1
|
|
|
from datetime import datetime |
2
|
|
|
from pathlib import Path |
3
|
|
|
import os |
4
|
|
|
|
5
|
|
|
from sqlalchemy import ARRAY, Column, Float, Integer, String, Text |
6
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
7
|
|
|
import geopandas as gpd |
8
|
|
|
import numpy as np |
9
|
|
|
import pandas as pd |
10
|
|
|
|
11
|
|
|
from egon.data import db |
12
|
|
|
import egon.data.datasets.era5 as era |
13
|
|
|
|
14
|
|
|
try: |
15
|
|
|
from disaggregator import temporal |
16
|
|
|
except ImportError as e: |
17
|
|
|
pass |
18
|
|
|
|
19
|
|
|
from math import ceil |
20
|
|
|
|
21
|
|
|
from egon.data.datasets import Dataset |
22
|
|
|
from egon.data.datasets.heat_demand_timeseries.daily import ( |
23
|
|
|
daily_demand_shares_per_climate_zone, |
24
|
|
|
map_climate_zones_to_zensus, |
25
|
|
|
) |
26
|
|
|
from egon.data.datasets.heat_demand_timeseries.idp_pool import create, select |
27
|
|
|
from egon.data.datasets.heat_demand_timeseries.service_sector import ( |
28
|
|
|
CTS_demand_scale, |
29
|
|
|
) |
30
|
|
|
import egon |
31
|
|
|
|
32
|
|
|
Base = declarative_base() |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class EgonTimeseriesDistrictHeating(Base): |
36
|
|
|
__tablename__ = "egon_timeseries_district_heating" |
37
|
|
|
__table_args__ = {"schema": "demand"} |
38
|
|
|
area_id = Column(Integer, primary_key=True) |
39
|
|
|
scenario = Column(Text, primary_key=True) |
40
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class EgonEtragoTimeseriesIndividualHeating(Base): |
44
|
|
|
__tablename__ = "egon_etrago_timeseries_individual_heating" |
45
|
|
|
__table_args__ = {"schema": "demand"} |
46
|
|
|
bus_id = Column(Integer, primary_key=True) |
47
|
|
|
scenario = Column(Text, primary_key=True) |
48
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
class EgonIndividualHeatingPeakLoads(Base): |
52
|
|
|
__tablename__ = "egon_individual_heating_peak_loads" |
53
|
|
|
__table_args__ = {"schema": "demand"} |
54
|
|
|
building_id = Column(Integer, primary_key=True) |
55
|
|
|
scenario = Column(Text, primary_key=True) |
56
|
|
|
w_th = Column(Float(53)) |
57
|
|
|
|
58
|
|
|
|
59
|
|
|
class EgonEtragoHeatCts(Base): |
60
|
|
|
__tablename__ = "egon_etrago_heat_cts" |
61
|
|
|
__table_args__ = {"schema": "demand"} |
62
|
|
|
|
63
|
|
|
bus_id = Column(Integer, primary_key=True) |
64
|
|
|
scn_name = Column(String, primary_key=True) |
65
|
|
|
p_set = Column(ARRAY(Float)) |
66
|
|
|
|
67
|
|
|
|
68
|
|
|
def create_timeseries_for_building(building_id, scenario): |
69
|
|
|
"""Generates final heat demand timeseries for a specific building |
70
|
|
|
|
71
|
|
|
Parameters |
72
|
|
|
---------- |
73
|
|
|
building_id : int |
74
|
|
|
Index of the selected building |
75
|
|
|
scenario : str |
76
|
|
|
Name of the selected scenario. |
77
|
|
|
|
78
|
|
|
Returns |
79
|
|
|
------- |
80
|
|
|
pandas.DataFrame |
81
|
|
|
Hourly heat demand timeseries in MW for the selected building |
82
|
|
|
|
83
|
|
|
""" |
84
|
|
|
|
85
|
|
|
return db.select_dataframe( |
86
|
|
|
f""" |
87
|
|
|
SELECT building_demand * UNNEST(idp) as demand |
88
|
|
|
FROM |
89
|
|
|
( |
90
|
|
|
SELECT demand.demand / building.count * daily_demand.daily_demand_share as building_demand, daily_demand.day_of_year |
91
|
|
|
FROM |
92
|
|
|
|
93
|
|
|
(SELECT demand FROM |
94
|
|
|
demand.egon_peta_heat |
95
|
|
|
WHERE scenario = '{scenario}' |
96
|
|
|
AND sector = 'residential' |
97
|
|
|
AND zensus_population_id IN( |
98
|
|
|
SELECT zensus_population_id FROM |
99
|
|
|
demand.egon_heat_timeseries_selected_profiles |
100
|
|
|
WHERE building_id = {building_id})) as demand, |
101
|
|
|
|
102
|
|
|
(SELECT COUNT(building_id) |
