2047
            building_area_range_normed_dict[cap_range] = (
2048
                np.mean((values[count - 1][1], min_area)),
2049
                np.mean((values[count + 1][0], max_area)),
2050
            )
2051
2052
    return building_area_range_normed_dict
2053
2054
2055
@timer_func
2056
def desaggregate_pv_in_mv_grid(
2057
    buildings_gdf: gpd.GeoDataFrame,
2058
    pv_cap: float | int,
2059
    **kwargs,
2060
) -> gpd.GeoDataFrame:
2061
    """
2062
    Desaggregate PV capacity on buildings within a given grid district.
2063
    Parameters
2064
    -----------
2065
    buildings_gdf : geopandas.GeoDataFrame
2066
        GeoDataFrame containing buildings within the grid district.
2067
    pv_cap : float, int
2068
        PV capacity to desaggregate.
2069
    Other Parameters
2070
    -----------
2071
    prob_dict : dict
2072
        Dictionary with values and probabilities per capacity range.
2073
    cap_share_dict : dict
2074
        Dictionary with share of PV capacity from the total PV capacity within
2075
        capacity ranges.
2076
    building_area_range_dict : dict
2077
        Dictionary with estimated normal building area range per capacity
2078
        range.
2079
    load_factor_dict : dict
2080
        Dictionary with mean roof load factor per capacity range.
2081
    seed : int
2082
        Seed to use for random operations with NumPy and pandas.
2083
    pv_cap_per_sq_m : float, int
2084
        Average expected, installable PV capacity per square meter.
2085
    Returns
2086
    -------
2087
    geopandas.GeoDataFrame
2088
        GeoDataFrame containing OSM building data with desaggregated PV
2089
        plants.
2090
    """
2091
    bus_id = int(buildings_gdf.bus_id.iat[0])
2092
2093
    rng = default_rng(seed=kwargs["seed"])
2094
    random_state = RandomState(seed=kwargs["seed"])
2095
2096
    results_df = pd.DataFrame(columns=buildings_gdf.columns)
2097
2098
    for cap_range, share in kwargs["cap_share_dict"].items():
2099
        pv_cap_range = pv_cap * share
2100
2101
        b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range]
2102
2103
        cap_range_buildings_gdf = buildings_gdf.loc[
2104
            ~buildings_gdf.index.isin(results_df.index)
2105
            & (buildings_gdf.building_area > b_area_min)
2106
            & (buildings_gdf.building_area <= b_area_max)
2107
        ]
2108
2109
        mean_load_factor = kwargs["load_factor_dict"][cap_range]
2110
        cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2111
            mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2112
            load_factor=np.nan,
2113
            capacity=np.nan,
2114
        )
2115
2116
        total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2117
2118
        if total_mean_cap == 0:
2119
            logger.warning(
2120
                f"There are no matching roof for capacity range {cap_range} "
2121
                f"kW in grid {bus_id}. Using all buildings as fallback."
2122
            )
2123
2124
            cap_range_buildings_gdf = buildings_gdf.loc[
2125
                ~buildings_gdf.index.isin(results_df.index)
2126
            ]
2127
2128
            if len(cap_range_buildings_gdf) == 0:
2129
                logger.warning(
2130
                    "There are no roofes available for capacity range "
2131
                    f"{cap_range} kW in grid {bus_id}. Allowing dual use."
2132
                )
2133
                cap_range_buildings_gdf = buildings_gdf.copy()
2134
2135
            cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2136
                mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2137
                load_factor=np.nan,
2138
                capacity=np.nan,
2139
            )
2140
2141
            total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2142
2143
        elif total_mean_cap < pv_cap_range:
2144
            logger.warning(
2145
                f"Average roof utilization of the roof area in grid {bus_id} "
2146
                f"and capacity range {cap_range} kW is not sufficient. The "
2147
                "roof utilization will be above average."
