|
1
|
|
|
""" |
|
2
|
|
|
Map demand to H2 buses and write to DB. |
|
3
|
|
|
""" |
|
4
|
|
|
from __future__ import annotations |
|
5
|
|
|
|
|
6
|
|
|
from loguru import logger |
|
7
|
|
|
import geopandas as gpd |
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import pandas as pd |
|
10
|
|
|
|
|
11
|
|
|
from egon.data import config, db |
|
12
|
|
|
from egon.data.datasets.emobility.heavy_duty_transport.db_classes import ( |
|
13
|
|
|
EgonHeavyDutyTransportVoronoi, |
|
14
|
|
|
) |
|
15
|
|
|
|
|
16
|
|
|
DATASET_CFG = config.datasets()["mobility_hgv"] |
|
17
|
|
|
CARRIER = DATASET_CFG["constants"]["carrier"] |
|
18
|
|
|
SCENARIOS = DATASET_CFG["constants"]["scenarios"] |
|
19
|
|
|
ENERGY_VALUE = DATASET_CFG["constants"]["energy_value_h2"] |
|
20
|
|
|
FAC = DATASET_CFG["constants"]["fac"] |
|
21
|
|
|
HOURS_PER_YEAR = DATASET_CFG["constants"]["hours_per_year"] |
|
22
|
|
|
|
|
23
|
|
|
|
|
24
|
|
|
def insert_hgv_h2_demand(): |
|
25
|
|
|
""" |
|
26
|
|
|
Insert list of hgv H2 demand (one per NUTS3) in database. |
|
27
|
|
|
""" |
|
28
|
|
|
for scenario in SCENARIOS: |
|
29
|
|
|
delete_old_entries(scenario) |
|
30
|
|
|
|
|
31
|
|
|
hgv_gdf = assign_h2_buses(scenario=scenario) |
|
32
|
|
|
|
|
33
|
|
|
hgv_gdf = insert_new_entries(hgv_gdf) |
|
34
|
|
|
|
|
35
|
|
|
ts_df = kg_per_year_to_mega_watt(hgv_gdf) |
|
36
|
|
|
|
|
37
|
|
|
ts_df.to_sql( |
|
38
|
|
|
"egon_etrago_load_timeseries", |
|
39
|
|
|
schema="grid", |
|
40
|
|
|
con=db.engine(), |
|
41
|
|
|
if_exists="append", |
|
42
|
|
|
index=False, |
|
43
|
|
|
) |
|
44
|
|
|
|
|
45
|
|
|
|
|
46
|
|
|
def kg_per_year_to_mega_watt(df: pd.DataFrame | gpd.GeoDataFrame): |
|
47
|
|
|
df = df.assign( |
|
48
|
|
|
p_set=df.hydrogen_consumption * ENERGY_VALUE * FAC / HOURS_PER_YEAR, |
|
49
|
|
|
q_set=np.nan, |
|
50
|
|
|
temp_id=1, |
|
51
|
|
|
) |
|
52
|
|
|
|
|
53
|
|
|
df.p_set = [[p_set] * HOURS_PER_YEAR for p_set in df.p_set] |
|
54
|
|
|
|
|
55
|
|
|
logger.debug(str(df.columns)) |
|
56
|
|
|
|
|
57
|
|
|
df = ( |
|
58
|
|
|
df.rename(columns={"scenario": "scn_name"}) |
|
59
|
|
|
.drop( |
|
60
|
|
|
columns=[ |
|
61
|
|
|
"hydrogen_consumption", |
|
62
|
|
|
"geometry", |
|
63
|
|
|
"bus", |
|
64
|
|
|
"carrier", |
|
65
|
|
|
] |
|
66
|
|
|
) |
|
67
|
|
|
.reset_index(drop=True) |
|
68
|
|
|
) |
|
69
|
|
|
|
|
70
|
|
|
return pd.DataFrame(df) |
|
71
|
|
|
|
|
72
|
|
|
|
|
73
|
|
|
def insert_new_entries(hgv_h2_demand_gdf: gpd.GeoDataFrame): |
|
74
|
|
|
""" |
|
75
|
|
|
Insert loads. |
|
76
|
|
|
|
|
77
|
|
|
Parameters |
|
78
|
|
|
---------- |
|
79
|
|
|
hgv_h2_demand_gdf : geopandas.GeoDataFrame |
|
80
|
|
|
Load data to insert. |
|
81
|
|
|
|
|
82
|
|
|
""" |
|
83
|
|
|
new_id = db.next_etrago_id("load") |
|
84
|
|
|
hgv_h2_demand_gdf["load_id"] = range( |
|
85
|
|
|
new_id, new_id + len(hgv_h2_demand_gdf) |
|
86
|
|
|
) |
|
87
|
|
|
|
|
88
|
|
|
# Add missing columns |
|
89
|
|
|
c = {"sign": -1, "type": np.nan, "p_set": np.nan, "q_set": np.nan} |
|
90
|
|
|
rename = {"scenario": "scn_name"} |
|
91
|
|
|
drop = ["hydrogen_consumption", "geometry"] |
|
92
|
|
|
|
|
93
|
|
|
hgv_h2_demand_df = pd.DataFrame( |
|
94
|
|
|
hgv_h2_demand_gdf.assign(**c) |
|
95
|
|
|
.rename(columns=rename) |
|
96
|
|
|
.drop(columns=drop) |
|