103
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
104
|
|
|
WHERE zensus_population_id IN( |
105
|
|
|
SELECT zensus_population_id FROM |
106
|
|
|
demand.egon_heat_timeseries_selected_profiles |
107
|
|
|
WHERE building_id = {building_id})) as building, |
108
|
|
|
|
109
|
|
|
(SELECT daily_demand_share, day_of_year FROM |
110
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
111
|
|
|
WHERE climate_zone = ( |
112
|
|
|
SELECT climate_zone FROM boundaries.egon_map_zensus_climate_zones |
113
|
|
|
WHERE zensus_population_id = |
114
|
|
|
(SELECT zensus_population_id FROM demand.egon_heat_timeseries_selected_profiles |
115
|
|
|
WHERE building_id = {building_id}))) as daily_demand) as daily_demand |
116
|
|
|
|
117
|
|
|
JOIN (SELECT b.idp, ordinality as day |
118
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a, |
119
|
|
|
UNNEST (a.selected_idp_profiles) WITH ORDINALITY as selected_idp |
120
|
|
|
JOIN demand.egon_heat_idp_pool b |
121
|
|
|
ON selected_idp = b.index |
122
|
|
|
WHERE a.building_id = {building_id}) as demand_profile |
123
|
|
|
ON demand_profile.day = daily_demand.day_of_year |
124
|
|
|
""" |
125
|
|
|
) |
126
|
|
|
|
127
|
|
|
|
128
|
|
|
def create_district_heating_profile(scenario, area_id): |
129
|
|
|
"""Create heat demand profile for district heating grid including demands of |
130
|
|
|
households and service sector. |
131
|
|
|
|
132
|
|
|
Parameters |
133
|
|
|
---------- |
134
|
|
|
scenario : str |
135
|
|
|
Name of the selected scenario. |
136
|
|
|
area_id : int |
137
|
|
|
Index of the selected district heating grid |
138
|
|
|
|
139
|
|
|
Returns |
140
|
|
|
------- |
141
|
|
|
df : pandas,DataFrame |
142
|
|
|
Hourly heat demand timeseries in MW for the selected district heating grid |
143
|
|
|
|
144
|
|
|
""" |
145
|
|
|
|
146
|
|
|
start_time = datetime.now() |
147
|
|
|
|
148
|
|
|
df = db.select_dataframe( |
149
|
|
|
f""" |
150
|
|
|
|
151
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
152
|
|
|
FROM |
153
|
|
|
|
154
|
|
|
( |
155
|
|
|
SELECT demand.demand * |
156
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
157
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
158
|
|
|
demand_profile.building_id, |
159
|
|
|
c.day_of_year, |
160
|
|
|
ordinality |
161
|
|
|
|
162
|
|
|
FROM |
163
|
|
|
|
164
|
|
|
(SELECT zensus_population_id, demand FROM |
165
|
|
|
demand.egon_peta_heat |
166
|
|
|
WHERE scenario = '{scenario}' |
167
|
|
|
AND sector = 'residential' |
168
|
|
|
AND zensus_population_id IN( |
169
|
|
|
SELECT zensus_population_id FROM |
170
|
|
|
demand.egon_map_zensus_district_heating_areas |
171
|
|
|
WHERE scenario = '{scenario}' |
172
|
|
|
AND area_id = {area_id} |
173
|
|
|
)) as demand |
174
|
|
|
|
175
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
176
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
177
|
|
|
|
178
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
179
|
|
|
ON c.climate_zone = b.climate_zone |
180
|
|
|
|
181
|
|
|
JOIN (SELECT e.idp, ordinality as day, zensus_population_id, building_id |
182
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
183
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
184
|
|
|
JOIN demand.egon_heat_idp_pool e |
185
|
|
|
ON selected_idp = e.index |
186
|
|
|
WHERE zensus_population_id IN ( |
187
|
|
|
SELECT zensus_population_id FROM |
188
|
|
|
demand.egon_map_zensus_district_heating_areas |
189
|
|
|
WHERE scenario = '{scenario}' |
190
|
|
|
AND area_id = {area_id} |
191
|
|
|
)) demand_profile |
192
|
|
|
ON (demand_profile.day = c.day_of_year AND |
193
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
194
|
|
|
|
195
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