2148
            )
2149
2150
        frac = max(
2151
            pv_cap_range / total_mean_cap,
2152
            1 / len(cap_range_buildings_gdf),
2153
        )
2154
2155
        samples_gdf = cap_range_buildings_gdf.sample(
2156
            frac=min(1, frac),
2157
            random_state=random_state,
2158
        )
2159
2160
        cap_range_dict = kwargs["prob_dict"][cap_range]
2161
2162
        values_dict = cap_range_dict["values"]
2163
        p_dict = cap_range_dict["probabilities"]
2164
2165
        load_factors = rng.choice(
2166
            a=values_dict["load_factor"],
2167
            size=len(samples_gdf),
2168
            p=p_dict["load_factor"],
2169
        )
2170
2171
        samples_gdf = samples_gdf.assign(
2172
            load_factor=load_factors,
2173
            capacity=(
2174
                samples_gdf.building_area
2175
                * load_factors
2176
                * kwargs["pv_cap_per_sq_m"]
2177
            ).clip(lower=0.4),
2178
        )
2179
2180
        missing_factor = pv_cap_range / samples_gdf.capacity.sum()
2181
2182
        samples_gdf = samples_gdf.assign(
2183
            capacity=(samples_gdf.capacity * missing_factor),
2184
            load_factor=(samples_gdf.load_factor * missing_factor),
2185
        )
2186
2187
        assert np.isclose(
2188
            samples_gdf.capacity.sum(),
2189
            pv_cap_range,
2190
            rtol=1e-03,
2191
        ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}"
2192
2193
        results_df = pd.concat(
2194
            [
2195
                results_df,
2196
                samples_gdf,
2197
            ],
2198
        )
2199
2200
    total_missing_factor = pv_cap / results_df.capacity.sum()
2201
2202
    results_df = results_df.assign(
2203
        capacity=(results_df.capacity * total_missing_factor),
2204
    )
2205
2206
    assert np.isclose(
2207
        results_df.capacity.sum(),
2208
        pv_cap,
2209
        rtol=1e-03,
2210
    ), f"{results_df.capacity.sum()} != {pv_cap}"
2211
2212
    return gpd.GeoDataFrame(
2213
        results_df,
2214
        crs=samples_gdf.crs,
0 ignored issues
show
introduced by
The variable samples_gdf does not seem to be defined in case the for loop on line 2098 is not entered. Are you sure this can never be the case?
Loading history...
2215
        geometry="geom",
2216
    )
2217
2218
2219
@timer_func
2220
def desaggregate_pv(
2221
    buildings_gdf: gpd.GeoDataFrame,
2222
    cap_df: pd.DataFrame,
2223
    **kwargs,
2224
) -> gpd.GeoDataFrame:
2225
    """
2226
    Desaggregate PV capacity on buildings within a given grid district.
2227
    Parameters
2228
    -----------
2229
    buildings_gdf : geopandas.GeoDataFrame
2230
        GeoDataFrame containing OSM buildings data.
2231
    cap_df : pandas.DataFrame
2232
        DataFrame with total rooftop capacity per mv grid.
2233
    Other Parameters
2234
    -----------
2235
    prob_dict : dict
2236
        Dictionary with values and probabilities per capacity range.
2237
    cap_share_dict : dict
2238
        Dictionary with share of PV capacity from the total PV capacity within
2239
        capacity ranges.
2240
    building_area_range_dict : dict
2241
        Dictionary with estimated normal building area range per capacity
2242
        range.
2243
    load_factor_dict : dict
2244
        Dictionary with mean roof load factor per capacity range.
2245
    seed : int
2246
        Seed to use for random operations with NumPy and pandas.
2247
    pv_cap_per_sq_m : float, int
2248
        Average expected, installable PV capacity per square meter.
2249
    Returns
2250
    -------
2251
    geopandas.GeoDataFrame
2252
        GeoDataFrame containing OSM building data with desaggregated PV
2253
        plants.
2254
    """
2255
    allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life]
2256
2257
    building_bus_ids = set(buildings_gdf.bus_id)
2258
    cap_bus_ids = set(cap_df.index)
2259
2260
    logger.debug(
2261
        f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from capacity: "
2262
        f"{len(cap_bus_ids)}"
2263
    )
2264
2265
    if len(building_bus_ids) > len(cap_bus_ids):
2266
        missing = building_bus_ids - cap_bus_ids
2267
    else:
2268
        missing = cap_bus_ids - building_bus_ids
2269
2270
    logger.debug(str(missing))
2271
2272
    bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids))
2273
2274
    # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index)
2275
2276
    for bus_id in bus_ids:
2277
        buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id]
2278
2279
        pv_installed_gdf = buildings_grid_gdf.loc[
2280
            ~buildings_grid_gdf.end_of_life
2281
        ]
2282
2283
        pv_installed = pv_installed_gdf.capacity.sum()
2284
2285
        pot_buildings_gdf = buildings_grid_gdf.drop(
2286
            index=pv_installed_gdf.index
2287
        )
2288
2289
        if len(pot_buildings_gdf) == 0:
2290
            logger.error(
2291
                f"In grid {bus_id} there are no potential buildings to allocate "
2292
                "PV capacity to. The grid is skipped. This message should only "
2293
                "appear doing test runs with few buildings."
