1
|
|
|
"""The central module containing all code dealing with importing Zensus data. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
from pathlib import Path |
5
|
|
|
import csv |
6
|
|
|
import json |
7
|
|
|
import os |
8
|
|
|
import requests |
9
|
|
|
import zipfile |
10
|
|
|
|
11
|
|
|
from shapely.geometry import Point, shape |
12
|
|
|
from shapely.prepared import prep |
13
|
|
|
import pandas as pd |
14
|
|
|
|
15
|
|
|
from egon.data import db, subprocess |
16
|
|
|
from egon.data.config import settings |
17
|
|
|
from egon.data.datasets import Dataset, DatasetSources, DatasetTargets |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
class ZensusPopulation(Dataset): |
21
|
|
|
sources = DatasetSources( |
22
|
|
|
urls={ |
23
|
|
|
"original_data": ( |
24
|
|
|
"https://www.zensus2011.de/SharedDocs/Downloads/DE/" |
25
|
|
|
"Pressemitteilung/DemografischeGrunddaten/" |
26
|
|
|
"csv_Bevoelkerung_100m_Gitter.zip?__blob=publicationFile&v=3" |
27
|
|
|
), |
28
|
|
|
} |
29
|
|
|
) |
30
|
|
|
|
31
|
|
|
targets = DatasetTargets( |
32
|
|
|
files = { |
33
|
|
|
"zensus_population": |
34
|
|
|
"zensus_population/csv_Bevoelkerung_100m_Gitter.zip"}, |
35
|
|
|
tables= { |
36
|
|
|
"zensus_population": |
37
|
|
|
"society.destatis_zensus_population_per_ha"} |
38
|
|
|
) |
39
|
|
|
|
40
|
|
|
def __init__(self, dependencies): |
41
|
|
|
super().__init__( |
42
|
|
|
name="ZensusPopulation", |
43
|
|
|
version="0.0.2", |
44
|
|
|
dependencies=dependencies, |
45
|
|
|
tasks=( |
46
|
|
|
download_zensus_pop, |
47
|
|
|
create_zensus_pop_table, |
48
|
|
|
population_to_postgres, |
49
|
|
|
) |
50
|
|
|
) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
class ZensusMiscellaneous(Dataset): |
54
|
|
|
sources = DatasetSources( |
55
|
|
|
urls={ |
56
|
|
|
"zensus_households": ( |
57
|
|
|
"https://www.zensus2011.de/SharedDocs/Downloads/DE/" |
58
|
|
|
"Pressemitteilung/DemografischeGrunddaten/" |
59
|
|
|
"csv_Haushalte_100m_Gitter.zip?__blob=publicationFile&v=2" |
60
|
|
|
), |
61
|
|
|
"zensus_buildings": ( |
62
|
|
|
"https://www.zensus2011.de/SharedDocs/Downloads/DE/" |
63
|
|
|
"Pressemitteilung/DemografischeGrunddaten/" |
64
|
|
|
"csv_Gebaeude_100m_Gitter.zip?__blob=publicationFile&v=2" |
65
|
|
|
), |
66
|
|
|
"zensus_apartments": ( |
67
|
|
|
"https://www.zensus2011.de/SharedDocs/Downloads/DE/" |
68
|
|
|
"Pressemitteilung/DemografischeGrunddaten/" |
69
|
|
|
"csv_Wohnungen_100m_Gitter.zip?__blob=publicationFile&v=5" |
70
|
|
|
), |
71
|
|
|
} |
72
|
|
|
) |
73
|
|
|
targets = DatasetTargets( |
74
|
|
|
files = { |
75
|
|
|
"zensus_households": |
76
|
|
|
"zensus_population/csv_Haushalte_100m_Gitter.zip", |
77
|
|
|
"zensus_buildings": |
78
|
|
|
"zensus_population/csv_Gebaeude_100m_Gitter.zip", |
79
|
|
|
"zensus_apartments": |
80
|
|
|
"zensus_population/csv_Wohnungen_100m_Gitter.zip" |
81
|
|
|
}, |
82
|
|
|
tables = { |
83
|
|
|
"zensus_households": |
84
|
|
|
"society.egon_destatis_zensus_household_per_ha", |
85
|
|