196
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
197
|
|
|
WHERE zensus_population_id IN( |
198
|
|
|
SELECT zensus_population_id FROM |
199
|
|
|
demand.egon_heat_timeseries_selected_profiles |
200
|
|
|
WHERE zensus_population_id IN ( |
201
|
|
|
SELECT zensus_population_id FROM |
202
|
|
|
demand.egon_map_zensus_district_heating_areas |
203
|
|
|
WHERE scenario = '{scenario}' |
204
|
|
|
AND area_id = {area_id} |
205
|
|
|
)) |
206
|
|
|
GROUP BY zensus_population_id) building |
207
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
208
|
|
|
|
209
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
210
|
|
|
) result |
211
|
|
|
|
212
|
|
|
|
213
|
|
|
GROUP BY hour_of_year |
214
|
|
|
|
215
|
|
|
""" |
216
|
|
|
) |
217
|
|
|
|
218
|
|
|
print( |
219
|
|
|
f"Time to create time series for district heating grid {scenario} {area_id}:" |
220
|
|
|
) |
221
|
|
|
print(datetime.now() - start_time) |
222
|
|
|
|
223
|
|
|
return df |
224
|
|
|
|
225
|
|
|
|
226
|
|
|
def create_district_heating_profile_python_like(scenario="eGon2035"): |
227
|
|
|
"""Creates profiles for all district heating grids in one scenario. |
228
|
|
|
Similar to create_district_heating_profile but faster and needs more RAM. |
229
|
|
|
The results are directly written into the database. |
230
|
|
|
|
231
|
|
|
Parameters |
232
|
|
|
---------- |
233
|
|
|
scenario : str |
234
|
|
|
Name of the selected scenario. |
235
|
|
|
|
236
|
|
|
Returns |
237
|
|
|
------- |
238
|
|
|
None. |
239
|
|
|
|
240
|
|
|
""" |
241
|
|
|
|
242
|
|
|
start_time = datetime.now() |
243
|
|
|
|
244
|
|
|
idp_df = db.select_dataframe( |
245
|
|
|
""" |
246
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
247
|
|
|
""", |
248
|
|
|
index_col="index", |
249
|
|
|
) |
250
|
|
|
|
251
|
|
|
district_heating_grids = db.select_dataframe( |
252
|
|
|
f""" |
253
|
|
|
SELECT area_id |
254
|
|
|
FROM demand.egon_district_heating_areas |
255
|
|
|
WHERE scenario = '{scenario}' |
256
|
|
|
""" |
257
|
|
|
) |
258
|
|
|
|
259
|
|
|
annual_demand = db.select_dataframe( |
260
|
|
|
f""" |
261
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building , area_id FROM |
262
|
|
|
demand.egon_peta_heat a |
263
|
|
|
INNER JOIN ( |
264
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
265
|
|
|
WHERE scenario = '{scenario}' |
266
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id |
267
|
|
|
|
268
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
269
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
270
|
|
|
WHERE zensus_population_id IN( |
271
|
|
|
SELECT zensus_population_id FROM |
272
|
|
|
demand.egon_heat_timeseries_selected_profiles |
273
|
|
|
WHERE zensus_population_id IN ( |
274
|
|
|
SELECT zensus_population_id FROM |
275
|
|
|
boundaries.egon_map_zensus_grid_districts |
276
|
|
|
)) |
277
|
|
|
GROUP BY zensus_population_id)c |
278
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
279
|
|
|
|
280
|
|
|
WHERE a.scenario = '{scenario}' |
281
|
|
|
AND a.sector = 'residential' |
282
|
|
|
|
283
|
|
|
""", |
284
|
|
|
index_col="zensus_population_id", |
285
|
|
|
) |
286
|
|
|
|
287
|
|
|
annual_demand = annual_demand[~annual_demand.index.duplicated(keep="first")] |
288
|
|
|
|
289
|
|
|
daily_demand_shares = db.select_dataframe( |
290
|
|
|
""" |
291
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
292
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
293
|
|
|
""" |
294
|
|
|
) |
295
|
|
|
|
296
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
297
|
|
|
aggregation_level="district" |
298
|
|
|
) |
299
|
|
|
|
300
|
|
|
# TODO: use session_scope! |
301
|
|
|
from sqlalchemy.orm import sessionmaker |
302
|
|
|
|
303
|
|
|
