Conditions | 24 |
Total Lines | 556 |
Code Lines | 359 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.sanity_checks.sanitycheck_emobility_mit() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
505 | |||
506 | # Comparison for geothermal |
||
507 | |||
508 | input_geo_thermal = db.select_dataframe( |
||
509 | """SELECT carrier, |
||
510 | SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
||
511 | FROM supply.egon_scenario_capacities |
||
512 | WHERE carrier= 'urban_central_geo_thermal' |
||
513 | AND scenario_name IN ('eGon2035') |
||
514 | GROUP BY (carrier); |
||
515 | """, |
||
516 | warning=False, |
||
517 | )["urban_central_geo_thermal_mw"].values[0] |
||
518 | |||
519 | output_geo_thermal = db.select_dataframe( |
||
520 | """SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
||
521 | FROM grid.egon_etrago_generator |
||
522 | WHERE carrier= 'geo_thermal' |
||
523 | AND scn_name IN ('eGon2035') |
||
524 | GROUP BY (carrier); |
||
525 | """, |
||
526 | warning=False, |
||
527 | )["geo_thermal_mw"].values[0] |
||
528 | |||
529 | e_geo_thermal = ( |
||
530 | round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
||
531 | * 100 |
||
532 | ) |
||
533 | logger.info(f"'geothermal': {e_geo_thermal} %") |
||
534 | |||
535 | |||
536 | def residential_electricity_annual_sum(rtol=1e-5): |
||
537 | """Sanity check for dataset electricity_demand_timeseries : |
||
538 | Demand_Building_Assignment |
||
539 | |||
540 | Aggregate the annual demand of all census cells at NUTS3 to compare |
||
541 | with initial scaling parameters from DemandRegio. |
||
542 | """ |
||
543 | |||
544 | df_nuts3_annual_sum = db.select_dataframe( |
||
545 | sql=""" |
||
546 | SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
||
547 | FROM ( |
||
548 | SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
||
549 | FROM demand.egon_demandregio_zensus_electricity AS egon, |
||
550 | boundaries.egon_map_zensus_vg250 AS boundaries |
||
551 | Where egon.zensus_population_id = boundaries.zensus_population_id |
||
552 | AND sector = 'residential' |
||
553 | GROUP BY vg250_nuts3, scenario |
||
554 | ) AS profiles |
||
555 | JOIN ( |
||
556 | SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
||
557 | FROM demand.egon_demandregio_hh |
||
558 | GROUP BY year, scenario, nuts3 |
||
559 | ) AS dr |
||
560 | ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
||
561 | """ |
||
562 | ) |
||
563 | |||
564 | np.testing.assert_allclose( |
||
565 | actual=df_nuts3_annual_sum["profile_sum"], |
||
566 | desired=df_nuts3_annual_sum["demand_regio_sum"], |
||
567 | rtol=rtol, |
||
568 | verbose=False, |
||
569 | ) |
||
570 | |||
571 | logger.info( |
||
572 | "Aggregated annual residential electricity demand" |
||
573 | " matches with DemandRegio at NUTS-3." |
||
574 | ) |
||
575 | |||
576 | |||
577 | def residential_electricity_hh_refinement(rtol=1e-5): |
||
578 | """Sanity check for dataset electricity_demand_timeseries : |
||
579 | Household Demands |
||
580 | |||
581 | Check sum of aggregated household types after refinement method |
||
582 | was applied and compare it to the original census values.""" |
||
583 | |||
584 | df_refinement = db.select_dataframe( |
||
585 | sql=""" |
||
586 | SELECT refined.nuts3, refined.characteristics_code, |
||
587 | refined.sum_refined::int, census.sum_census::int |
||
588 | FROM( |
||
589 | SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
||
590 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
591 | GROUP BY nuts3, characteristics_code) |
||
592 | AS refined |
||
593 | JOIN( |
||
594 | SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
||
595 | FROM( |
||
596 | SELECT nuts3, cell_id, characteristics_code, |
||
597 | sum(DISTINCT(hh_5types))as orig |
||
598 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
599 | GROUP BY cell_id, characteristics_code, nuts3) AS t |
||
600 | GROUP BY t.nuts3, t.characteristics_code ) AS census |
||
601 | ON refined.nuts3 = census.nuts3 |
||
602 | AND refined.characteristics_code = census.characteristics_code |