2294
            )
2295
2296
            continue
2297
2298
        pv_target = cap_df.at[bus_id, "capacity"] * 1000
2299
2300
        logger.debug(f"pv_target: {pv_target}")
2301
2302
        pv_missing = pv_target - pv_installed
2303
2304
        if pv_missing <= 0:
2305
            logger.info(
2306
                f"In grid {bus_id} there is more PV installed ({pv_installed: g}) in "
2307
                f"status Quo than allocated within the scenario ({pv_target: g}). No "
2308
                f"new generators are added."
2309
            )
2310
2311
            continue
2312
2313
        if pot_buildings_gdf.max_cap.sum() < pv_missing:
2314
            logger.error(
2315
                f"In grid {bus_id} there is less PV potential ("
2316
                f"{pot_buildings_gdf.max_cap.sum():g} kW) than allocated PV  capacity "
2317
                f"({pv_missing:g} kW). The average roof utilization will be very high."
2318
            )
2319
2320
        gdf = desaggregate_pv_in_mv_grid(
2321
            buildings_gdf=pot_buildings_gdf,
2322
            pv_cap=pv_missing,
2323
            **kwargs,
2324
        )
2325
2326
        logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}")
2327
        logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}")
2328
        logger.debug(
2329
            f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}"
2330
        )
2331
2332
        if not np.isclose(
2333
            gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3
2334
        ):
2335
            logger.warning(
2336
                f"The desired capacity and actual capacity in grid {bus_id} differ.\n"
2337
                f"Desired cap: {pv_target}\nActual cap: "
2338
                f"{gdf.capacity.sum() + pv_installed}"
2339
            )
2340
2341
        allocated_buildings_gdf = pd.concat(
2342
            [
2343
                allocated_buildings_gdf,
2344
                gdf,
2345
            ]
2346
        )
2347
2348
    logger.debug("Desaggregated scenario.")
2349
    logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}")
2350
    logger.debug(
2351
        f"Generator capacity: {allocated_buildings_gdf.capacity.sum(): g}"
2352
    )
2353
2354
    return gpd.GeoDataFrame(
2355
        allocated_buildings_gdf,
2356
        crs=gdf.crs,
0 ignored issues
show
introduced by
The variable gdf does not seem to be defined for all execution paths.
Loading history...
2357
        geometry="geom",
2358
    )
2359
2360
2361
@timer_func
2362
def add_buildings_meta_data(
2363
    buildings_gdf: gpd.GeoDataFrame,
2364
    prob_dict: dict,
2365
    seed: int,
2366
) -> gpd.GeoDataFrame:
2367
    """
2368
    Randomly add additional metadata to desaggregated PV plants.
2369
    Parameters
2370
    -----------
2371
    buildings_gdf : geopandas.GeoDataFrame
2372
        GeoDataFrame containing OSM buildings data with desaggregated PV
2373
        plants.
2374
    prob_dict : dict
2375
        Dictionary with values and probabilities per capacity range.
2376
    seed : int
2377
        Seed to use for random operations with NumPy and pandas.
2378
    Returns
2379
    -------
2380
    geopandas.GeoDataFrame
2381
        GeoDataFrame containing OSM building data with desaggregated PV
2382
        plants.