session = sessionmaker(bind=db.engine())() |
304
|
|
|
|
305
|
|
|
print(datetime.now() - start_time) |
306
|
|
|
|
307
|
|
|
start_time = datetime.now() |
308
|
|
|
for area in district_heating_grids.area_id.unique(): |
309
|
|
|
selected_profiles = db.select_dataframe( |
310
|
|
|
f""" |
311
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
312
|
|
|
selected_idp, ordinality as day, b.area_id |
313
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
314
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
315
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
316
|
|
|
INNER JOIN ( |
317
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
318
|
|
|
WHERE scenario = '{scenario}' |
319
|
|
|
AND area_id = '{area}' |
320
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id , |
321
|
|
|
|
322
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
323
|
|
|
|
324
|
|
|
""" |
325
|
|
|
) |
326
|
|
|
|
327
|
|
|
if not selected_profiles.empty: |
328
|
|
|
|
329
|
|
|
df = pd.merge( |
330
|
|
|
selected_profiles, |
331
|
|
|
daily_demand_shares, |
332
|
|
|
on=["day", "climate_zone"], |
333
|
|
|
) |
334
|
|
|
|
335
|
|
|
slice_df = pd.merge( |
336
|
|
|
df[df.area_id == area], |
337
|
|
|
idp_df, |
338
|
|
|
left_on="selected_idp", |
339
|
|
|
right_on="index", |
340
|
|
|
) |
341
|
|
|
|
342
|
|
|
for hour in range(24): |
343
|
|
|
slice_df[hour] = ( |
344
|
|
|
slice_df.idp.str[hour] |
345
|
|
|
.mul(slice_df.daily_demand_share) |
346
|
|
|
.mul( |
347
|
|
|
annual_demand.loc[ |
348
|
|
|
slice_df.zensus_population_id.values, |
349
|
|
|
"per_building", |
350
|
|
|
].values |
351
|
|
|
) |
352
|
|
|
) |
353
|
|
|
|
354
|
|
|
hh = np.concatenate( |
355
|
|
|
slice_df.groupby("day").sum()[range(24)].values |
356
|
|
|
).ravel() |
357
|
|
|
|
358
|
|
|
cts = CTS_demand_dist[ |
359
|
|
|
(CTS_demand_dist.scenario == scenario) |
360
|
|
|
& (CTS_demand_dist.index == area) |
361
|
|
|
].drop("scenario", axis="columns") |
362
|
|
|
|
363
|
|
|
if (not selected_profiles.empty) and not cts.empty: |
364
|
|
|
entry = EgonTimeseriesDistrictHeating( |
365
|
|
|
area_id=int(area), |
366
|
|
|
scenario=scenario, |
367
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
|
|
|
|
368
|
|
|
) |
369
|
|
|
elif (not selected_profiles.empty) and cts.empty: |
370
|
|
|
entry = EgonTimeseriesDistrictHeating( |
371
|
|
|
area_id=int(area), |
372
|
|
|
scenario=scenario, |
373
|
|
|
dist_aggregated_mw=(hh).tolist(), |
374
|
|
|
) |
375
|
|
|
elif not cts.empty: |
376
|
|
|
entry = EgonTimeseriesDistrictHeating( |
377
|
|
|
area_id=int(area), |
378
|
|
|
scenario=scenario, |
379
|
|
|
dist_aggregated_mw=(cts.values[0]).tolist(), |
380
|
|
|
) |
381
|
|
|
|
382
|
|
|
session.add(entry) |
|
|
|
|
383
|
|
|
session.commit() |
384
|
|
|
|
385
|
|
|
print( |
386
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
387
|
|
|
) |
388
|
|
|
print(datetime.now() - start_time) |
389
|
|
|
|
390
|
|
|
|
391
|
|
|
def create_individual_heat_per_mv_grid(scenario="eGon2035", mv_grid_id=1564): |
392
|
|
|
start_time = datetime.now() |
393
|
|
|
df = db.select_dataframe( |
394
|
|
|
f""" |
395
|
|
|
|
396
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
397
|
|
|
FROM |
398
|
|
|
|
399
|
|
|
( |
400
|
|
|
SELECT demand.demand * |
401
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
402
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
403
|
|
|
demand_profile.building_id, |
404
|
|
|
c.day_of_year, |
405
|
|
|
ordinality |
406
|
|
|
|
407
|
|
|
FROM |
408
|
|
|
|
409
|
|
|
(SELECT zensus_population_id, demand FROM |
410
|
|
|
demand.egon_peta_heat |
411
|
|
|
WHERE scenario = '{scenario}' |
412
|
|
|
AND sector = 'residential' |
413
|
|
|