||
603 | """ |
||
604 | ) |
||
605 | |||
606 | np.testing.assert_allclose( |
||
607 | actual=df_refinement["sum_refined"], |
||
608 | desired=df_refinement["sum_census"], |
||
609 | rtol=rtol, |
||
610 | verbose=False, |
||
611 | ) |
||
612 | |||
613 | logger.info("All Aggregated household types match at NUTS-3.") |
||
614 | |||
615 | |||
616 | def cts_electricity_demand_share(rtol=1e-5): |
||
617 | """Sanity check for dataset electricity_demand_timeseries : |
||
618 | CtsBuildings |
||
619 | |||
620 | Check sum of aggregated cts electricity demand share which equals to one |
||
621 | for every substation as the substation profile is linearly disaggregated |
||
622 | to all buildings.""" |
||
623 | |||
624 | with db.session_scope() as session: |
||
625 | cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
||
626 | |||
627 | df_demand_share = pd.read_sql( |
||
628 | cells_query.statement, cells_query.session.bind, index_col=None |
||
629 | ) |
||
630 | |||
631 | np.testing.assert_allclose( |
||
632 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
633 | "profile_share" |
||
634 | ].sum(), |
||
635 | desired=1, |
||
636 | rtol=rtol, |
||
637 | verbose=False, |
||
638 | ) |
||
639 | |||
640 | logger.info("The aggregated demand shares equal to one!.") |
||
641 | |||
642 | |||
643 | def cts_heat_demand_share(rtol=1e-5): |
||
644 | """Sanity check for dataset electricity_demand_timeseries |
||
645 | : CtsBuildings |
||
646 | |||
647 | Check sum of aggregated cts heat demand share which equals to one |
||
648 | for every substation as the substation profile is linearly disaggregated |
||
649 | to all buildings.""" |
||
650 | |||
651 | with db.session_scope() as session: |
||
652 | cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
||
653 | |||
654 | df_demand_share = pd.read_sql( |
||
655 | cells_query.statement, cells_query.session.bind, index_col=None |
||
656 | ) |
||
657 | |||
658 | np.testing.assert_allclose( |
||
659 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
660 | "profile_share" |
||
661 | ].sum(), |
||
662 | desired=1, |
||
663 | rtol=rtol, |
||
664 | verbose=False, |
||
665 | ) |
||
666 | |||
667 | logger.info("The aggregated demand shares equal to one!.") |
||
668 | |||
669 | |||
670 | def sanitycheck_emobility_mit(): |
||
671 | """Execute sanity checks for eMobility: motorized individual travel |
||
672 | |||
673 | Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario |
||
674 | using assertions: |
||
675 | 1. Allocated EV numbers and EVs allocated to grid districts |
||
676 | 2. Trip data (original inout data from simBEV) |
||
677 | 3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
||
678 | |||
679 | Parameters |
||
680 | ---------- |
||
681 | None |
||
682 | |||
683 | Returns |
||
684 | ------- |
||
685 | None |
||
686 | """ |
||
687 | |||
688 | def check_ev_allocation(): |
||
689 | # Get target number for scenario |
||
690 | ev_count_target = scenario_variation_parameters["ev_count"] |
||
691 | print(f" Target count: {str(ev_count_target)}") |
||
692 | |||
693 | # Get allocated numbers |
||
694 | ev_counts_dict = {} |
||
695 | with db.session_scope() as session: |
||
696 | for table, level in zip( |
||
697 | [ |
||
698 | EgonEvCountMvGridDistrict, |
||
699 | EgonEvCountMunicipality, |
||
700 | EgonEvCountRegistrationDistrict, |
||
701 | ], |
||
702 | ["Grid District", "Municipality", "Registration District"], |
||
703 | ): |
||
704 | query = session.query( |
||
705 | func.sum( |
||
706 | table.bev_mini |
||
707 | + table.bev_medium |
||
708 | + table.bev_luxury |
||
709 | + table.phev_mini |
||
710 | + table.phev_medium |
||
711 | + table.phev_luxury |
||
712 | ).label("ev_count") |
||
713 | ).filter( |
||
714 | table.scenario == scenario_name, |
||
715 | table.scenario_variation == scenario_var_name, |
||
716 | ) |
||
717 | |||
718 | ev_counts = pd.read_sql( |
||
719 | query.statement, query.session.bind, index_col=None |
||
720 | ) |
||
721 | ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
||
722 | print( |
||