2383
    """
2384
    rng = default_rng(seed=seed)
2385
    buildings_gdf = buildings_gdf.reset_index().rename(
2386
        columns={
2387
            "index": "building_id",
2388
        }
2389
    )
2390
2391
    for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items():
2392
        cap_range_gdf = buildings_gdf.loc[
2393
            (buildings_gdf.capacity >= min_cap)
2394
            & (buildings_gdf.capacity < max_cap)
2395
        ]
2396
2397
        for key, values in cap_range_prob_dict["values"].items():
2398
            if key == "load_factor":
2399
                continue
2400
2401
            gdf = cap_range_gdf.loc[
2402
                cap_range_gdf[key].isna()
2403
                | cap_range_gdf[key].isnull()
2404
                | (cap_range_gdf[key] == "None")
2405
            ]
2406
2407
            key_vals = rng.choice(
2408
                a=values,
2409
                size=len(gdf),
2410
                p=cap_range_prob_dict["probabilities"][key],
2411
            )
2412
2413
            buildings_gdf.loc[gdf.index, key] = key_vals
2414
2415
    return buildings_gdf
2416
2417
2418
def add_voltage_level(
2419
    buildings_gdf: gpd.GeoDataFrame,
2420
) -> gpd.GeoDataFrame:
2421
    """
2422
    Add voltage level derived from generator capacity to the power plants.
2423
    Parameters
2424
    -----------
2425
    buildings_gdf : geopandas.GeoDataFrame
2426
        GeoDataFrame containing OSM buildings data with desaggregated PV
2427
        plants.
2428
    Returns
2429
    -------
2430
    geopandas.GeoDataFrame
2431
        GeoDataFrame containing OSM building data with voltage level per generator.
2432
    """
2433
2434
    def voltage_levels(p: float) -> int:
2435
        if p < 100:
2436
            return 7
2437
        elif p < 200:
2438
            return 6
2439
        elif p < 5500:
2440
            return 5
2441
        elif p < 20000:
2442
            return 4
2443
        elif p < 120000:
2444
            return 3
2445
        return 1
2446
2447
    return buildings_gdf.assign(
2448
        voltage_level=buildings_gdf.capacity.apply(voltage_levels)
2449
    )
2450
2451
2452
def add_start_up_date(
2453
    buildings_gdf: gpd.GeoDataFrame,
2454
    start: pd.Timestamp,
2455
    end: pd.Timestamp,
2456
    seed: int,
2457
):
2458
    """
2459
    Randomly and linear add start-up date to new pv generators.
2460
    Parameters
2461
    ----------
2462
    buildings_gdf : geopandas.GeoDataFrame
2463
        GeoDataFrame containing OSM buildings data with desaggregated PV
2464
        plants.
2465
    start : pandas.Timestamp
2466
        Minimum Timestamp to use.
2467
    end : pandas.Timestamp
2468
        Maximum Timestamp to use.
2469
    seed : int
2470
        Seed to use for random operations with NumPy and pandas.
2471
    Returns
2472
    -------
2473
    geopandas.GeoDataFrame
2474
        GeoDataFrame containing OSM buildings data with start-up date added.
2475
    """
2476
    rng = default_rng(seed=seed)
2477
2478
    date_range = pd.date_range(start=start, end=end, freq="1D")
2479
2480
    return buildings_gdf.assign(
2481
        start_up_date=rng.choice(date_range, size=len(buildings_gdf))
2482
    )
2483
2484
2485
@timer_func
2486
def allocate_scenarios(
2487
    mastr_gdf: gpd.GeoDataFrame,
2488
    valid_buildings_gdf: gpd.GeoDataFrame,
2489
    last_scenario_gdf: gpd.GeoDataFrame,
2490
    scenario: str,
2491
):
2492
    """
2493
    Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings.
2494
    Parameters
2495
    ----------
2496
    mastr_gdf : geopandas.GeoDataFrame
2497
        GeoDataFrame containing geocoded MaStR data.
2498
    valid_buildings_gdf : geopandas.GeoDataFrame
2499
        GeoDataFrame containing OSM buildings data.
2500
    last_scenario_gdf : geopandas.GeoDataFrame
2501
        GeoDataFrame containing OSM buildings matched with pv generators from temporal
2502
        preceding scenario.
2503
    scenario : str
2504
        Scenario to desaggrgate and allocate.
2505
    Returns
2506
    -------
2507
    tuple
2508
        geopandas.GeoDataFrame
2509
            GeoDataFrame containing OSM buildings matched with pv generators.
2510
        pandas.DataFrame
2511
            DataFrame containing pv rooftop capacity per grid id.