AND zensus_population_id IN ( |
414
|
|
|
SELECT zensus_population_id FROM |
415
|
|
|
boundaries.egon_map_zensus_grid_districts |
416
|
|
|
WHERE bus_id = {mv_grid_id} |
417
|
|
|
)) as demand |
418
|
|
|
|
419
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
420
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
421
|
|
|
|
422
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
423
|
|
|
ON c.climate_zone = b.climate_zone |
424
|
|
|
|
425
|
|
|
JOIN (SELECT e.idp, ordinality as day, zensus_population_id, building_id |
426
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
427
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
428
|
|
|
JOIN demand.egon_heat_idp_pool e |
429
|
|
|
ON selected_idp = e.index |
430
|
|
|
WHERE zensus_population_id IN ( |
431
|
|
|
SELECT zensus_population_id FROM |
432
|
|
|
boundaries.egon_map_zensus_grid_districts |
433
|
|
|
WHERE bus_id = {mv_grid_id} |
434
|
|
|
)) demand_profile |
435
|
|
|
ON (demand_profile.day = c.day_of_year AND |
436
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
437
|
|
|
|
438
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
439
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
440
|
|
|
WHERE zensus_population_id IN( |
441
|
|
|
SELECT zensus_population_id FROM |
442
|
|
|
demand.egon_heat_timeseries_selected_profiles |
443
|
|
|
WHERE zensus_population_id IN ( |
444
|
|
|
SELECT zensus_population_id FROM |
445
|
|
|
boundaries.egon_map_zensus_grid_districts |
446
|
|
|
WHERE bus_id = {mv_grid_id} |
447
|
|
|
)) |
448
|
|
|
GROUP BY zensus_population_id) building |
449
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
450
|
|
|
|
451
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
452
|
|
|
) result |
453
|
|
|
|
454
|
|
|
|
455
|
|
|
GROUP BY hour_of_year |
456
|
|
|
|
457
|
|
|
""" |
458
|
|
|
) |
459
|
|
|
|
460
|
|
|
print(f"Time to create time series for mv grid {scenario} {mv_grid_id}:") |
461
|
|
|
print(datetime.now() - start_time) |
462
|
|
|
|
463
|
|
|
return df |
464
|
|
|
|
465
|
|
|
|
466
|
|
|
def calulate_peak_load(df, scenario): |
467
|
|
|
|
468
|
|
|
# peat load in W_th |
469
|
|
|
data = ( |
470
|
|
|
df.groupby("building_id") |
471
|
|
|
.max()[range(24)] |
472
|
|
|
.max(axis=1) |
473
|
|
|
.mul(1000000) |
474
|
|
|
.astype(int) |
475
|
|
|
.reset_index() |
476
|
|
|
) |
477
|
|
|
|
478
|
|
|
data["scenario"] = scenario |
479
|
|
|
|
480
|
|
|
data.rename({0: "w_th"}, axis="columns", inplace=True) |
481
|
|
|
|
482
|
|
|
data.to_sql( |
483
|
|
|
EgonIndividualHeatingPeakLoads.__table__.name, |
484
|
|
|
schema=EgonIndividualHeatingPeakLoads.__table__.schema, |
485
|
|
|
con=db.engine(), |
486
|
|
|
if_exists="append", |
487
|
|
|
index=False, |
488
|
|
|
) |
489
|
|
|
|
490
|
|
|
|
491
|
|
|
def create_individual_heating_peak_loads(scenario="eGon2035"): |
492
|
|
|
|
493
|
|
|
engine = db.engine() |
494
|
|
|
|
495
|
|
|
EgonIndividualHeatingPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
496
|
|
|
|
497
|
|
|
EgonIndividualHeatingPeakLoads.__table__.create( |
498
|
|
|
bind=engine, checkfirst=True |
499
|
|
|
) |
500
|
|
|
|
501
|
|
|
start_time = datetime.now() |
502
|
|
|
|
503
|
|
|
idp_df = db.select_dataframe( |
504
|
|
|
""" |
505
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
506
|
|
|
""", |
507
|
|
|
index_col="index", |
508
|
|
|
) |
509
|
|
|
|
510
|
|
|
annual_demand = db.select_dataframe( |
511
|
|
|
f""" |
512
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building, bus_id |
513
|
|
|
FROM demand.egon_peta_heat a |
514
|
|
|
|
515
|
|
|
|
516
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
517
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
518
|
|
|