723 | f" Count table: Total count for level {level} " |
||
724 | f"(table: {table.__table__}): " |
||
725 | f"{str(ev_counts_dict[level])}" |
||
726 | ) |
||
727 | |||
728 | # Compare with scenario target (only if not in testmode) |
||
729 | if TESTMODE_OFF: |
||
730 | for level, count in ev_counts_dict.items(): |
||
731 | np.testing.assert_allclose( |
||
732 | count, |
||
733 | ev_count_target, |
||
734 | rtol=0.0001, |
||
735 | err_msg=f"EV numbers in {level} seems to be flawed.", |
||
736 | ) |
||
737 | else: |
||
738 | print(" Testmode is on, skipping sanity check...") |
||
739 | |||
740 | # Get allocated EVs in grid districts |
||
741 | with db.session_scope() as session: |
||
742 | query = session.query( |
||
743 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
744 | "ev_count" |
||
745 | ), |
||
746 | ).filter( |
||
747 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
748 | EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
||
749 | ) |
||
750 | ev_count_alloc = ( |
||
751 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
752 | .iloc[0] |
||
753 | .ev_count |
||
754 | ) |
||
755 | print( |
||
756 | f" EVs allocated to Grid Districts " |
||
757 | f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
||
758 | f"{str(ev_count_alloc)}" |
||
759 | ) |
||
760 | |||
761 | # Compare with scenario target (only if not in testmode) |
||
762 | if TESTMODE_OFF: |
||
763 | np.testing.assert_allclose( |
||
764 | ev_count_alloc, |
||
765 | ev_count_target, |
||
766 | rtol=0.0001, |
||
767 | err_msg=( |
||
768 | "EV numbers allocated to Grid Districts seems to be flawed." |
||
769 | ), |
||
770 | ) |
||
771 | else: |
||
772 | print(" Testmode is on, skipping sanity check...") |
||
773 | |||
774 | return ev_count_alloc |
||
775 | |||
776 | def check_trip_data(): |
||
777 | # Check if trips start at timestep 0 and have a max. of 35040 steps |
||
778 | # (8760h in 15min steps) |
||
779 | print(" Checking timeranges...") |
||
780 | with db.session_scope() as session: |
||
781 | query = session.query( |
||
782 | func.count(EgonEvTrip.event_id).label("cnt") |
||
783 | ).filter( |
||
784 | or_( |
||
785 | and_( |
||
786 | EgonEvTrip.park_start > 0, |
||
787 | EgonEvTrip.simbev_event_id == 0, |
||
788 | ), |
||
789 | EgonEvTrip.park_end |
||
790 | > (60 / int(meta_run_config.stepsize)) * 8760, |
||
791 | ), |
||
792 | EgonEvTrip.scenario == scenario_name, |
||
793 | ) |
||
794 | invalid_trips = pd.read_sql( |
||
795 | query.statement, query.session.bind, index_col=None |
||
796 | ) |
||
797 | np.testing.assert_equal( |
||
798 | invalid_trips.iloc[0].cnt, |
||
799 | 0, |
||
800 | err_msg=( |
||
801 | f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
||
802 | f"{EgonEvTrip.__table__} have invalid timesteps." |
||
803 | ), |
||
804 | ) |
||
805 | |||
806 | # Check if charging demand can be covered by available charging energy |
||
807 | # while parking |
||
808 | print(" Compare charging demand with available power...") |
||
809 | with db.session_scope() as session: |
||
810 | query = session.query( |
||
811 | func.count(EgonEvTrip.event_id).label("cnt") |
||
812 | ).filter( |
||
813 | func.round( |
||
814 | cast( |
||
815 | (EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
||
816 | * EgonEvTrip.charging_capacity_nominal |
||
817 | * (int(meta_run_config.stepsize) / 60), |
||
818 | Numeric, |
||
819 | ), |
||
820 | 3, |
||
821 | ) |
||
822 | < cast(EgonEvTrip.charging_demand, Numeric), |
||
823 | EgonEvTrip.scenario == scenario_name, |
||
824 | ) |
||
825 | invalid_trips = pd.read_sql( |
||
826 | query.statement, query.session.bind, index_col=None |
||
827 | ) |
||
828 | np.testing.assert_equal( |
||
829 | invalid_trips.iloc[0].cnt, |
||
830 | 0, |
||
831 | err_msg=( |
||
832 | f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
||
833 | f"{EgonEvTrip.__table__}) the charging demand cannot be " |
||
834 | f"covered by available charging power." |
||
835 | ), |
||
836 | ) |
||
837 | |||
838 | def check_model_data(): |
||
839 | # Check if model components were fully created |