97
|
|
|
.reset_index(drop=True) |
|
98
|
|
|
) |
|
99
|
|
|
|
|
100
|
|
|
engine = db.engine() |
|
101
|
|
|
# Insert data to db |
|
102
|
|
|
hgv_h2_demand_df.to_sql( |
|
103
|
|
|
"egon_etrago_load", |
|
104
|
|
|
engine, |
|
105
|
|
|
schema="grid", |
|
106
|
|
|
index=False, |
|
107
|
|
|
if_exists="append", |
|
108
|
|
|
) |
|
109
|
|
|
|
|
110
|
|
|
return hgv_h2_demand_gdf |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
def delete_old_entries(scenario: str): |
|
114
|
|
|
""" |
|
115
|
|
|
Delete loads and load timeseries. |
|
116
|
|
|
|
|
117
|
|
|
Parameters |
|
118
|
|
|
---------- |
|
119
|
|
|
scenario : str |
|
120
|
|
|
Name of the scenario. |
|
121
|
|
|
|
|
122
|
|
|
""" |
|
123
|
|
|
# Clean tables |
|
124
|
|
|
db.execute_sql( |
|
125
|
|
|
f""" |
|
126
|
|
|
DELETE FROM grid.egon_etrago_load_timeseries |
|
127
|
|
|
WHERE "load_id" IN ( |
|
128
|
|
|
SELECT load_id FROM grid.egon_etrago_load |
|
129
|
|
|
WHERE carrier = '{CARRIER}' |
|
130
|
|
|
AND scn_name = '{scenario}' |
|
131
|
|
|
) |
|
132
|
|
|
""" |
|
133
|
|
|
) |
|
134
|
|
|
|
|
135
|
|
|
db.execute_sql( |
|
136
|
|
|
f""" |
|
137
|
|
|
DELETE FROM grid.egon_etrago_load |
|
138
|
|
|
WHERE carrier = '{CARRIER}' |
|
139
|
|
|
AND scn_name = '{scenario}' |
|
140
|
|
|
""" |
|
141
|
|
|
) |
|
142
|
|
|
|
|
143
|
|
|
|
|
144
|
|
|
def assign_h2_buses(scenario: str = "eGon2035"): |
|
145
|
|
|
hgv_h2_demand_gdf = read_hgv_h2_demand(scenario=scenario) |
|
146
|
|
|
|
|
147
|
|
|
hgv_h2_demand_gdf = db.assign_gas_bus_id( |
|
148
|
|
|
hgv_h2_demand_gdf, scenario, "H2_grid" |
|
149
|
|
|
) |
|
150
|
|
|
|
|
151
|
|
|
# Add carrier |
|
152
|
|
|
c = {"carrier": CARRIER} |
|
153
|
|
|
hgv_h2_demand_gdf = hgv_h2_demand_gdf.assign(**c) |
|
154
|
|
|
|
|
155
|
|
|
# Remove useless columns |
|
156
|
|
|
hgv_h2_demand_gdf = hgv_h2_demand_gdf.drop( |
|
157
|
|
|
columns=["geom", "NUTS0", "NUTS1", "bus_id"], errors="ignore" |
|
158
|
|
|
) |
|
159
|
|
|
|
|
160
|
|
|
return hgv_h2_demand_gdf |
|
161
|
|
|
|
|
162
|
|
|
|
|
163
|
|
|
def read_hgv_h2_demand(scenario: str = "eGon2035"): |
|
164
|
|
|
with db.session_scope() as session: |
|
165
|
|
|
query = session.query( |
|
166
|
|
|
EgonHeavyDutyTransportVoronoi.nuts3, |
|
167
|
|
|
EgonHeavyDutyTransportVoronoi.scenario, |
|
168
|
|
|
EgonHeavyDutyTransportVoronoi.hydrogen_consumption, |
|
169
|
|
|
).filter(EgonHeavyDutyTransportVoronoi.scenario == scenario) |
|
170
|
|
|
|
|
171
|
|
|
df = pd.read_sql(query.statement, query.session.bind, index_col="nuts3") |
|
172
|
|
|
|
|
173
|
|
|
sql_vg250 = """ |
|
174
|
|
|
SELECT nuts as nuts3, geometry as geom |
|
175
|
|
|
FROM boundaries.vg250_krs |
|
176
|
|
|
WHERE gf = 4 |
|
177
|
|
|
""" |
|
178
|
|
|
|
|
179
|
|
|
srid = DATASET_CFG["tables"]["srid"] |
|
180
|
|
|
|
|
181
|
|
|
gdf_vg250 = db.select_geodataframe(sql_vg250, index_col="nuts3", epsg=srid) |
|
182
|
|
|
|
|
183
|
|
|
gdf_vg250["geometry"] = gdf_vg250.geom.centroid |
|
184
|
|
|
|
|
185
|
|
|
srid_buses = DATASET_CFG["tables"]["srid_buses"] |
|
186
|
|
|
|
|
187
|
|
|
return gpd.GeoDataFrame( |
|
188
|
|
|
df.merge(gdf_vg250[["geometry"]], left_index=True, right_index=True), |
|
189
|
|
|
crs=gdf_vg250.crs, |
|
190
|
|
|
).to_crs(epsg=srid_buses) |
|
191
|
|
|
|