|
1
|
|
|
""" |
|
2
|
|
|
Generate timeseries for eTraGo and pypsa-eur-sec |
|
3
|
|
|
|
|
4
|
|
|
Call order |
|
5
|
|
|
* generate_model_data_eGon2035() / generate_model_data_eGon100RE() |
|
6
|
|
|
* generate_model_data() |
|
7
|
|
|
* generate_model_data_grid_district() |
|
8
|
|
|
* load_evs_trips() |
|
9
|
|
|
* data_preprocessing() |
|
10
|
|
|
* generate_load_time_series() |
|
11
|
|
|
* write_model_data_to_db() |
|
12
|
|
|
|
|
13
|
|
|
Notes |
|
14
|
|
|
----- |
|
15
|
|
|
# TODO REWORK |
|
16
|
|
|
Share of EV with access to private charging infrastructure (`flex_share`) for |
|
17
|
|
|
use cases work and home are not supported by simBEV v0.1.2 and are applied here |
|
18
|
|
|
(after simulation). Applying those fixed shares post-simulation introduces |
|
19
|
|
|
small errors compared to application during simBEV's trip generation. |
|
20
|
|
|
|
|
21
|
|
|
Values (cf. `flex_share` in scenario parameters |
|
22
|
|
|
:func:`egon.data.datasets.scenario_parameters.parameters.mobility`) were |
|
23
|
|
|
linearly extrapolated based upon |
|
24
|
|
|
https://nationale-leitstelle.de/wp-content/pdf/broschuere-lis-2025-2030-final.pdf |
|
25
|
|
|
(p.92): |
|
26
|
|
|
* eGon2035: home=0.8, work=1.0 |
|
27
|
|
|
* eGon100RE: home=1.0, work=1.0 |
|
28
|
|
|
""" |
|
29
|
|
|
|
|
30
|
|
|
from collections import Counter |
|
31
|
|
|
from pathlib import Path |
|
32
|
|
|
import datetime as dt |
|
33
|
|
|
import json |
|
34
|
|
|
|
|
35
|
|
|
from sqlalchemy.sql import func |
|
36
|
|
|
import numpy as np |
|
37
|
|
|
import pandas as pd |
|
38
|
|
|
|
|
39
|
|
|
from egon.data import db |
|
40
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
|
41
|
|
|
EgonEvMvGridDistrict, |
|
42
|
|
|
EgonEvPool, |
|
43
|
|
|
EgonEvTrip, |
|
44
|
|
|
) |
|
45
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
|
46
|
|
|
DATASET_CFG, |
|
47
|
|
|
MVGD_MIN_COUNT, |
|
48
|
|
|
WORKING_DIR, |
|
49
|
|
|
read_simbev_metadata_file, |
|
50
|
|
|
reduce_mem_usage, |
|
51
|
|
|
) |
|
52
|
|
|
from egon.data.datasets.etrago_setup import ( |
|
53
|
|
|
EgonPfHvBus, |
|
54
|
|
|
EgonPfHvLink, |
|
55
|
|
|
EgonPfHvLinkTimeseries, |
|
56
|
|
|
EgonPfHvLoad, |
|
57
|
|
|
EgonPfHvLoadTimeseries, |
|
58
|
|
|
EgonPfHvStore, |
|
59
|
|
|
EgonPfHvStoreTimeseries, |
|
60
|
|
|
) |
|
61
|
|
|
from egon.data.datasets.mv_grid_districts import MvGridDistricts |
|
62
|
|
|
|
|
63
|
|
|
|
|
64
|
|
|
def data_preprocessing( |
|
65
|
|
|
scenario_data: pd.DataFrame, ev_data_df: pd.DataFrame |
|
66
|
|
|
) -> pd.DataFrame: |
|
67
|
|
|
"""Filter SimBEV data to match region requirements. Duplicates profiles |
|
68
|
|
|
if necessary. Pre-calculates necessary parameters for the load time series. |
|
69
|
|
|
|
|
70
|
|
|
Parameters |
|
71
|
|
|
---------- |
|
72
|
|
|
scenario_data : pd.Dataframe |
|
73
|
|
|
EV per grid district |
|
74
|
|
|
ev_data_df : pd.Dataframe |
|
75
|
|
|
Trip data |
|
76
|
|
|
|
|
77
|
|
|
Returns |
|
78
|
|
|
------- |
|
79
|
|
|
pd.Dataframe |
|
80
|
|
|
Trip data |
|
81
|
|
|
""" |
|
82
|
|
|
# get ev data for given profiles |
|
83
|
|
|
ev_data_df = ev_data_df.loc[ |
|
84
|
|
|
ev_data_df.ev_id.isin(scenario_data.ev_id.unique()) |
|
85
|
|
|
] |
|
86
|
|
|
|
|
87
|
|
|
# drop faulty data |
|
88
|
|
|
ev_data_df = ev_data_df.loc[ev_data_df.park_start <= ev_data_df.park_end] |
|
89
|
|
|
|
|
90
|
|
|
# calculate time necessary to fulfill the charging demand and brutto |
|
91
|
|
|
# charging capacity in MVA |
|
92
|
|
|
ev_data_df = ev_data_df.assign( |
|
93
|
|
|
charging_capacity_grid_MW=( |
|
94
|
|
|
ev_data_df.charging_capacity_grid / 10**3 |
|
95
|
|
|
), |
|
96
|
|
|
minimum_charging_time=( |
|
97
|
|
|
ev_data_df.charging_demand |
|
98
|
|
|
/ ev_data_df.charging_capacity_nominal |
|
99
|
|
|
* 4 |
|
100
|
|
|
), |
|
101
|
|
|
location=ev_data_df.location.str.replace("/", "_"), |
|
102
|
|
|
) |
|
103
|
|
|
|
|
104
|
|
|
# fix driving events |
|
105
|
|
|
ev_data_df.minimum_charging_time.fillna(0, inplace=True) |
|
106
|
|
|
|
|
107
|
|
|
# calculate charging capacity for last timestep |
|
108
|
|
|
( |
|
109
|
|
|
full_timesteps, |
|
110
|
|
|
last_timestep_share, |
|
111
|
|
|
) = ev_data_df.minimum_charging_time.divmod(1) |
|
112
|
|
|
|
|
113
|
|
|
full_timesteps = full_timesteps.astype(int) |
|
114
|
|
|
|
|
115
|
|
|
ev_data_df = ev_data_df.assign( |
|
116
|
|
|
full_timesteps=full_timesteps, |
|
117
|
|
|
last_timestep_share=last_timestep_share, |
|
118
|
|
|
last_timestep_charging_capacity_grid_MW=( |
|
119
|
|
|
last_timestep_share * ev_data_df.charging_capacity_grid_MW |
|
120
|
|
|
), |
|
121
|
|
|
charge_end=ev_data_df.park_start + full_timesteps, |
|
122
|
|
|
last_timestep=ev_data_df.park_start + full_timesteps, |
|
123
|
|
|
) |
|
124
|
|
|
|
|
125
|
|
|
# Calculate flexible charging capacity: |
|
126
|
|
|
# only for private charging facilities at home and work |
|
127
|
|
|
mask_work = (ev_data_df.location == "0_work") & ( |
|
128
|
|
|
ev_data_df.use_case == "work" |
|
129
|
|
|
) |
|
130
|
|
|
mask_home = (ev_data_df.location == "6_home") & ( |
|
131
|
|
|
ev_data_df.use_case == "home" |
|
132
|
|
|
) |
|
133
|
|
|
|
|
134
|
|
|
ev_data_df["flex_charging_capacity_grid_MW"] = 0 |
|
135
|
|
|
ev_data_df.loc[ |
|
136
|
|
|
mask_work | mask_home, "flex_charging_capacity_grid_MW" |
|
137
|
|
|