||
840 | print(" Check if all model components were created...") |
||
841 | # Get MVGDs which got EV allocated |
||
842 | with db.session_scope() as session: |
||
843 | query = ( |
||
844 | session.query( |
||
845 | EgonEvMvGridDistrict.bus_id, |
||
846 | ) |
||
847 | .filter( |
||
848 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
849 | EgonEvMvGridDistrict.scenario_variation |
||
850 | == scenario_var_name, |
||
851 | ) |
||
852 | .group_by(EgonEvMvGridDistrict.bus_id) |
||
853 | ) |
||
854 | mvgds_with_ev = ( |
||
855 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
856 | .bus_id.sort_values() |
||
857 | .to_list() |
||
858 | ) |
||
859 | |||
860 | # Load model components |
||
861 | with db.session_scope() as session: |
||
862 | query = ( |
||
863 | session.query( |
||
864 | EgonPfHvLink.bus0.label("mvgd_bus_id"), |
||
865 | EgonPfHvLoad.bus.label("emob_bus_id"), |
||
866 | EgonPfHvLoad.load_id.label("load_id"), |
||
867 | EgonPfHvStore.store_id.label("store_id"), |
||
868 | ) |
||
869 | .select_from(EgonPfHvLoad, EgonPfHvStore) |
||
870 | .join( |
||
871 | EgonPfHvLoadTimeseries, |
||
872 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
873 | ) |
||
874 | .join( |
||
875 | EgonPfHvStoreTimeseries, |
||
876 | EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
||
877 | ) |
||
878 | .filter( |
||
879 | EgonPfHvLoad.carrier == "land transport EV", |
||
880 | EgonPfHvLoad.scn_name == scenario_name, |
||
881 | EgonPfHvLoadTimeseries.scn_name == scenario_name, |
||
882 | EgonPfHvStore.carrier == "battery storage", |
||
883 | EgonPfHvStore.scn_name == scenario_name, |
||
884 | EgonPfHvStoreTimeseries.scn_name == scenario_name, |
||
885 | EgonPfHvLink.scn_name == scenario_name, |
||
886 | EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
||
887 | EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
||
888 | ) |
||
889 | ) |
||
890 | model_components = pd.read_sql( |
||
891 | query.statement, query.session.bind, index_col=None |
||
892 | ) |
||
893 | |||
894 | # Check number of buses with model components connected |
||
895 | mvgd_buses_with_ev = model_components.loc[ |
||
896 | model_components.mvgd_bus_id.isin(mvgds_with_ev) |
||
897 | ] |
||
898 | np.testing.assert_equal( |
||
899 | len(mvgds_with_ev), |
||
900 | len(mvgd_buses_with_ev), |
||
901 | err_msg=( |
||
902 | f"Number of Grid Districts with connected model components " |
||
903 | f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
||
904 | f"differ from number of Grid Districts that got EVs " |
||
905 | f"allocated ({len(mvgds_with_ev)} in table " |
||
906 | f"{EgonEvMvGridDistrict.__table__})." |
||
907 | ), |
||
908 | ) |
||
909 | |||
910 | # Check if all required components exist (if no id is NaN) |
||
911 | np.testing.assert_equal( |
||
912 | model_components.drop_duplicates().isna().any().any(), |
||
913 | False, |
||
914 | err_msg=( |
||
915 | f"Some components are missing (see True values): " |
||
916 | f"{model_components.drop_duplicates().isna().any()}" |
||
917 | ), |
||
918 | ) |
||
919 | |||
920 | # Get all model timeseries |
||
921 | print(" Loading model timeseries...") |
||
922 | # Get all model timeseries |
||
923 | model_ts_dict = { |
||
924 | "Load": { |
||
925 | "carrier": "land transport EV", |
||
926 | "table": EgonPfHvLoad, |
||
927 | "table_ts": EgonPfHvLoadTimeseries, |
||
928 | "column_id": "load_id", |
||
929 | "columns_ts": ["p_set"], |
||
930 | "ts": None, |
||
931 | }, |
||
932 | "Link": { |
||
933 | "carrier": "BEV charger", |
||
934 | "table": EgonPfHvLink, |
||
935 | "table_ts": EgonPfHvLinkTimeseries, |
||
936 | "column_id": "link_id", |
||
937 | "columns_ts": ["p_max_pu"], |
||
938 | "ts": None, |
||
939 | }, |
||
940 | "Store": { |
||
941 | "carrier": "battery storage", |
||
942 | "table": EgonPfHvStore, |
||
943 | "table_ts": EgonPfHvStoreTimeseries, |
||
944 | "column_id": "store_id", |
||
945 | "columns_ts": ["e_min_pu", "e_max_pu"], |
||
946 | "ts": None, |
||
947 | }, |
||
948 | } |
||
949 | |||
950 | with db.session_scope() as session: |