|
"zensus_buildings": |
86
|
|
|
"society.egon_destatis_zensus_building_per_ha", |
87
|
|
|
"zensus_apartments": |
88
|
|
|
"society.egon_destatis_zensus_apartment_per_ha", |
89
|
|
|
} |
90
|
|
|
) |
91
|
|
|
def __init__(self, dependencies): |
92
|
|
|
super().__init__( |
93
|
|
|
name="ZensusMiscellaneous", |
94
|
|
|
version="0.0.1", |
95
|
|
|
dependencies=dependencies, |
96
|
|
|
tasks=( |
97
|
|
|
download_zensus_misc, |
98
|
|
|
create_zensus_misc_tables, |
99
|
|
|
zensus_misc_to_postgres, |
100
|
|
|
), |
101
|
|
|
) |
102
|
|
|
|
103
|
|
|
|
104
|
|
|
def download_and_check(url, target_file, max_iteration=5): |
105
|
|
|
"""Download file from url (http) if it doesn't exist and check afterwards. |
106
|
|
|
If bad zip remove file and re-download. Repeat until file is fine or |
107
|
|
|
reached maximum iterations.""" |
108
|
|
|
bad_file = True |
109
|
|
|
count = 0 |
110
|
|
|
while bad_file: |
111
|
|
|
|
112
|
|
|
# download file if it doesn't exist |
113
|
|
|
if not os.path.isfile(target_file): |
114
|
|
|
# check if url |
115
|
|
|
if url.lower().startswith("http"): |
116
|
|
|
print("Downloading: ", url) |
117
|
|
|
req = requests.get(url, headers={"User-Agent": "Mozilla/5.0"}, stream=True) |
118
|
|
|
open(target_file, 'wb').write(req.content) |
119
|
|
|
else: |
120
|
|
|
raise ValueError("No http url") |
121
|
|
|
|
122
|
|
|
# check zipfile |
123
|
|
|
try: |
124
|
|
|
with zipfile.ZipFile(target_file): |
125
|
|
|
print(f"Zip file {target_file} is good.") |
126
|
|
|
bad_file = False |
127
|
|
|
except zipfile.BadZipFile as ex: |
128
|
|
|
os.remove(target_file) |
129
|
|
|
count += 1 |
130
|
|
|
if count > max_iteration: |
131
|
|
|
raise StopIteration( |
132
|
|
|
f"Max iteration of {max_iteration} is exceeded" |
133
|
|
|
) from ex |
134
|
|
|
|
135
|
|
|
|
136
|
|
|
def download_zensus_pop(): |
137
|
|
|
"""Download Zensus csv file on population per hectare grid cell.""" |
138
|
|
|
|
139
|
|
|
download_directory = Path(".") / ZensusPopulation.targets.files["zensus_population"] |
140
|
|
|
# Create the folder, if it does not exist already |
141
|
|
|
if not os.path.exists(download_directory): |
142
|
|
|
os.mkdir(download_directory) |
143
|
|
|
|
144
|
|
|
download_and_check( |
145
|
|
|
ZensusPopulation.sources.urls["original_data"], |
146
|
|
|
ZensusPopulation.targets.files["zensus_population"], |
147
|
|
|
max_iteration=5) |
148
|
|
|
|
149
|
|
|
|
150
|
|
|
def download_zensus_misc(): |
151
|
|
|
"""Download Zensus csv files on data per hectare grid cell.""" |
152
|
|
|
|
153
|
|
|
# Get data config |
154
|
|
|
download_directory = Path(".") / ZensusMiscellaneous.targets.files["zensus_buildings"] |
155
|
|
|
# Create the folder, if it does not exist already |
156
|
|
|
if not os.path.exists(download_directory): |
157
|
|
|
os.mkdir(download_directory) |
158
|
|
|
# Download remaining zensus data set on households, buildings, apartments |
159
|
|
|
for key in ZensusMiscellaneous.sources.urls: |
160
|
|
|