] = ev_data_df.loc[mask_work | mask_home, "charging_capacity_grid_MW"] |
|
138
|
|
|
|
|
139
|
|
|
ev_data_df["flex_last_timestep_charging_capacity_grid_MW"] = 0 |
|
140
|
|
|
ev_data_df.loc[ |
|
141
|
|
|
mask_work | mask_home, "flex_last_timestep_charging_capacity_grid_MW" |
|
142
|
|
|
] = ev_data_df.loc[ |
|
143
|
|
|
mask_work | mask_home, "last_timestep_charging_capacity_grid_MW" |
|
144
|
|
|
] |
|
145
|
|
|
|
|
146
|
|
|
# Check length of timeseries |
|
147
|
|
|
if len(ev_data_df.loc[ev_data_df.last_timestep > 35040]) > 0: |
|
148
|
|
|
print(" Warning: Trip data exceeds 1 year and is cropped.") |
|
149
|
|
|
# Correct last TS |
|
150
|
|
|
ev_data_df.loc[ |
|
151
|
|
|
ev_data_df.last_timestep > 35040, "last_timestep" |
|
152
|
|
|
] = 35040 |
|
153
|
|
|
|
|
154
|
|
|
if DATASET_CFG["model_timeseries"]["reduce_memory"]: |
|
155
|
|
|
return reduce_mem_usage(ev_data_df) |
|
156
|
|
|
|
|
157
|
|
|
return ev_data_df |
|
158
|
|
|
|
|
159
|
|
|
|
|
160
|
|
|
def generate_load_time_series( |
|
161
|
|
|
ev_data_df: pd.DataFrame, |
|
162
|
|
|
run_config: pd.DataFrame, |
|
163
|
|
|
scenario_data: pd.DataFrame, |
|
164
|
|
|
) -> pd.DataFrame: |
|
165
|
|
|
"""Calculate the load time series from the given trip data. A dumb |
|
166
|
|
|
charging strategy is assumed where each EV starts charging immediately |
|
167
|
|
|
after plugging it in. Simultaneously the flexible charging capacity is |
|
168
|
|
|
calculated. |
|
169
|
|
|
|
|
170
|
|
|
Parameters |
|
171
|
|
|
---------- |
|
172
|
|
|
ev_data_df : pd.DataFrame |
|
173
|
|
|
Full trip data |
|
174
|
|
|
run_config : pd.DataFrame |
|
175
|
|
|
simBEV metadata: run config |
|
176
|
|
|
scenario_data : pd.Dataframe |
|
177
|
|
|
EV per grid district |
|
178
|
|
|
|
|
179
|
|
|
Returns |
|
180
|
|
|
------- |
|
181
|
|
|
pd.DataFrame |
|
182
|
|
|
time series of the load and the flex potential |
|
183
|
|
|
""" |
|
184
|
|
|
# Get duplicates dict |
|
185
|
|
|
profile_counter = Counter(scenario_data.ev_id) |
|
186
|
|
|
|
|
187
|
|
|
# instantiate timeindex |
|
188
|
|
|
timeindex = pd.date_range( |
|
189
|
|
|
start=dt.datetime.fromisoformat(f"{run_config.start_date} 00:00:00"), |
|
190
|
|
|
end=dt.datetime.fromisoformat(f"{run_config.end_date} 23:45:00") |
|
191
|
|
|
+ dt.timedelta(minutes=int(run_config.stepsize)), |
|
192
|
|
|
freq=f"{int(run_config.stepsize)}Min", |
|
193
|
|
|
) |
|
194
|
|
|
|
|
195
|
|
|
load_time_series_df = pd.DataFrame( |
|
196
|
|
|
data=0.0, |
|
197
|
|
|
index=timeindex, |
|
198
|
|
|
columns=["load_time_series", "flex_time_series"], |
|
199
|
|
|
) |
|
200
|
|
|
|
|
201
|
|
|
load_time_series_array = np.zeros(len(load_time_series_df)) |
|
202
|
|
|
flex_time_series_array = load_time_series_array.copy() |
|
203
|
|
|
simultaneous_plugged_in_charging_capacity = load_time_series_array.copy() |
|
204
|
|
|
simultaneous_plugged_in_charging_capacity_flex = ( |
|
205
|
|
|
load_time_series_array.copy() |
|
206
|
|
|
) |
|
207
|
|
|
soc_min_absolute = load_time_series_array.copy() |
|
208
|
|
|
soc_max_absolute = load_time_series_array.copy() |
|
209
|
|
|
driving_load_time_series_array = load_time_series_array.copy() |
|
210
|
|
|
|
|
211
|
|
|
columns = [ |
|
212
|
|
|
"ev_id", |
|
213
|
|
|
"drive_start", |
|
214
|
|
|
"drive_end", |
|
215
|
|
|
"park_start", |
|
216
|
|
|
"park_end", |
|
217
|
|
|
"charge_end", |
|
218
|
|
|
"charging_capacity_grid_MW", |
|
219
|
|
|
"last_timestep", |
|
220
|
|
|
"last_timestep_charging_capacity_grid_MW", |
|
221
|
|
|
"flex_charging_capacity_grid_MW", |
|
222
|
|
|
"flex_last_timestep_charging_capacity_grid_MW", |
|
223
|
|
|
"soc_start", |
|
224
|
|
|
"soc_end", |
|
225
|
|
|
"bat_cap", |
|
226
|
|
|
"location", |
|
227
|
|
|
"consumption", |
|
228
|
|
|
] |
|
229
|
|
|
|
|
230
|
|
|
# iterate over charging events |
|
231
|
|
|
for ( |
|
232
|
|
|
_, |
|
233
|
|
|
ev_id, |
|
234
|
|
|
drive_start, |
|
235
|
|
|
drive_end, |
|
236
|
|
|
start, |
|
237
|
|
|
park_end, |
|
238
|
|
|
end, |
|
239
|
|
|
cap, |
|
240
|
|
|
last_ts, |
|
241
|
|
|
last_ts_cap, |
|
242
|
|
|
flex_cap, |
|
243
|
|
|
flex_last_ts_cap, |
|
244
|
|
|
soc_start, |
|
245
|
|
|
soc_end, |
|
246
|
|
|
bat_cap, |
|
247
|
|
|
location, |
|
248
|
|
|
consumption, |
|
249
|
|
|
) in ev_data_df[columns].itertuples(): |
|
250
|
|
|
ev_count = profile_counter[ev_id] |
|
251
|
|
|
|
|
252
|
|
|
load_time_series_array[start:end] += cap * ev_count |
|
253
|
|
|
load_time_series_array[last_ts] += last_ts_cap * ev_count |
|
254
|
|
|
|
|
255
|
|
|
flex_time_series_array[start:end] += flex_cap * ev_count |
|
256
|
|
|
flex_time_series_array[last_ts] += flex_last_ts_cap * ev_count |
|
257
|
|
|
|
|
258
|
|
|
simultaneous_plugged_in_charging_capacity[start : park_end + 1] += ( |
|
259
|
|
|
cap * ev_count |
|
260
|
|
|
) |
|
261
|
|
|
simultaneous_plugged_in_charging_capacity_flex[ |
|
262
|
|
|
start : park_end + 1 |
|
263
|
|
|
] += (flex_cap * ev_count) |
|
264
|
|
|
|
|
265
|
|
|
# ==================================================== |
|
266
|
|
|
# min and max SoC constraints of aggregated EV battery |
|
267
|
|
|
# ==================================================== |
|
268
|
|
|
# (I) Preserve SoC while driving |
|
269
|
|
|
if location == "driving": |
|
270
|
|
|
# Full band while driving |
|
271
|
|
|