||
951 | for node, attrs in model_ts_dict.items(): |
||
952 | print(f" Loading {node} timeseries...") |
||
953 | subquery = ( |
||
954 | session.query( |
||
955 | getattr(attrs["table"], attrs["column_id"]) |
||
956 | ) |
||
957 | .filter(attrs["table"].carrier == attrs["carrier"]) |
||
958 | .filter(attrs["table"].scn_name == scenario_name) |
||
959 | .subquery() |
||
960 | ) |
||
961 | |||
962 | cols = [ |
||
963 | getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
||
964 | ] |
||
965 | query = session.query( |
||
966 | getattr(attrs["table_ts"], attrs["column_id"]), *cols |
||
967 | ).filter( |
||
968 | getattr(attrs["table_ts"], attrs["column_id"]).in_( |
||
969 | subquery |
||
970 | ), |
||
971 | attrs["table_ts"].scn_name == scenario_name, |
||
972 | ) |
||
973 | attrs["ts"] = pd.read_sql( |
||
974 | query.statement, |
||
975 | query.session.bind, |
||
976 | index_col=attrs["column_id"], |
||
977 | ) |
||
978 | |||
979 | # Check if all timeseries have 8760 steps |
||
980 | print(" Checking timeranges...") |
||
981 | for node, attrs in model_ts_dict.items(): |
||
982 | for col in attrs["columns_ts"]: |
||
983 | ts = attrs["ts"] |
||
984 | invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
||
985 | col |
||
986 | ].apply(len) |
||
987 | np.testing.assert_equal( |
||
988 | len(invalid_ts), |
||
989 | 0, |
||
990 | err_msg=( |
||
991 | f"{str(len(invalid_ts))} rows in timeseries do not " |
||
992 | f"have 8760 timesteps. Table: " |
||
993 | f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
||
994 | f"{str(list(invalid_ts.index))}" |
||
995 | ), |
||
996 | ) |
||
997 | |||
998 | # Compare total energy demand in model with some approximate values |
||
999 | # (per EV: 14,000 km/a, 0.17 kWh/km) |
||
1000 | print(" Checking energy demand in model...") |
||
1001 | total_energy_model = ( |
||
1002 | model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
||
1003 | / 1e6 |
||
1004 | ) |
||
1005 | print(f" Total energy amount in model: {total_energy_model} TWh") |
||
1006 | total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
||
1007 | print( |
||
1008 | f" Total approximated energy amount in scenario: " |
||
1009 | f"{total_energy_scenario_approx} TWh" |
||
1010 | ) |
||
1011 | np.testing.assert_allclose( |
||
1012 | total_energy_model, |
||
1013 | total_energy_scenario_approx, |
||
1014 | rtol=0.1, |
||
1015 | err_msg=( |
||
1016 | "The total energy amount in the model deviates heavily " |
||
1017 | "from the approximated value for current scenario." |
||
1018 | ), |
||
1019 | ) |
||
1020 | |||
1021 | # Compare total storage capacity |
||
1022 | print(" Checking storage capacity...") |
||
1023 | # Load storage capacities from model |
||
1024 | with db.session_scope() as session: |
||
1025 | query = session.query( |
||
1026 | func.sum(EgonPfHvStore.e_nom).label("e_nom") |
||
1027 | ).filter( |
||
1028 | EgonPfHvStore.scn_name == scenario_name, |
||
1029 | EgonPfHvStore.carrier == "battery storage", |
||
1030 | ) |
||
1031 | storage_capacity_model = ( |
||
1032 | pd.read_sql( |
||
1033 | query.statement, query.session.bind, index_col=None |
||
1034 | ).e_nom.sum() |
||
1035 | / 1e3 |
||
1036 | ) |
||
1037 | print( |
||
1038 | f" Total storage capacity ({EgonPfHvStore.__table__}): " |
||
1039 | f"{round(storage_capacity_model, 1)} GWh" |
||
1040 | ) |
||
1041 | |||
1042 | # Load occurences of each EV |
||
1043 | with db.session_scope() as session: |
||
1044 | query = ( |
||
1045 | session.query( |
||
1046 | EgonEvMvGridDistrict.bus_id, |
||
1047 | EgonEvPool.type, |
||
1048 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
1049 | "count" |
||
1050 | ), |
||
1051 | ) |
||
1052 | .join( |
||
1053 | EgonEvPool, |
||
1054 | EgonEvPool.ev_id |
||
1055 | == EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
||
1056 | ) |
||
1057 | .filter( |
||
1058 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
1059 | EgonEvMvGridDistrict.scenario_variation |
||
1060 | == scenario_var_name, |
||
1061 | EgonEvPool.scenario == scenario_name, |
||
1226 |