download_and_check( |
161
|
|
|
ZensusMiscellaneous.sources.urls[key], |
162
|
|
|
ZensusMiscellaneous.targets.files[key], |
163
|
|
|
max_iteration=5) |
164
|
|
|
|
165
|
|
|
|
166
|
|
|
|
167
|
|
|
def create_zensus_pop_table(): |
168
|
|
|
"""Create tables for zensus data in postgres database""" |
169
|
|
|
|
170
|
|
|
# Create table for population data |
171
|
|
|
population_table = ZensusPopulation.targets.tables["zensus_population"] |
172
|
|
|
|
173
|
|
|
|
174
|
|
|
# Create target schema |
175
|
|
|
db.execute_sql( |
176
|
|
|
f""" |
177
|
|
|
CREATE SCHEMA IF NOT EXISTS |
178
|
|
|
{ZensusPopulation.targets.get_table_schema("zensus_population")}; |
179
|
|
|
""" |
180
|
|
|
) |
181
|
|
|
|
182
|
|
|
db.execute_sql(f"DROP TABLE IF EXISTS {population_table} CASCADE;") |
183
|
|
|
|
184
|
|
|
db.execute_sql( |
185
|
|
|
f"CREATE TABLE {population_table}" |
186
|
|
|
f""" (id SERIAL NOT NULL, |
187
|
|
|
grid_id character varying(254) NOT NULL, |
188
|
|
|
x_mp int, |
189
|
|
|
y_mp int, |
190
|
|
|
population smallint, |
191
|
|
|
geom_point geometry(Point,3035), |
192
|
|
|
geom geometry (Polygon, 3035), |
193
|
|
|
CONSTRAINT {population_table.split('.')[1]}_pkey |
194
|
|
|
PRIMARY KEY (id) |
195
|
|
|
); |
196
|
|
|
""" |
197
|
|
|
) |
198
|
|
|
|
199
|
|
|
|
200
|
|
|
def create_zensus_misc_tables(): |
201
|
|
|
"""Create tables for zensus data in postgres database""" |
202
|
|
|
|
203
|
|
|
# Create tables for household, apartment and building |
204
|
|
|
for table in ZensusMiscellaneous.targets.tables: |
205
|
|
|
table_name = ZensusMiscellaneous.targets.tables[table] |
206
|
|
|
# Create target schema |
207
|
|
|
db.execute_sql( |
208
|
|
|
f"CREATE SCHEMA IF NOT EXISTS {table_name.split('.')[0]};" |
209
|
|
|
) |
210
|
|
|
|
211
|
|
|
db.execute_sql(f"DROP TABLE IF EXISTS {table_name} CASCADE;") |
212
|
|
|
db.execute_sql( |
213
|
|
|
f"CREATE TABLE {table_name}" |
214
|
|
|
f""" (id SERIAL, |
215
|
|
|
grid_id VARCHAR(50), |
216
|
|
|
grid_id_new VARCHAR (50), |
217
|
|
|
attribute VARCHAR(50), |
218
|
|
|
characteristics_code smallint, |
219
|
|
|
characteristics_text text, |
220
|
|
|
quantity smallint, |
221
|
|
|
quantity_q smallint, |
222
|
|
|
zensus_population_id int, |
223
|
|
|
CONSTRAINT {table_name.split('.')[1]}_pkey PRIMARY KEY (id) |
224
|
|
|
); |
225
|
|
|
""" |
226
|
|
|
) |
227
|
|
|
|
228
|
|
|
|
229
|
|
|
def target(source, dataset): |
230
|
|
|
"""Generate the target path corresponding to a source path. |
231
|
|
|
|
232
|
|
|
Parameters |
233
|
|
|
---------- |
234
|
|
|
dataset: str |
235
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
236
|
|
|
(`dataset='Schleswig-Holstein'`). |
237
|
|
|
In production mode, data covering entire Germany |
238
|
|
|
is used. In the test mode a subset of this data is used for testing the |
239
|
|
|
workflow. |
240
|
|
|
Returns |
241
|
|
|
------- |
242
|
|
|
Path |
243
|
|
|
Path to target csv-file |
244
|
|
|
|
245
|
|
|
""" |
246
|
|
|
return Path( |
247
|