# soc_min_absolute[drive_start:drive_end+1] += |
|
272
|
|
|
# soc_end * bat_cap * ev_count |
|
273
|
|
|
# |
|
274
|
|
|
# soc_max_absolute[drive_start:drive_end+1] += |
|
275
|
|
|
# soc_start * bat_cap * ev_count |
|
276
|
|
|
|
|
277
|
|
|
# Real band (decrease SoC while driving) |
|
278
|
|
|
soc_min_absolute[drive_start : drive_end + 1] += ( |
|
279
|
|
|
np.linspace(soc_start, soc_end, drive_end - drive_start + 2)[ |
|
280
|
|
|
1: |
|
281
|
|
|
] |
|
282
|
|
|
* bat_cap |
|
283
|
|
|
* ev_count |
|
284
|
|
|
) |
|
285
|
|
|
soc_max_absolute[drive_start : drive_end + 1] += ( |
|
286
|
|
|
np.linspace(soc_start, soc_end, drive_end - drive_start + 2)[ |
|
287
|
|
|
1: |
|
288
|
|
|
] |
|
289
|
|
|
* bat_cap |
|
290
|
|
|
* ev_count |
|
291
|
|
|
) |
|
292
|
|
|
|
|
293
|
|
|
# Equal distribution of driving load |
|
294
|
|
|
if soc_start > soc_end: # reqd. for PHEV |
|
295
|
|
|
driving_load_time_series_array[ |
|
296
|
|
|
drive_start : drive_end + 1 |
|
297
|
|
|
] += (consumption * ev_count) / (drive_end - drive_start + 1) |
|
298
|
|
|
|
|
299
|
|
|
# (II) Fix SoC bounds while parking w/o charging |
|
300
|
|
|
elif soc_start == soc_end: |
|
301
|
|
|
soc_min_absolute[start : park_end + 1] += ( |
|
302
|
|
|
soc_start * bat_cap * ev_count |
|
303
|
|
|
) |
|
304
|
|
|
soc_max_absolute[start : park_end + 1] += ( |
|
305
|
|
|
soc_end * bat_cap * ev_count |
|
306
|
|
|
) |
|
307
|
|
|
|
|
308
|
|
|
# (III) Set SoC bounds at start and end of parking while charging |
|
309
|
|
|
# for flexible and non-flexible events |
|
310
|
|
|
elif soc_start < soc_end: |
|
311
|
|
|
if flex_cap > 0: |
|
312
|
|
|
# * "flex" (private charging only, band: SoC_min..SoC_max) |
|
313
|
|
|
soc_min_absolute[start : park_end + 1] += ( |
|
314
|
|
|
soc_start * bat_cap * ev_count |
|
315
|
|
|
) |
|
316
|
|
|
soc_max_absolute[start : park_end + 1] += ( |
|
317
|
|
|
soc_end * bat_cap * ev_count |
|
318
|
|
|
) |
|
319
|
|
|
|
|
320
|
|
|
# * "flex+" (private charging only, band: 0..1) |
|
321
|
|
|
# (IF USED: add elif with flex scenario) |
|
322
|
|
|
# soc_min_absolute[start] += soc_start * bat_cap * ev_count |
|
323
|
|
|
# soc_max_absolute[start] += soc_start * bat_cap * ev_count |
|
324
|
|
|
# soc_min_absolute[park_end] += soc_end * bat_cap * ev_count |
|
325
|
|
|
# soc_max_absolute[park_end] += soc_end * bat_cap * ev_count |
|
326
|
|
|
|
|
327
|
|
|
# * Set SoC bounds for non-flexible charging (increase SoC while |
|
328
|
|
|
# charging) |
|
329
|
|
|
# (SKIP THIS PART for "flex++" (private+public charging)) |
|
330
|
|
|
elif flex_cap == 0: |
|
331
|
|
|
soc_min_absolute[start : park_end + 1] += ( |
|
332
|
|
|
np.linspace(soc_start, soc_end, park_end - start + 1) |
|
333
|
|
|
* bat_cap |
|
334
|
|
|
* ev_count |
|
335
|
|
|
) |
|
336
|
|
|
soc_max_absolute[start : park_end + 1] += ( |
|
337
|
|
|
np.linspace(soc_start, soc_end, park_end - start + 1) |
|
338
|
|
|
* bat_cap |
|
339
|
|
|
* ev_count |
|
340
|
|
|
) |
|
341
|
|
|
|
|
342
|
|
|
# Build timeseries |
|
343
|
|
|
load_time_series_df = load_time_series_df.assign( |
|
344
|
|
|
load_time_series=load_time_series_array, |
|
345
|
|
|
flex_time_series=flex_time_series_array, |
|
346
|
|
|
simultaneous_plugged_in_charging_capacity=( |
|
347
|
|
|
simultaneous_plugged_in_charging_capacity |
|
348
|
|
|
), |
|
349
|
|
|
simultaneous_plugged_in_charging_capacity_flex=( |
|
350
|
|
|
simultaneous_plugged_in_charging_capacity_flex |
|
351
|
|
|
), |
|
352
|
|
|
soc_min_absolute=(soc_min_absolute / 1e3), |
|
353
|
|
|
soc_max_absolute=(soc_max_absolute / 1e3), |
|
354
|
|
|
driving_load_time_series=driving_load_time_series_array / 1e3, |
|
355
|
|
|
) |
|
356
|
|
|
|
|
357
|
|
|
# validate load timeseries |
|
358
|
|
|
np.testing.assert_almost_equal( |
|
359
|
|
|
load_time_series_df.load_time_series.sum() / 4, |
|
360
|
|
|
( |
|
361
|
|
|
ev_data_df.ev_id.apply(lambda _: profile_counter[_]) |
|
362
|
|
|
* ev_data_df.charging_demand |
|
363
|
|
|
).sum() |
|
364
|
|
|
/ 1000 |
|
365
|
|
|
/ float(run_config.eta_cp), |
|
366
|
|
|
decimal=-1, |
|
367
|
|
|
) |
|
368
|
|
|
|
|
369
|
|
|
if DATASET_CFG["model_timeseries"]["reduce_memory"]: |
|
370
|
|
|
return reduce_mem_usage(load_time_series_df) |
|
371
|
|
|
return load_time_series_df |
|
372
|
|
|
|
|
373
|
|
|
|
|
374
|
|
|
def generate_static_params( |
|
375
|
|
|
ev_data_df: pd.DataFrame, |
|
376
|
|
|
load_time_series_df: pd.DataFrame, |
|
377
|
|
|
evs_grid_district_df: pd.DataFrame, |
|
378
|
|
|
) -> dict: |
|
379
|
|
|
"""Calculate static parameters from trip data. |
|
380
|
|
|
|
|
381
|
|
|
* cumulative initial SoC |
|
382
|
|
|
* cumulative battery capacity |
|
383
|
|
|
* simultaneous plugged in charging capacity |
|
384
|
|
|
|
|
385
|
|
|
Parameters |
|
386
|
|
|
---------- |
|
387
|
|
|
ev_data_df : pd.DataFrame |
|
388
|
|
|
Fill trip data |
|
389
|
|
|
|
|
390
|
|
|
Returns |
|
391
|
|
|
------- |
|
392
|
|
|
dict |
|
393
|
|
|
Static parameters |
|
394
|
|
|
""" |
|
395
|
|
|
max_df = ( |
|
396
|
|
|
ev_data_df[["ev_id", "bat_cap", "charging_capacity_grid_MW"]] |
|
397
|
|
|
.groupby("ev_id") |
|
398
|
|
|
.max() |
|
399
|
|
|
) |
|
400
|
|
|
|
|
401
|
|
|
# Get EV duplicates dict and weight battery capacity |
|
402
|
|
|
max_df["bat_cap"] = max_df.bat_cap.mul( |
|
403
|
|
|
pd.Series(Counter(evs_grid_district_df.ev_id)) |