WHERE zensus_population_id IN( |
519
|
|
|
SELECT zensus_population_id FROM |
520
|
|
|
demand.egon_heat_timeseries_selected_profiles |
521
|
|
|
WHERE zensus_population_id IN ( |
522
|
|
|
SELECT zensus_population_id FROM |
523
|
|
|
boundaries.egon_map_zensus_grid_districts |
524
|
|
|
)) |
525
|
|
|
GROUP BY zensus_population_id)c |
526
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
527
|
|
|
|
528
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
529
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
530
|
|
|
|
531
|
|
|
WHERE a.scenario = '{scenario}' |
532
|
|
|
AND a.sector = 'residential' |
533
|
|
|
AND a.zensus_population_id NOT IN ( |
534
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
535
|
|
|
WHERE scenario = '{scenario}' |
536
|
|
|
) |
537
|
|
|
|
538
|
|
|
""", |
539
|
|
|
index_col="zensus_population_id", |
540
|
|
|
) |
541
|
|
|
|
542
|
|
|
daily_demand_shares = db.select_dataframe( |
543
|
|
|
""" |
544
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
545
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
546
|
|
|
""" |
547
|
|
|
) |
548
|
|
|
|
549
|
|
|
start_time = datetime.now() |
550
|
|
|
for grid in annual_demand.bus_id.unique(): |
551
|
|
|
|
552
|
|
|
selected_profiles = db.select_dataframe( |
553
|
|
|
f""" |
554
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
555
|
|
|
selected_idp, ordinality as day |
556
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
557
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
558
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
559
|
|
|
, |
560
|
|
|
|
561
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
562
|
|
|
|
563
|
|
|
WHERE a.zensus_population_id NOT IN ( |
564
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
565
|
|
|
WHERE scenario = '{scenario}' |
566
|
|
|
) |
567
|
|
|
AND a.zensus_population_id IN ( |
568
|
|
|
SELECT zensus_population_id |
569
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
570
|
|
|
WHERE bus_id = '{grid}' |
571
|
|
|
) |
572
|
|
|
|
573
|
|
|
""" |
574
|
|
|
) |
575
|
|
|
|
576
|
|
|
df = pd.merge( |
577
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
578
|
|
|
) |
579
|
|
|
|
580
|
|
|
slice_df = pd.merge( |
581
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
582
|
|
|
) |
583
|
|
|
|
584
|
|
|
for hour in range(24): |
585
|
|
|
slice_df[hour] = ( |
586
|
|
|
slice_df.idp.str[hour] |
587
|
|
|
.mul(slice_df.daily_demand_share) |
588
|
|
|
.mul( |
589
|
|
|
annual_demand.loc[ |
590
|
|
|
slice_df.zensus_population_id.values, "per_building" |
591
|
|
|
].values |
592
|
|
|
) |
593
|
|
|
) |
594
|
|
|
|
595
|
|
|
calulate_peak_load(slice_df, scenario) |
596
|
|
|
|
597
|
|
|
print(f"Time to create peak loads per building for {scenario}") |
598
|
|
|
print(datetime.now() - start_time) |
599
|
|
|
|
600
|
|
|
|
601
|
|
|
def create_individual_heating_profile_python_like(scenario="eGon2035"): |
602
|
|
|
|
603
|
|
|
start_time = datetime.now() |
604
|
|
|
|
605
|
|
|
idp_df = db.select_dataframe( |
606
|
|
|
f""" |
607
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
608
|
|
|
""", |
609
|
|
|
index_col="index", |
610
|
|
|
) |
611
|
|
|
|
612
|
|
|
annual_demand = db.select_dataframe( |
613
|
|
|
f""" |
614
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building, bus_id |
615
|
|
|
FROM demand.egon_peta_heat a |
616
|
|
|
|
617
|
|
|
|
618
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
619
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
620
|
|
|
WHERE zensus_population_id IN( |
621
|
|
|
SELECT zensus_population_id FROM |
622
|
|
|
demand.egon_heat_timeseries_selected_profiles |
623
|
|
|
WHERE zensus_population_id IN ( |
624
|
|
|
SELECT zensus_population_id FROM |