|
|
os.path.join(Path("."), "zensus_population", source.stem) |
248
|
|
|
+ "." |
249
|
|
|
+ dataset |
250
|
|
|
+ source.suffix |
251
|
|
|
) |
252
|
|
|
|
253
|
|
|
|
254
|
|
|
def select_geom(): |
255
|
|
|
"""Select the union of the geometries of Schleswig-Holstein from the |
256
|
|
|
database, convert their projection to the one used in the CSV file, |
257
|
|
|
output the result to stdout as a GeoJSON string and read it into a |
258
|
|
|
prepared shape for filtering. |
259
|
|
|
|
260
|
|
|
""" |
261
|
|
|
docker_db_config = db.credentials() |
262
|
|
|
|
263
|
|
|
geojson = subprocess.run( |
264
|
|
|
["ogr2ogr"] |
265
|
|
|
+ ["-s_srs", "epsg:4326"] |
266
|
|
|
+ ["-t_srs", "epsg:3035"] |
267
|
|
|
+ ["-f", "GeoJSON"] |
268
|
|
|
+ ["/vsistdout/"] |
269
|
|
|
+ [ |
270
|
|
|
f"PG:host={docker_db_config['HOST']}" |
271
|
|
|
f" user='{docker_db_config['POSTGRES_USER']}'" |
272
|
|
|
f" password='{docker_db_config['POSTGRES_PASSWORD']}'" |
273
|
|
|
f" port={docker_db_config['PORT']}" |
274
|
|
|
f" dbname='{docker_db_config['POSTGRES_DB']}'" |
275
|
|
|
] |
276
|
|
|
+ ["-sql", "SELECT ST_Union(geometry) FROM boundaries.vg250_lan"], |
277
|
|
|
text=True, |
278
|
|
|
) |
279
|
|
|
features = json.loads(geojson.stdout)["features"] |
280
|
|
|
assert ( |
281
|
|
|
len(features) == 1 |
282
|
|
|
), f"Found {len(features)} geometry features, expected exactly one." |
283
|
|
|
|
284
|
|
|
return prep(shape(features[0]["geometry"])) |
285
|
|
|
|
286
|
|
|
|
287
|
|
|
def filter_zensus_population(filename, dataset): |
288
|
|
|
"""This block filters lines in the source CSV file and copies |
289
|
|
|
the appropriate ones to the destination based on geometry. |
290
|
|
|
|
291
|
|
|
|
292
|
|
|
Parameters |
293
|
|
|
---------- |
294
|
|
|
filename : str |
295
|
|
|
Path to input csv-file |
296
|
|
|
dataset: str, optional |
297
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
298
|
|
|
(`dataset='Schleswig-Holstein'`). |
299
|
|
|
In production mode, data covering entire Germany |
300
|
|
|
is used. In the test mode a subset of this data is used for testing the |
301
|
|
|
workflow. |
302
|
|
|
Returns |
303
|
|
|
------- |
304
|
|
|
str |
305
|
|
|
Path to output csv-file |
306
|
|
|
|
307
|
|
|
""" |
308
|
|
|
|
309
|
|
|
csv_file = Path(filename).resolve(strict=True) |
310
|
|
|
|
311
|
|
|
schleswig_holstein = select_geom() |
312
|
|
|
|
313
|
|
|
if not os.path.isfile(target(csv_file, dataset)): |
314
|
|
|
|
315
|
|
|
with open(csv_file, mode="r", newline="") as input_lines: |
316
|
|
|
rows = csv.DictReader(input_lines, delimiter=";") |
317
|
|
|
gitter_ids = set() |
318
|
|
|
with open( |
319
|
|
|
target(csv_file, dataset), mode="w", newline="" |
320
|
|
|
) as destination: |
321
|
|
|
output = csv.DictWriter( |
322
|
|
|
destination, delimiter=";", fieldnames=rows.fieldnames |
323
|
|
|
) |
324
|
|
|
output.writeheader() |
325
|
|
|
output.writerows( |
326
|
|
|
gitter_ids.add(row["Gitter_ID_100m"]) or row |
327
|
|
|