|
404
|
|
|
) |
|
405
|
|
|
|
|
406
|
|
|
static_params_dict = { |
|
407
|
|
|
"store_ev_battery.e_nom_MWh": float(max_df.bat_cap.sum() / 1e3), |
|
408
|
|
|
"link_bev_charger.p_nom_MW": float( |
|
409
|
|
|
load_time_series_df.simultaneous_plugged_in_charging_capacity.max() |
|
410
|
|
|
), |
|
411
|
|
|
} |
|
412
|
|
|
|
|
413
|
|
|
return static_params_dict |
|
414
|
|
|
|
|
415
|
|
|
|
|
416
|
|
|
def load_evs_trips( |
|
417
|
|
|
scenario_name: str, |
|
418
|
|
|
evs_ids: list, |
|
419
|
|
|
charging_events_only: bool = False, |
|
420
|
|
|
flex_only_at_charging_events: bool = True, |
|
421
|
|
|
) -> pd.DataFrame: |
|
422
|
|
|
"""Load trips for EVs |
|
423
|
|
|
|
|
424
|
|
|
Parameters |
|
425
|
|
|
---------- |
|
426
|
|
|
scenario_name : str |
|
427
|
|
|
Scenario name |
|
428
|
|
|
evs_ids : list of int |
|
429
|
|
|
IDs of EV to load the trips for |
|
430
|
|
|
charging_events_only : bool |
|
431
|
|
|
Load only events where charging takes place |
|
432
|
|
|
flex_only_at_charging_events : bool |
|
433
|
|
|
Flexibility only at charging events. If False, flexibility is provided |
|
434
|
|
|
by plugged-in EVs even if no charging takes place. |
|
435
|
|
|
|
|
436
|
|
|
Returns |
|
437
|
|
|
------- |
|
438
|
|
|
pd.DataFrame |
|
439
|
|
|
Trip data |
|
440
|
|
|
""" |
|
441
|
|
|
# Select only charigung events |
|
442
|
|
|
if charging_events_only is True: |
|
443
|
|
|
charging_condition = EgonEvTrip.charging_demand > 0 |
|
444
|
|
|
else: |
|
445
|
|
|
charging_condition = EgonEvTrip.charging_demand >= 0 |
|
446
|
|
|
|
|
447
|
|
|
with db.session_scope() as session: |
|
448
|
|
|
query = ( |
|
449
|
|
|
session.query( |
|
450
|
|
|
EgonEvTrip.egon_ev_pool_ev_id.label("ev_id"), |
|
451
|
|
|
EgonEvTrip.location, |
|
452
|
|
|
EgonEvTrip.use_case, |
|
453
|
|
|
EgonEvTrip.charging_capacity_nominal, |
|
454
|
|
|
EgonEvTrip.charging_capacity_grid, |
|
455
|
|
|
EgonEvTrip.charging_capacity_battery, |
|
456
|
|
|
EgonEvTrip.soc_start, |
|
457
|
|
|
EgonEvTrip.soc_end, |
|
458
|
|
|
EgonEvTrip.charging_demand, |
|
459
|
|
|
EgonEvTrip.park_start, |
|
460
|
|
|
EgonEvTrip.park_end, |
|
461
|
|
|
EgonEvTrip.drive_start, |
|
462
|
|
|
EgonEvTrip.drive_end, |
|
463
|
|
|
EgonEvTrip.consumption, |
|
464
|
|
|
EgonEvPool.type, |
|
465
|
|
|
) |
|
466
|
|
|
.join( |
|
467
|
|
|
EgonEvPool, EgonEvPool.ev_id == EgonEvTrip.egon_ev_pool_ev_id |
|
468
|
|
|
) |
|
469
|
|
|
.filter(EgonEvTrip.egon_ev_pool_ev_id.in_(evs_ids)) |
|
470
|
|
|
.filter(EgonEvTrip.scenario == scenario_name) |
|
471
|
|
|
.filter(EgonEvPool.scenario == scenario_name) |
|
472
|
|
|
.filter(charging_condition) |
|
473
|
|
|
.order_by( |
|
474
|
|
|
EgonEvTrip.egon_ev_pool_ev_id, EgonEvTrip.simbev_event_id |
|
475
|
|
|
) |
|
476
|
|
|
) |
|
477
|
|
|
|
|
478
|
|
|
trip_data = pd.read_sql( |
|
479
|
|
|
query.statement, query.session.bind, index_col=None |
|
480
|
|
|
).astype( |
|
481
|
|
|
{ |
|
482
|
|
|
"ev_id": "int", |
|
483
|
|
|
"park_start": "int", |
|
484
|
|
|
"park_end": "int", |
|
485
|
|
|
"drive_start": "int", |
|
486
|
|
|
"drive_end": "int", |
|
487
|
|
|
} |
|
488
|
|
|
) |
|
489
|
|
|
|
|
490
|
|
|
if flex_only_at_charging_events is True: |
|
491
|
|
|
# ASSUMPTION: set charging cap 0 where there's no demand |
|
492
|
|
|
# (discard other plugged-in times) |
|
493
|
|
|
mask = trip_data.charging_demand == 0 |
|
494
|
|
|
trip_data.loc[mask, "charging_capacity_nominal"] = 0 |
|
495
|
|
|
trip_data.loc[mask, "charging_capacity_grid"] = 0 |
|
496
|
|
|
trip_data.loc[mask, "charging_capacity_battery"] = 0 |
|
497
|
|
|
|
|
498
|
|
|
return trip_data |
|
499
|
|
|
|
|
500
|
|
|
|
|
501
|
|
|
def write_model_data_to_db( |
|
502
|
|
|
static_params_dict: dict, |
|
503
|
|
|
load_time_series_df: pd.DataFrame, |
|
504
|
|
|
bus_id: int, |
|
505
|
|
|
scenario_name: str, |
|
506
|
|
|
run_config: pd.DataFrame, |
|
507
|
|
|
bat_cap: pd.DataFrame, |
|
508
|
|
|
) -> None: |
|
509
|
|
|
"""Write all results for grid district to database |
|
510
|
|
|
|
|
511
|
|
|
Parameters |
|
512
|
|
|
---------- |
|
513
|
|
|
static_params_dict : dict |
|
514
|
|
|
Static model params |
|
515
|
|
|
load_time_series_df : pd.DataFrame |
|
516
|
|
|
Load time series for grid district |
|
517
|
|
|
bus_id : int |
|
518
|
|
|
ID of grid district |
|
519
|
|
|
scenario_name : str |
|
520
|
|
|
Scenario name |
|
521
|
|
|
run_config : pd.DataFrame |
|
522
|
|
|
simBEV metadata: run config |
|
523
|
|
|
bat_cap : pd.DataFrame |
|
524
|
|
|
Battery capacities per EV type |
|
525
|
|
|
|
|
526
|
|
|
Returns |
|
527
|
|
|
------- |
|
528
|
|
|
None |
|
529
|
|
|
""" |
|
530
|
|
|
|
|
531
|
|
|
def calc_initial_ev_soc(bus_id: int, scenario_name: str) -> pd.DataFrame: |
|
532
|
|
|
"""Calculate an average initial state of charge for EVs in MV grid |
|
533
|
|
|
district. |
|
534
|
|
|
|
|
535
|
|
|
This is done by weighting the initial SoCs at timestep=0 with EV count |
|
536
|
|
|
and battery capacity for each EV type. |
|
537
|
|
|
""" |
|
538
|
|
|
with db.session_scope() as session: |
|
539
|
|
|
query_ev_soc = ( |
|
540
|
|
|
session.query( |
|
541
|
|
|
EgonEvPool.type, |
|
542
|
|
|
func.count(EgonEvTrip.egon_ev_pool_ev_id).label( |
|
543
|
|
|
"ev_count" |
|
544
|
|
|
), |
|
545
|
|
|
func.avg(EgonEvTrip.soc_start).label("ev_soc_start"), |
|