2512
    """
2513
    cap_per_bus_id_df = cap_per_bus_id(scenario)
2514
2515
    logger.debug(
2516
        f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}"
2517
    )
2518
2519
    last_scenario_gdf = determine_end_of_life_gens(
2520
        last_scenario_gdf,
2521
        SCENARIO_TIMESTAMP[scenario],
2522
        PV_ROOFTOP_LIFETIME,
2523
    )
2524
2525
    buildings_gdf = calculate_max_pv_cap_per_building(
2526
        valid_buildings_gdf,
2527
        last_scenario_gdf,
2528
        PV_CAP_PER_SQ_M,
2529
        ROOF_FACTOR,
2530
    )
2531
2532
    mastr_gdf = calculate_building_load_factor(
2533
        mastr_gdf,
2534
        buildings_gdf,
2535
    )
2536
2537
    probabilities_dict = probabilities(
2538
        mastr_gdf,
2539
        cap_ranges=CAP_RANGES,
2540
    )
2541
2542
    cap_share_dict = cap_share_per_cap_range(
2543
        mastr_gdf,
2544
        cap_ranges=CAP_RANGES,
2545
    )
2546
2547
    load_factor_dict = mean_load_factor_per_cap_range(
2548
        mastr_gdf,
2549
        cap_ranges=CAP_RANGES,
2550
    )
2551
2552
    building_area_range_dict = building_area_range_per_cap_range(
2553
        mastr_gdf,
2554
        cap_ranges=CAP_RANGES,
2555
        min_building_size=MIN_BUILDING_SIZE,
2556
        upper_quantile=UPPER_QUNATILE,
2557
        lower_quantile=LOWER_QUANTILE,
2558
    )
2559
2560
    allocated_buildings_gdf = desaggregate_pv(
2561
        buildings_gdf=buildings_gdf,
2562
        cap_df=cap_per_bus_id_df,
2563
        prob_dict=probabilities_dict,
2564
        cap_share_dict=cap_share_dict,
2565
        building_area_range_dict=building_area_range_dict,
2566
        load_factor_dict=load_factor_dict,
2567
        seed=SEED,
2568
        pv_cap_per_sq_m=PV_CAP_PER_SQ_M,
2569
    )
2570
2571
    allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario)
2572
2573
    meta_buildings_gdf = frame_to_numeric(
2574
        add_buildings_meta_data(
2575
            allocated_buildings_gdf,
2576
            probabilities_dict,
2577
            SEED,
2578
        )
2579
    )
2580
2581
    return (
2582
        add_start_up_date(
2583
            meta_buildings_gdf,
2584
            start=last_scenario_gdf.start_up_date.max(),
2585
            end=SCENARIO_TIMESTAMP[scenario],
2586
            seed=SEED,
2587
        ),
2588
        cap_per_bus_id_df,
2589
    )
2590
2591
2592
class EgonPowerPlantPvRoofBuildingScenario(Base):
2593
    __tablename__ = "egon_power_plants_pv_roof_building"
2594
    __table_args__ = {"schema": "supply"}
2595
2596
    index = Column(Integer, primary_key=True, index=True)
2597
    scenario = Column(String)
2598
    bus_id = Column(Integer, nullable=True)
2599
    building_id = Column(Integer)
2600
    gens_id = Column(String, nullable=True)
2601
    capacity = Column(Float)
2602
    einheitliche_ausrichtung_und_neigungswinkel = Column(Float)
2603
    hauptausrichtung = Column(String)
2604
    hauptausrichtung_neigungswinkel = Column(String)
2605
    voltage_level = Column(Integer)
2606
    weather_cell_id = Column(Integer)
2607
2608
2609
def create_scenario_table(buildings_gdf):
2610
    """Create mapping table pv_unit <-> building for scenario"""
2611
    EgonPowerPlantPvRoofBuildingScenario.__table__.drop(
2612
        bind=engine, checkfirst=True
2613
    )
2614
    EgonPowerPlantPvRoofBuildingScenario.__table__.create(
2615
        bind=engine, checkfirst=True
2616
    )
2617
2618
    buildings_gdf.rename(columns=COLS_TO_RENAME).assign(
2619
        capacity=buildings_gdf.capacity.div(10**3)  # kW -> MW
2620
    )[COLS_TO_EXPORT].reset_index().to_sql(
2621
        name=EgonPowerPlantPvRoofBuildingScenario.__table__.name,
2622
        schema=EgonPowerPlantPvRoofBuildingScenario.__table__.schema,
2623
        con=db.engine(),
2624
        if_exists="append",
2625
        index=False,
2626
    )
2627
2628
2629
def geocode_mastr_data():
2630
    """
2631
    Read PV rooftop data from MaStR CSV
2632
    TODO: the source will be replaced as soon as the MaStR data is available
2633
     in DB.