for row in rows |
328
|
|
|
if schleswig_holstein.intersects( |
329
|
|
|
Point(float(row["x_mp_100m"]), float(row["y_mp_100m"])) |
330
|
|
|
) |
331
|
|
|
) |
332
|
|
|
return target(csv_file, dataset) |
333
|
|
|
|
334
|
|
|
|
335
|
|
|
def filter_zensus_misc(filename, dataset): |
336
|
|
|
"""This block filters lines in the source CSV file and copies |
337
|
|
|
the appropriate ones to the destination based on grid_id values. |
338
|
|
|
|
339
|
|
|
|
340
|
|
|
Parameters |
341
|
|
|
---------- |
342
|
|
|
filename : str |
343
|
|
|
Path to input csv-file |
344
|
|
|
dataset: str, optional |
345
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
346
|
|
|
(`dataset='Schleswig-Holstein'`). |
347
|
|
|
In production mode, data covering entire Germany |
348
|
|
|
is used. In the test mode a subset of this data is used for testing the |
349
|
|
|
workflow. |
350
|
|
|
Returns |
351
|
|
|
------- |
352
|
|
|
str |
353
|
|
|
Path to output csv-file |
354
|
|
|
|
355
|
|
|
""" |
356
|
|
|
csv_file = Path(filename).resolve(strict=True) |
357
|
|
|
|
358
|
|
|
gitter_ids = set( |
359
|
|
|
pd.read_sql( |
360
|
|
|
"SELECT grid_id from society.destatis_zensus_population_per_ha", |
361
|
|
|
con=db.engine(), |
362
|
|
|
).grid_id.values |
363
|
|
|
) |
364
|
|
|
|
365
|
|
|
if not os.path.isfile(target(csv_file, dataset)): |
366
|
|
|
with open( |
367
|
|
|
csv_file, mode="r", newline="", encoding="iso-8859-1" |
368
|
|
|
) as inputs: |
369
|
|
|
rows = csv.DictReader(inputs, delimiter=",") |
370
|
|
|
with open( |
371
|
|
|
target(csv_file, dataset), |
372
|
|
|
mode="w", |
373
|
|
|
newline="", |
374
|
|
|
encoding="iso-8859-1", |
375
|
|
|
) as destination: |
376
|
|
|
output = csv.DictWriter( |
377
|
|
|
destination, delimiter=",", fieldnames=rows.fieldnames |
378
|
|
|
) |
379
|
|
|
output.writeheader() |
380
|
|
|
output.writerows( |
381
|
|
|
row for row in rows if row["Gitter_ID_100m"] in gitter_ids |
382
|
|
|
) |
383
|
|
|
return target(csv_file, dataset) |
384
|
|
|
|
385
|
|
|
|
386
|
|
|
def population_to_postgres(): |
387
|
|
|
"""Import Zensus population data to postgres database""" |
388
|
|
|
# Get information from data configuration file |
389
|
|
|
input_file = ZensusPopulation.targets.files["zensus_population"] |
390
|
|
|
dataset = settings()["egon-data"]["--dataset-boundary"] |
391
|
|
|
|
392
|
|
|
# Read database configuration from docker-compose.yml |
393
|
|
|
docker_db_config = db.credentials() |
394
|
|
|
|
395
|
|
|
population_table = ZensusPopulation.targets.tables["zensus_population"] |
396
|
|
|
|
397
|
|
|
with zipfile.ZipFile(input_file) as zf: |
398
|
|
|
for filename in zf.namelist(): |
399
|
|
|
|
400
|
|
|
zf.extract(filename) |
401
|
|
|
|
402
|
|
|
if dataset == "Everything": |
403
|
|
|
filename_insert = filename |
404
|
|
|
else: |
405
|
|
|
filename_insert = filter_zensus_population(filename, dataset) |
406
|
|
|
|
407
|
|
|
host = ["-h", f"{docker_db_config['HOST']}"] |
408
|
|
|