546
|
|
|
) |
|
547
|
|
|
.select_from(EgonEvTrip) |
|
548
|
|
|
.join( |
|
549
|
|
|
EgonEvPool, |
|
550
|
|
|
EgonEvPool.ev_id == EgonEvTrip.egon_ev_pool_ev_id, |
|
551
|
|
|
) |
|
552
|
|
|
.join( |
|
553
|
|
|
EgonEvMvGridDistrict, |
|
554
|
|
|
EgonEvMvGridDistrict.egon_ev_pool_ev_id |
|
555
|
|
|
== EgonEvTrip.egon_ev_pool_ev_id, |
|
556
|
|
|
) |
|
557
|
|
|
.filter( |
|
558
|
|
|
EgonEvTrip.scenario == scenario_name, |
|
559
|
|
|
EgonEvPool.scenario == scenario_name, |
|
560
|
|
|
EgonEvMvGridDistrict.scenario == scenario_name, |
|
561
|
|
|
EgonEvMvGridDistrict.bus_id == bus_id, |
|
562
|
|
|
EgonEvTrip.simbev_event_id == 0, |
|
563
|
|
|
) |
|
564
|
|
|
.group_by(EgonEvPool.type) |
|
565
|
|
|
) |
|
566
|
|
|
|
|
567
|
|
|
initial_soc_per_ev_type = pd.read_sql( |
|
568
|
|
|
query_ev_soc.statement, query_ev_soc.session.bind, index_col="type" |
|
569
|
|
|
) |
|
570
|
|
|
|
|
571
|
|
|
initial_soc_per_ev_type[ |
|
572
|
|
|
"battery_capacity_sum" |
|
573
|
|
|
] = initial_soc_per_ev_type.ev_count.multiply(bat_cap) |
|
574
|
|
|
initial_soc_per_ev_type[ |
|
575
|
|
|
"ev_soc_start_abs" |
|
576
|
|
|
] = initial_soc_per_ev_type.battery_capacity_sum.multiply( |
|
577
|
|
|
initial_soc_per_ev_type.ev_soc_start |
|
578
|
|
|
) |
|
579
|
|
|
|
|
580
|
|
|
return ( |
|
581
|
|
|
initial_soc_per_ev_type.ev_soc_start_abs.sum() |
|
582
|
|
|
/ initial_soc_per_ev_type.battery_capacity_sum.sum() |
|
583
|
|
|
) |
|
584
|
|
|
|
|
585
|
|
|
def write_to_db(write_lowflex_model: bool) -> None: |
|
586
|
|
|
"""Write model data to eTraGo tables""" |
|
587
|
|
|
|
|
588
|
|
|
@db.check_db_unique_violation |
|
589
|
|
|
def write_bus(scenario_name: str) -> int: |
|
590
|
|
|
# eMob MIT bus |
|
591
|
|
|
emob_bus_id = db.next_etrago_id("bus") |
|
592
|
|
|
with db.session_scope() as session: |
|
593
|
|
|
session.add( |
|
594
|
|
|
EgonPfHvBus( |
|
595
|
|
|
scn_name=scenario_name, |
|
596
|
|
|
bus_id=emob_bus_id, |
|
597
|
|
|
v_nom=1, |
|
598
|
|
|
carrier="Li_ion", |
|
599
|
|
|
x=etrago_bus.x, |
|
600
|
|
|
y=etrago_bus.y, |
|
601
|
|
|
geom=etrago_bus.geom, |
|
602
|
|
|
) |
|
603
|
|
|
) |
|
604
|
|
|
return emob_bus_id |
|
605
|
|
|
|
|
606
|
|
|
@db.check_db_unique_violation |
|
607
|
|
|
def write_link(scenario_name: str) -> None: |
|
608
|
|
|
# eMob MIT link [bus_el] -> [bus_ev] |
|
609
|
|
|
emob_link_id = db.next_etrago_id("link") |
|
610
|
|
|
with db.session_scope() as session: |
|
611
|
|
|
session.add( |
|
612
|
|
|
EgonPfHvLink( |
|
613
|
|
|
scn_name=scenario_name, |
|
614
|
|
|
link_id=emob_link_id, |
|
615
|
|
|
bus0=etrago_bus.bus_id, |
|
616
|
|
|
bus1=emob_bus_id, |
|
617
|
|
|
carrier="BEV_charger", |
|
618
|
|
|
efficiency=float(run_config.eta_cp), |
|
619
|
|
|
p_nom=( |
|
620
|
|
|
load_time_series_df.simultaneous_plugged_in_charging_capacity.max() # noqa: E501 |
|
621
|
|
|
), |
|
622
|
|
|
p_nom_extendable=False, |
|
623
|
|
|
p_nom_min=0, |
|
624
|
|
|
p_nom_max=np.Inf, |
|
625
|
|
|
p_min_pu=0, |
|
626
|
|
|
p_max_pu=1, |
|
627
|
|
|
# p_set_fixed=0, |
|
628
|
|
|
capital_cost=0, |
|
629
|
|
|
marginal_cost=0, |
|
630
|
|
|
length=0, |
|
631
|
|
|
terrain_factor=1, |
|
632
|
|
|
) |
|
633
|
|
|
) |
|
634
|
|
|
with db.session_scope() as session: |
|
635
|
|
|
session.add( |
|
636
|
|
|
EgonPfHvLinkTimeseries( |
|
637
|
|
|
scn_name=scenario_name, |
|
638
|
|
|
link_id=emob_link_id, |
|
639
|
|
|
temp_id=1, |
|
640
|
|
|
p_min_pu=None, |
|
641
|
|
|
p_max_pu=( |
|
642
|
|
|
hourly_load_time_series_df.ev_availability.to_list() # noqa: E501 |
|
643
|
|
|
), |
|
644
|
|
|
) |
|
645
|
|
|
) |
|
646
|
|
|
|
|
647
|
|
|
@db.check_db_unique_violation |
|
648
|
|
|
def write_store(scenario_name: str) -> None: |
|
649
|
|
|
# eMob MIT store |
|
650
|
|
|
emob_store_id = db.next_etrago_id("store") |
|
651
|
|
|
with db.session_scope() as session: |
|
652
|
|
|
session.add( |
|
653
|
|
|
EgonPfHvStore( |
|
654
|
|
|
scn_name=scenario_name, |
|
655
|
|
|
store_id=emob_store_id, |
|
656
|
|
|
bus=emob_bus_id, |
|
657
|
|
|
carrier="battery_storage", |
|
658
|
|
|
e_nom=static_params_dict["store_ev_battery.e_nom_MWh"], |
|
659
|
|
|
e_nom_extendable=False, |
|
660
|
|
|
e_nom_min=0, |
|
661
|
|
|
e_nom_max=np.Inf, |
|
662
|
|
|
e_min_pu=0, |
|
663
|
|
|
e_max_pu=1, |
|
664
|
|
|
e_initial=( |
|
665
|
|
|
initial_soc_mean |
|
666
|
|
|
* static_params_dict["store_ev_battery.e_nom_MWh"] |
|
667
|
|
|
), |
|
668
|
|
|
e_cyclic=False, |
|
669
|
|
|
sign=1, |
|
670
|
|
|
standing_loss=0, |
|
671
|
|
|
) |
|
672
|
|
|
) |
|
673
|
|
|
with db.session_scope() as session: |
|
674
|
|
|
session.add( |
|
675
|
|
|
EgonPfHvStoreTimeseries( |
|
676
|
|
|
scn_name=scenario_name, |
|
677
|
|
|
store_id=emob_store_id, |
|
678
|
|
|
temp_id=1, |
|
679
|
|
|
e_min_pu=hourly_load_time_series_df.soc_min.to_list(), |
|
680
|
|
|
e_max_pu=hourly_load_time_series_df.soc_max.to_list(), |
|
681
|
|
|
) |
|
682
|
|
|
) |
|
683
|
|
|
|
|
684
|
|
|
@db.check_db_unique_violation |
|
685
|
|
|
def write_load( |
|
686
|
|
|
scenario_name: str, connection_bus_id: int, load_ts: list |
|
687
|
|
|
) -> None: |
|
688
|
|
|
# eMob MIT load |
|
689
|
|
|
emob_load_id = db.next_etrago_id("load") |
|
690
|
|
|
with db.session_scope() as session: |
|
691
|
|
|
session.add( |
|
692
|
|
|
EgonPfHvLoad( |
|
693
|
|
|
scn_name=scenario_name, |