2634
    """
2635
    mastr_df = mastr_data(
2636
        MASTR_INDEX_COL,
2637
        MASTR_RELEVANT_COLS,
2638
        MASTR_DTYPES,
2639
        MASTR_PARSE_DATES,
2640
    )
2641
2642
    clean_mastr_df = clean_mastr_data(
2643
        mastr_df,
2644
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
2645
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
2646
        seed=SEED,
2647
        rounding=ROUNDING,
2648
    )
2649
2650
    geocoding_df = geocoding_data(clean_mastr_df)
2651
2652
    ratelimiter = geocoder(USER_AGENT, MIN_DELAY_SECONDS)
2653
2654
    geocode_gdf = geocode_data(geocoding_df, ratelimiter, EPSG)
2655
2656
    create_geocoded_table(geocode_gdf)
2657
2658
2659
def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
2660
    sql = """
2661
    SELECT building_id, zensus_population_id
2662
    FROM boundaries.egon_map_zensus_mvgd_buildings
2663
    """
2664
2665
    buildings_gdf = gpd.GeoDataFrame(
2666
        buildings_gdf.merge(
2667
            right=db.select_dataframe(sql),
2668
            how="left",
2669
            on="building_id",
2670
        ),
2671
        crs=buildings_gdf.crs,
2672
    )
2673
2674
    sql = """
2675
    SELECT zensus_population_id, w_id as weather_cell_id
2676
    FROM boundaries.egon_map_zensus_weather_cell
2677
    """
2678
2679
    buildings_gdf = gpd.GeoDataFrame(
2680
        buildings_gdf.merge(
2681
            right=db.select_dataframe(sql),
2682
            how="left",
2683
            on="zensus_population_id",
2684
        ),
2685
        crs=buildings_gdf.crs,
2686
    )
2687
2688
    if buildings_gdf.weather_cell_id.isna().any():
2689
        raise ValueError(
2690
            f"Following buildings don't have a weather cell id: "
2691
            f"{buildings_gdf.loc[buildings_gdf.weather_cell_id.isna()].building_id}"
2692
        )
2693
2694
    return buildings_gdf
2695
2696
2697
def pv_rooftop_to_buildings():
2698
    """Main script, executed as task"""
2699
2700
    mastr_gdf = load_mastr_data()
2701
2702
    buildings_gdf = load_building_data()
2703
2704
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings(
2705
        mastr_gdf, buildings_gdf
2706
    )
2707
2708
    all_buildings_gdf = (
2709
        desagg_mastr_gdf.assign(scenario="status_quo")
2710
        .reset_index()
2711
        .rename(columns={"geometry": "geom", "EinheitMastrNummer": "gens_id"})
2712
    )
2713
2714
    scenario_buildings_gdf = all_buildings_gdf.copy()
2715
2716
    cap_per_bus_id_df = pd.DataFrame()
2717
2718
    for scenario in SCENARIOS:
2719
        logger.debug(f"Desaggregating scenario {scenario}.")
2720
        (
2721
            scenario_buildings_gdf,
2722
            cap_per_bus_id_scenario_df,
2723
        ) = allocate_scenarios(  # noqa: F841
2724
            desagg_mastr_gdf,
2725
            desagg_buildings_gdf,
2726
            scenario_buildings_gdf,
2727
            scenario,
2728
        )
2729
2730
        all_buildings_gdf = gpd.GeoDataFrame(
2731
            pd.concat(
2732
                [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True
2733
            ),
2734
            crs=scenario_buildings_gdf.crs,
2735
            geometry="geom",
2736
        )
2737
2738
        cap_per_bus_id_df = pd.concat(
2739
            [cap_per_bus_id_df, cap_per_bus_id_scenario_df]
2740
        )
2741
2742
    # add weather cell
2743
    all_buildings_gdf = add_weather_cell_id(all_buildings_gdf)
2744
2745
    # export scenario
2746
    create_scenario_table(add_voltage_level(all_buildings_gdf))
2747