port = ["-p", f"{docker_db_config['PORT']}"] |
409
|
|
|
pgdb = ["-d", f"{docker_db_config['POSTGRES_DB']}"] |
410
|
|
|
user = ["-U", f"{docker_db_config['POSTGRES_USER']}"] |
411
|
|
|
command = [ |
412
|
|
|
"-c", |
413
|
|
|
rf"\copy {population_table} (grid_id, x_mp, y_mp, population)" |
414
|
|
|
rf" FROM '{filename_insert}' DELIMITER ';' CSV HEADER;", |
415
|
|
|
] |
416
|
|
|
subprocess.run( |
417
|
|
|
["psql"] + host + port + pgdb + user + command, |
418
|
|
|
env={"PGPASSWORD": docker_db_config["POSTGRES_PASSWORD"]}, |
419
|
|
|
) |
420
|
|
|
|
421
|
|
|
os.remove(filename) |
|
|
|
|
422
|
|
|
|
423
|
|
|
db.execute_sql( |
424
|
|
|
f"UPDATE {population_table} zs" |
425
|
|
|
" SET geom_point=ST_SetSRID(ST_MakePoint(zs.x_mp, zs.y_mp), 3035);" |
426
|
|
|
) |
427
|
|
|
|
428
|
|
|
db.execute_sql( |
429
|
|
|
f"UPDATE {population_table} zs" |
430
|
|
|
""" SET geom=ST_SetSRID( |
431
|
|
|
(ST_MakeEnvelope(zs.x_mp-50,zs.y_mp-50,zs.x_mp+50,zs.y_mp+50)), |
432
|
|
|
3035 |
433
|
|
|
); |
434
|
|
|
""" |
435
|
|
|
) |
436
|
|
|
|
437
|
|
|
db.execute_sql( |
438
|
|
|
f"CREATE INDEX {population_table.split('.')[1]}_geom_idx ON" |
439
|
|
|
f" {population_table} USING gist (geom);" |
440
|
|
|
) |
441
|
|
|
|
442
|
|
|
db.execute_sql( |
443
|
|
|
f"CREATE INDEX" |
444
|
|
|
f" {population_table.split('.')[1]}_geom_point_idx" |
445
|
|
|
f" ON {population_table} USING gist (geom_point);" |
446
|
|
|
) |
447
|
|
|
|
448
|
|
|
|
449
|
|
|
def zensus_misc_to_postgres(): |
450
|
|
|
"""Import data on buildings, households and apartments to postgres db""" |
451
|
|
|
|
452
|
|
|
dataset = settings()["egon-data"]["--dataset-boundary"] |
453
|
|
|
|
454
|
|
|
population_table = ZensusPopulation.targets.tables["zensus_population"] |
455
|
|
|
|
456
|
|
|
# Read database configuration from docker-compose.yml |
457
|
|
|
docker_db_config = db.credentials() |
458
|
|
|
|
459
|
|
|
for key in ZensusMiscellaneous.sources.urls: |
460
|
|
|
|
461
|
|
|
with zipfile.ZipFile(ZensusMiscellaneous.targets.files[key]) as zf: |
462
|
|
|
csvfiles = [n for n in zf.namelist() if n.lower()[-3:] == "csv"] |
463
|
|
|
for filename in csvfiles: |
464
|
|
|
zf.extract(filename) |
465
|
|
|
|
466
|
|
|
if dataset == "Everything": |
467
|
|
|
filename_insert = filename |
468
|
|
|
else: |
469
|
|
|
filename_insert = filter_zensus_misc(filename, dataset) |
470
|
|
|
|
471
|
|
|
host = ["-h", f"{docker_db_config['HOST']}"] |
472
|
|
|
port = ["-p", f"{docker_db_config['PORT']}"] |
473
|
|
|
pgdb = ["-d", f"{docker_db_config['POSTGRES_DB']}"] |
474
|
|
|
user = ["-U", f"{docker_db_config['POSTGRES_USER']}"] |
475
|
|
|
command = [ |
476
|
|
|
"-c", |
477
|
|
|
rf"\copy {ZensusMiscellaneous.targets.tables[key]}" |
478
|
|
|
f"""(grid_id, |
479
|
|
|
grid_id_new, |
480
|
|
|
attribute, |
481
|
|
|
characteristics_code, |
482
|
|
|
characteristics_text, |
483
|
|
|
quantity, |
484
|
|
|
quantity_q) |
485
|
|
|
FROM '{filename_insert}' DELIMITER ',' |
486
|
|
|
CSV HEADER |
487
|
|
|