|
694
|
|
|
load_id=emob_load_id, |
|
695
|
|
|
bus=connection_bus_id, |
|
696
|
|
|
carrier="land_transport_EV", |
|
697
|
|
|
sign=-1, |
|
698
|
|
|
) |
|
699
|
|
|
) |
|
700
|
|
|
with db.session_scope() as session: |
|
701
|
|
|
session.add( |
|
702
|
|
|
EgonPfHvLoadTimeseries( |
|
703
|
|
|
scn_name=scenario_name, |
|
704
|
|
|
load_id=emob_load_id, |
|
705
|
|
|
temp_id=1, |
|
706
|
|
|
p_set=load_ts, |
|
707
|
|
|
) |
|
708
|
|
|
) |
|
709
|
|
|
|
|
710
|
|
|
# Get eTraGo substation bus |
|
711
|
|
|
with db.session_scope() as session: |
|
712
|
|
|
query = session.query( |
|
713
|
|
|
EgonPfHvBus.scn_name, |
|
714
|
|
|
EgonPfHvBus.bus_id, |
|
715
|
|
|
EgonPfHvBus.x, |
|
716
|
|
|
EgonPfHvBus.y, |
|
717
|
|
|
EgonPfHvBus.geom, |
|
718
|
|
|
).filter( |
|
719
|
|
|
EgonPfHvBus.scn_name == scenario_name, |
|
720
|
|
|
EgonPfHvBus.bus_id == bus_id, |
|
721
|
|
|
EgonPfHvBus.carrier == "AC", |
|
722
|
|
|
) |
|
723
|
|
|
etrago_bus = query.first() |
|
724
|
|
|
if etrago_bus is None: |
|
725
|
|
|
# TODO: raise exception here! |
|
726
|
|
|
print( |
|
727
|
|
|
f"No AC bus found for scenario {scenario_name} " |
|
728
|
|
|
f"with bus_id {bus_id} in table egon_etrago_bus!" |
|
729
|
|
|
) |
|
730
|
|
|
|
|
731
|
|
|
# Call DB writing functions for regular or lowflex scenario |
|
732
|
|
|
# * use corresponding scenario name as defined in datasets.yml |
|
733
|
|
|
# * no storage for lowflex scenario |
|
734
|
|
|
# * load timeseries: |
|
735
|
|
|
# * regular (flex): use driving load |
|
736
|
|
|
# * lowflex: use dumb charging load |
|
737
|
|
|
if write_lowflex_model is False: |
|
738
|
|
|
emob_bus_id = write_bus(scenario_name=scenario_name) |
|
739
|
|
|
write_link(scenario_name=scenario_name) |
|
740
|
|
|
write_store(scenario_name=scenario_name) |
|
741
|
|
|
write_load( |
|
742
|
|
|
scenario_name=scenario_name, |
|
743
|
|
|
connection_bus_id=emob_bus_id, |
|
744
|
|
|
load_ts=( |
|
745
|
|
|
hourly_load_time_series_df.driving_load_time_series.to_list() # noqa: E501 |
|
746
|
|
|
), |
|
747
|
|
|
) |
|
748
|
|
|
else: |
|
749
|
|
|
# Get lowflex scenario name |
|
750
|
|
|
lowflex_scenario_name = DATASET_CFG["scenario"]["lowflex"][ |
|
751
|
|
|
"names" |
|
752
|
|
|
][scenario_name] |
|
753
|
|
|
write_load( |
|
754
|
|
|
scenario_name=lowflex_scenario_name, |
|
755
|
|
|
connection_bus_id=etrago_bus.bus_id, |
|
756
|
|
|
load_ts=hourly_load_time_series_df.load_time_series.to_list(), |
|
757
|
|
|
) |
|
758
|
|
|
|
|
759
|
|
|
def write_to_file(): |
|
760
|
|
|
"""Write model data to file (for debugging purposes)""" |
|
761
|
|
|
results_dir = WORKING_DIR / Path("results", scenario_name, str(bus_id)) |
|
762
|
|
|
results_dir.mkdir(exist_ok=True, parents=True) |
|
763
|
|
|
|
|
764
|
|
|
hourly_load_time_series_df[["load_time_series"]].to_csv( |
|
765
|
|
|
results_dir / "ev_load_time_series.csv" |
|
766
|
|
|
) |
|
767
|
|
|
hourly_load_time_series_df[["ev_availability"]].to_csv( |
|
768
|
|
|
results_dir / "ev_availability.csv" |
|
769
|
|
|
) |
|
770
|
|
|
hourly_load_time_series_df[["soc_min", "soc_max"]].to_csv( |
|
771
|
|
|
results_dir / "ev_dsm_profile.csv" |
|
772
|
|
|
) |
|
773
|
|
|
|
|
774
|
|
|
static_params_dict[ |
|
775
|
|
|
"load_land_transport_ev.p_set_MW" |
|
776
|
|
|
] = "ev_load_time_series.csv" |
|
777
|
|
|
static_params_dict["link_bev_charger.p_max_pu"] = "ev_availability.csv" |
|
778
|
|
|
static_params_dict["store_ev_battery.e_min_pu"] = "ev_dsm_profile.csv" |
|
779
|
|
|
static_params_dict["store_ev_battery.e_max_pu"] = "ev_dsm_profile.csv" |
|
780
|
|
|
|
|
781
|
|
|
file = results_dir / "ev_static_params.json" |
|
782
|
|
|
|
|
783
|
|
|
with open(file, "w") as f: |
|
784
|
|
|
json.dump(static_params_dict, f, indent=4) |
|
|
|
|
|
|
785
|
|
|
|
|
786
|
|
|
print(" Writing model timeseries...") |
|
787
|
|
|
load_time_series_df = load_time_series_df.assign( |
|
788
|
|
|
ev_availability=( |
|
789
|
|
|
load_time_series_df.simultaneous_plugged_in_charging_capacity |
|
790
|
|
|
/ static_params_dict["link_bev_charger.p_nom_MW"] |
|
791
|
|
|
) |
|
792
|
|
|
) |
|
793
|
|
|
|
|
794
|
|
|
# Resample to 1h |
|
795
|
|
|
hourly_load_time_series_df = load_time_series_df.resample("1H").agg( |
|
796
|
|
|
{ |
|
797
|
|
|
"load_time_series": np.mean, |
|
798
|
|
|
"flex_time_series": np.mean, |
|
799
|
|
|
"simultaneous_plugged_in_charging_capacity": np.mean, |
|
800
|
|
|
"simultaneous_plugged_in_charging_capacity_flex": np.mean, |
|
801
|
|
|
"soc_min_absolute": np.min, |
|
802
|
|
|
"soc_max_absolute": np.max, |
|
803
|
|
|
"ev_availability": np.mean, |
|
804
|
|
|
"driving_load_time_series": np.sum, |
|
805
|
|
|
} |
|
806
|
|
|
) |
|
807
|
|
|
|
|
808
|
|
|
# Create relative SoC timeseries |
|
809
|
|
|
hourly_load_time_series_df = hourly_load_time_series_df.assign( |
|
810
|
|
|
soc_min=hourly_load_time_series_df.soc_min_absolute.div( |
|
811
|
|
|
static_params_dict["store_ev_battery.e_nom_MWh"] |
|
812
|
|
|
), |
|
813
|
|
|
soc_max=hourly_load_time_series_df.soc_max_absolute.div( |
|
814
|
|
|
static_params_dict["store_ev_battery.e_nom_MWh"] |
|
815
|
|
|
), |
|
816
|
|
|
) |
|
817
|
|
|
hourly_load_time_series_df = hourly_load_time_series_df.assign( |
|
818
|
|
|
soc_delta_absolute=( |
|
819
|
|
|
hourly_load_time_series_df.soc_max_absolute |
|
820
|
|
|
- hourly_load_time_series_df.soc_min_absolute |
|
821
|
|
|
), |
|
822
|
|
|
soc_delta=( |
|
823
|
|
|
hourly_load_time_series_df.soc_max |
|
824
|
|
|
- hourly_load_time_series_df.soc_min |
|
825
|
|
|
), |
|
826
|
|
|
) |
|
827
|
|
|
|
|
828
|
|
|
# Crop hourly TS if needed |
|
829
|
|
|
hourly_load_time_series_df = hourly_load_time_series_df[:8760] |
|
830
|
|
|
|
|
831
|
|
|
# Create lowflex scenario? |
|
832
|
|
|
write_lowflex_model = DATASET_CFG["scenario"]["lowflex"][ |
|
833
|
|
|
"create_lowflex_scenario" |
|
834
|
|
|
] |
|
835
|
|
|
|
|
836
|
|
|
# Get initial average storage SoC |
|
837
|
|
|
initial_soc_mean = calc_initial_ev_soc(bus_id, scenario_name) |
|
838
|
|
|
|
|
839
|
|
|
# Write to database: regular and lowflex scenario |
|
840
|
|
|
write_to_db(write_lowflex_model=False) |
|
841
|
|
|
print(" Writing flex scenario...") |
|
842
|
|
|
if write_lowflex_model is True: |
|
843
|
|
|
print(" Writing lowflex scenario...") |
|
844
|
|
|
write_to_db(write_lowflex_model=True) |
|
845
|
|
|
|
|
846
|
|
|
# Export to working dir if requested |
|
847
|
|
|
if DATASET_CFG["model_timeseries"]["export_results_to_csv"]: |
|
848
|
|
|
write_to_file() |
|
849
|
|
|
|
|
850
|
|
|
|
|
851
|
|
|
def delete_model_data_from_db(): |
|
852
|
|
|
"""Delete all eMob MIT data from eTraGo PF tables""" |
|
853
|
|
|
with db.session_scope() as session: |
|
854
|
|
|
# Buses |
|
855
|
|
|
session.query(EgonPfHvBus).filter( |
|
856
|
|
|
EgonPfHvBus.carrier == "Li_ion" |
|
857
|
|
|
).delete(synchronize_session=False) |
|
858
|
|
|
|
|
859
|
|
|
# Link TS |
|
860
|
|
|
subquery = ( |
|
861
|
|
|
session.query(EgonPfHvLink.link_id) |
|
862
|
|
|
.filter(EgonPfHvLink.carrier == "BEV_charger") |
|
863
|
|
|
.subquery() |
|
864
|
|
|
) |
|
865
|
|
|
|
|
866
|
|
|
session.query(EgonPfHvLinkTimeseries).filter( |
|
867
|
|
|
EgonPfHvLinkTimeseries.link_id.in_(subquery) |
|
868
|
|
|
).delete(synchronize_session=False) |
|
869
|
|
|
# Links |
|
870
|
|
|
session.query(EgonPfHvLink).filter( |
|
871
|
|
|
EgonPfHvLink.carrier == "BEV_charger" |
|
872
|
|
|
).delete(synchronize_session=False) |
|
873
|
|
|
|
|
874
|
|
|
# Store TS |
|
875
|
|
|
subquery = ( |
|
876
|
|
|
session.query(EgonPfHvStore.store_id) |
|
877
|
|
|
.filter(EgonPfHvStore.carrier == "battery_storage") |
|
878
|
|
|
.subquery() |
|
879
|
|
|
) |
|
880
|
|
|
|
|
881
|
|
|
session.query(EgonPfHvStoreTimeseries).filter( |
|
882
|
|
|
EgonPfHvStoreTimeseries.store_id.in_(subquery) |
|
883
|
|
|
).delete(synchronize_session=False) |
|
884
|
|
|
# Stores |
|
885
|
|
|
session.query(EgonPfHvStore).filter( |
|
886
|
|
|
EgonPfHvStore.carrier == "battery_storage" |
|
887
|
|
|
).delete(synchronize_session=False) |
|
888
|
|
|
|
|
889
|
|
|
# Load TS |
|
890
|
|
|
subquery = ( |
|
891
|
|
|
session.query(EgonPfHvLoad.load_id) |
|
892
|
|
|
.filter(EgonPfHvLoad.carrier == "land_transport_EV") |
|
893
|
|
|
.subquery() |
|
894
|
|
|
) |
|
895
|
|
|
|
|
896
|
|
|
session.query(EgonPfHvLoadTimeseries).filter( |
|
897
|
|
|
EgonPfHvLoadTimeseries.load_id.in_(subquery) |
|
898
|
|
|
).delete(synchronize_session=False) |
|
899
|
|
|
# Loads |
|
900
|
|
|
session.query(EgonPfHvLoad).filter( |
|
901
|
|
|
EgonPfHvLoad.carrier == "land_transport_EV" |
|
902
|
|
|
).delete(synchronize_session=False) |
|
903
|
|
|
|
|
904
|
|
|
|
|
905
|
|
|
def load_grid_district_ids() -> pd.Series: |
|
906
|
|
|
"""Load bus IDs of all grid districts""" |
|
907
|
|
|
with db.session_scope() as session: |
|
908
|
|
|
query_mvgd = session.query(MvGridDistricts.bus_id) |
|
909
|
|
|
return pd.read_sql( |
|
910
|
|
|
query_mvgd.statement, query_mvgd.session.bind, index_col=None |
|
911
|
|
|
).bus_id.sort_values() |
|
912
|
|
|
|
|
913
|
|
|
|
|
914
|
|
|
def generate_model_data_grid_district( |
|
915
|
|
|
scenario_name: str, |
|
916
|
|
|
evs_grid_district: pd.DataFrame, |
|
917
|
|
|
bat_cap_dict: dict, |
|
918
|
|
|
run_config: pd.DataFrame, |
|
919
|
|
|
) -> tuple: |
|
920
|
|
|
"""Generates timeseries from simBEV trip data for MV grid district |
|
921
|
|
|
|
|
922
|
|
|
Parameters |
|
923
|
|
|
---------- |
|
924
|
|
|
scenario_name : str |
|
925
|
|
|
Scenario name |
|
926
|
|
|
evs_grid_district : pd.DataFrame |
|
927
|
|
|
EV data for grid district |
|
928
|
|
|
bat_cap_dict : dict |
|
929
|
|
|
Battery capacity per EV type |
|
930
|
|
|
run_config : pd.DataFrame |
|
931
|
|
|
simBEV metadata: run config |
|
932
|
|
|
|
|
933
|
|
|
Returns |
|
934
|
|
|
------- |
|
935
|
|
|
pd.DataFrame |
|
936
|
|
|
Model data for grid district |
|
937
|
|
|
""" |
|
938
|
|
|
|
|
939
|
|
|
# Load trip data |
|
940
|
|
|
print(" Loading trips...") |
|
941
|
|
|
trip_data = load_evs_trips( |
|
942
|
|
|
scenario_name=scenario_name, |
|
943
|
|
|
evs_ids=evs_grid_district.ev_id.unique(), |
|
944
|
|
|
charging_events_only=False, |
|
945
|
|
|
flex_only_at_charging_events=True, |
|
946
|
|
|
) |
|
947
|
|
|
|
|
948
|
|
|
print(" Preprocessing data...") |
|
949
|
|
|
# Assign battery capacity to trip data |
|
950
|
|
|
trip_data["bat_cap"] = trip_data.type.apply(lambda _: bat_cap_dict[_]) |
|
951
|
|
|
trip_data.drop(columns=["type"], inplace=True) |
|
952
|
|
|
|
|
953
|
|
|
# Preprocess trip data |
|
954
|
|
|
trip_data = data_preprocessing(evs_grid_district, trip_data) |
|
955
|
|
|
|
|
956
|
|
|
# Generate load timeseries |
|