ENCODING 'iso-8859-1';""", |
488
|
|
|
] |
489
|
|
|
subprocess.run( |
490
|
|
|
["psql"] + host + port + pgdb + user + command, |
491
|
|
|
env={"PGPASSWORD": docker_db_config["POSTGRES_PASSWORD"]}, |
492
|
|
|
) |
493
|
|
|
|
494
|
|
|
os.remove(filename) |
|
|
|
|
495
|
|
|
|
496
|
|
|
db.execute_sql( |
497
|
|
|
f"""UPDATE {ZensusMiscellaneous.targets.tables[key]} as b |
498
|
|
|
SET zensus_population_id = zs.id |
499
|
|
|
FROM {population_table} zs |
500
|
|
|
WHERE b.grid_id = zs.grid_id;""" |
501
|
|
|
) |
502
|
|
|
|
503
|
|
|
db.execute_sql( |
504
|
|
|
f"""ALTER TABLE {ZensusMiscellaneous.targets.tables[key]} |
505
|
|
|
ADD CONSTRAINT |
506
|
|
|
{ZensusMiscellaneous.targets.get_table_name(key)}_fkey |
507
|
|
|
FOREIGN KEY (zensus_population_id) |
508
|
|
|
REFERENCES {population_table}(id);""" |
509
|
|
|
) |
510
|
|
|
|
511
|
|
|
# Create combined table |
512
|
|
|
create_combined_zensus_table() |
513
|
|
|
|
514
|
|
|
# Delete entries for unpopulated cells |
515
|
|
|
adjust_zensus_misc() |
516
|
|
|
|
517
|
|
|
|
518
|
|
|
def create_combined_zensus_table(): |
519
|
|
|
"""Create combined table with buildings, apartments and population per cell |
520
|
|
|
|
521
|
|
|
Only apartment and building data with acceptable data quality |
522
|
|
|
(quantity_q<2) is used, all other data is dropped. For more details on data |
523
|
|
|
quality see Zensus docs: |
524
|
|
|
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html |
525
|
|
|
|
526
|
|
|
If there's no data on buildings or apartments for a certain cell, the value |
527
|
|
|
for building_count resp. apartment_count contains NULL. |
528
|
|
|
""" |
529
|
|
|
sql_script = os.path.join( |
530
|
|
|
os.path.dirname(__file__), "create_combined_zensus_table.sql" |
531
|
|
|
) |
532
|
|
|
db.execute_sql_script(sql_script) |
533
|
|
|
|
534
|
|
|
|
535
|
|
|
def adjust_zensus_misc(): |
536
|
|
|
"""Delete unpopulated cells in zensus-households, -buildings and -apartments |
537
|
|
|
|
538
|
|
|
Some unpopulated zensus cells are listed in: |
539
|
|
|
- egon_destatis_zensus_household_per_ha |
540
|
|
|
- egon_destatis_zensus_building_per_ha |
541
|
|
|
- egon_destatis_zensus_apartment_per_ha |
542
|
|
|
|
543
|
|
|
This can be caused by missing population |
544
|
|
|
information due to privacy or other special cases (e.g. holiday homes |
545
|
|
|
are listed as buildings but are not permanently populated.) |
546
|
|
|
In the following tasks of egon-data, only data of populated cells is used. |
547
|
|
|
|
548
|
|
|
Returns |
549
|
|
|
------- |
550
|
|
|
None. |
551
|
|
|
|
552
|
|
|
""" |
553
|
|
|
|
554
|
|
|
for table in ZensusMiscellaneous.targets.tables: |
555
|
|
|
db.execute_sql( |
556
|
|
|
f""" |
557
|
|
|
DELETE FROM {ZensusMiscellaneous.targets.tables[table]} as b |
558
|
|
|
WHERE b.zensus_population_id IN ( |
559
|
|
|
SELECT id FROM { |
560
|
|
|
ZensusPopulation.targets.tables["zensus_population"]} |
561
|
|
|
WHERE population < 0);""" |
562
|
|
|
) |
563
|
|
|
|