957
|
|
|
print(" Generating load timeseries...") |
|
958
|
|
|
load_ts = generate_load_time_series( |
|
959
|
|
|
ev_data_df=trip_data, |
|
960
|
|
|
run_config=run_config, |
|
961
|
|
|
scenario_data=evs_grid_district, |
|
962
|
|
|
) |
|
963
|
|
|
|
|
964
|
|
|
# Generate static params |
|
965
|
|
|
static_params = generate_static_params( |
|
966
|
|
|
trip_data, load_ts, evs_grid_district |
|
967
|
|
|
) |
|
968
|
|
|
|
|
969
|
|
|
return static_params, load_ts |
|
970
|
|
|
|
|
971
|
|
|
|
|
972
|
|
|
def generate_model_data_bunch(scenario_name: str, bunch: range) -> None: |
|
973
|
|
|
"""Generates timeseries from simBEV trip data for a bunch of MV grid |
|
974
|
|
|
districts. |
|
975
|
|
|
|
|
976
|
|
|
Parameters |
|
977
|
|
|
---------- |
|
978
|
|
|
scenario_name : str |
|
979
|
|
|
Scenario name |
|
980
|
|
|
bunch : list |
|
981
|
|
|
Bunch of grid districts to generate data for, e.g. [1,2,..,100]. |
|
982
|
|
|
Note: `bunch` is NOT a list of grid districts but is used for slicing |
|
983
|
|
|
the ordered list (by bus_id) of grid districts! This is used for |
|
984
|
|
|
parallelization. See |
|
985
|
|
|
:meth:`egon.data.datasets.emobility.motorized_individual_travel.MotorizedIndividualTravel.generate_model_data_tasks` |
|
986
|
|
|
""" |
|
987
|
|
|
# Get list of grid districts / substations for this bunch |
|
988
|
|
|
mvgd_bus_ids = load_grid_district_ids().iloc[bunch] |
|
989
|
|
|
|
|
990
|
|
|
# Get scenario variation name |
|
991
|
|
|
scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
|
992
|
|
|
|
|
993
|
|
|
print( |
|
994
|
|
|
f"SCENARIO: {scenario_name}, " |
|
995
|
|
|
f"SCENARIO VARIATION: {scenario_var_name}, " |
|
996
|
|
|
f"BUNCH: {bunch[0]}-{bunch[-1]}" |
|
997
|
|
|
) |
|
998
|
|
|
|
|
999
|
|
|
# Load scenario params for scenario and scenario variation |
|
1000
|
|
|
# scenario_variation_parameters = get_sector_parameters( |
|
1001
|
|
|
# "mobility", scenario=scenario_name |
|
1002
|
|
|
# )["motorized_individual_travel"][scenario_var_name] |
|
1003
|
|
|
|
|
1004
|
|
|
# Get substations |
|
1005
|
|
|
with db.session_scope() as session: |
|
1006
|
|
|
query = ( |
|
1007
|
|
|
session.query( |
|
1008
|
|
|
EgonEvMvGridDistrict.bus_id, |
|
1009
|
|
|
EgonEvMvGridDistrict.egon_ev_pool_ev_id.label("ev_id"), |
|
1010
|
|
|
) |
|
1011
|
|
|
.filter(EgonEvMvGridDistrict.scenario == scenario_name) |
|
1012
|
|
|
.filter( |
|
1013
|
|
|
EgonEvMvGridDistrict.scenario_variation == scenario_var_name |
|
1014
|
|
|
) |
|
1015
|
|
|
.filter(EgonEvMvGridDistrict.bus_id.in_(mvgd_bus_ids)) |
|
1016
|
|
|
.filter(EgonEvMvGridDistrict.egon_ev_pool_ev_id.isnot(None)) |
|
1017
|
|
|
) |
|
1018
|
|
|
evs_grid_district = pd.read_sql( |
|
1019
|
|
|
query.statement, query.session.bind, index_col=None |
|
1020
|
|
|
).astype({"ev_id": "int"}) |
|
1021
|
|
|
|
|
1022
|
|
|
mvgd_bus_ids = evs_grid_district.bus_id.unique() |
|
1023
|
|
|
print( |
|
1024
|
|
|
f"{len(evs_grid_district)} EV loaded " |
|
1025
|
|
|
f"({len(evs_grid_district.ev_id.unique())} unique) in " |
|
1026
|
|
|
f"{len(mvgd_bus_ids)} grid districts." |
|
1027
|
|
|
) |
|
1028
|
|
|
|
|
1029
|
|
|
# Get run metadata |
|
1030
|
|
|
meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
|
1031
|
|
|
meta_run_config = read_simbev_metadata_file(scenario_name, "config").loc[ |
|
1032
|
|
|
"basic" |
|
1033
|
|
|
] |
|
1034
|
|
|
|
|
1035
|
|
|
# Generate timeseries for each MVGD |
|
1036
|
|
|
print("GENERATE MODEL DATA...") |
|
1037
|
|
|
ctr = 0 |
|
1038
|
|
|
for bus_id in mvgd_bus_ids: |
|
1039
|
|
|
ctr += 1 |
|
1040
|
|
|
print( |
|
1041
|
|
|
f"Processing grid district: bus {bus_id}... " |
|
1042
|
|
|
f"({ctr}/{len(mvgd_bus_ids)})" |
|
1043
|
|
|
) |
|
1044
|
|
|
(static_params, load_ts,) = generate_model_data_grid_district( |
|
1045
|
|
|
scenario_name=scenario_name, |
|
1046
|
|
|
evs_grid_district=evs_grid_district[ |
|
1047
|
|
|
evs_grid_district.bus_id == bus_id |
|
1048
|
|
|
], |
|
1049
|
|
|
bat_cap_dict=meta_tech_data.battery_capacity.to_dict(), |
|
1050
|
|
|
run_config=meta_run_config, |
|
1051
|
|
|
) |
|
1052
|
|
|
write_model_data_to_db( |
|
1053
|
|
|
static_params_dict=static_params, |
|
1054
|
|
|
load_time_series_df=load_ts, |
|
1055
|
|
|
bus_id=bus_id, |
|
1056
|
|
|
scenario_name=scenario_name, |
|
1057
|
|
|
run_config=meta_run_config, |
|
1058
|
|
|
bat_cap=meta_tech_data.battery_capacity, |
|
1059
|
|
|
) |
|
1060
|
|
|
|
|
1061
|
|
|
|
|
1062
|
|
|
def generate_model_data_eGon2035_remaining(): |
|
1063
|
|
|
"""Generates timeseries for eGon2035 scenario for grid districts which |
|
1064
|
|
|
has not been processed in the parallel tasks before. |
|
1065
|
|
|
""" |
|
1066
|
|
|
generate_model_data_bunch( |
|
1067
|
|
|
scenario_name="eGon2035", |
|
1068
|
|
|
bunch=range(MVGD_MIN_COUNT, len(load_grid_district_ids())), |
|
1069
|
|
|
) |
|
1070
|
|
|
|
|
1071
|
|
|
|
|
1072
|
|
|
def generate_model_data_eGon100RE_remaining(): |
|
1073
|
|
|
"""Generates timeseries for eGon100RE scenario for grid districts which |
|
1074
|
|
|
has not been processed in the parallel tasks before. |
|
1075
|
|
|
""" |
|
1076
|
|
|
generate_model_data_bunch( |
|
1077
|
|
|
scenario_name="eGon100RE", |
|
1078
|
|
|
bunch=range(MVGD_MIN_COUNT, len(load_grid_district_ids())), |
|
1079
|
|
|
) |
|
1080
|
|
|
|