625
|
|
|
boundaries.egon_map_zensus_grid_districts |
626
|
|
|
)) |
627
|
|
|
GROUP BY zensus_population_id)c |
628
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
629
|
|
|
|
630
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
631
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
632
|
|
|
|
633
|
|
|
WHERE a.scenario = '{scenario}' |
634
|
|
|
AND a.sector = 'residential' |
635
|
|
|
AND a.zensus_population_id NOT IN ( |
636
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
637
|
|
|
WHERE scenario = '{scenario}' |
638
|
|
|
) |
639
|
|
|
|
640
|
|
|
""", |
641
|
|
|
index_col="zensus_population_id", |
642
|
|
|
) |
643
|
|
|
|
644
|
|
|
daily_demand_shares = db.select_dataframe( |
645
|
|
|
f""" |
646
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
647
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
648
|
|
|
""" |
649
|
|
|
) |
650
|
|
|
|
651
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
652
|
|
|
aggregation_level="district" |
653
|
|
|
) |
654
|
|
|
|
655
|
|
|
# TODO: use session_scope! |
656
|
|
|
from sqlalchemy.orm import sessionmaker |
657
|
|
|
|
658
|
|
|
session = sessionmaker(bind=db.engine())() |
659
|
|
|
|
660
|
|
|
print( |
661
|
|
|
f"Time to create overhead for time series for district heating scenario {scenario}" |
662
|
|
|
) |
663
|
|
|
print(datetime.now() - start_time) |
664
|
|
|
|
665
|
|
|
start_time = datetime.now() |
666
|
|
|
for grid in annual_demand.bus_id.unique(): |
667
|
|
|
|
668
|
|
|
selected_profiles = db.select_dataframe( |
669
|
|
|
f""" |
670
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
671
|
|
|
selected_idp, ordinality as day |
672
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
673
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
674
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
675
|
|
|
, |
676
|
|
|
|
677
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
678
|
|
|
|
679
|
|
|
WHERE a.zensus_population_id NOT IN ( |
680
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
681
|
|
|
WHERE scenario = '{scenario}' |
682
|
|
|
) |
683
|
|
|
AND a.zensus_population_id IN ( |
684
|
|
|
SELECT zensus_population_id |
685
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
686
|
|
|
WHERE bus_id = '{grid}' |
687
|
|
|
) |
688
|
|
|
|
689
|
|
|
""" |
690
|
|
|
) |
691
|
|
|
|
692
|
|
|
df = pd.merge( |
693
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
694
|
|
|
) |
695
|
|
|
|
696
|
|
|
slice_df = pd.merge( |
697
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
698
|
|
|
) |
699
|
|
|
|
700
|
|
|
for hour in range(24): |
701
|
|
|
slice_df[hour] = ( |
702
|
|
|
slice_df.idp.str[hour] |
703
|
|
|
.mul(slice_df.daily_demand_share) |
704
|
|
|
.mul( |
705
|
|
|
annual_demand.loc[ |
706
|
|
|
slice_df.zensus_population_id.values, "per_building" |
707
|
|
|
].values |
708
|
|
|
) |
709
|
|
|
) |
710
|
|
|
|
711
|
|
|
cts = CTS_demand_grid[ |
712
|
|
|
(CTS_demand_grid.scenario == scenario) |
713
|
|
|
& (CTS_demand_grid.index == grid) |
714
|
|
|
].drop("scenario", axis="columns") |
715
|
|
|
|
716
|
|
|
hh = np.concatenate( |
717
|
|
|
slice_df.groupby("day").sum()[range(24)].values |
718
|
|
|
).ravel() |
719
|
|
|
|
720
|
|
|
if not (slice_df[hour].empty or cts.empty): |
|
|
|
|
721
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
722
|
|
|
bus_id=int(grid), |
723
|
|
|
scenario=scenario, |
724
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
725
|
|
|
) |
726
|
|
|
elif not slice_df[hour].empty: |
727
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
728
|
|
|
bus_id=int(grid), |
729
|
|
|
scenario=scenario, |
730
|
|
|
dist_aggregated_mw=(hh).tolist(), |
731
|
|
|
) |
732
|
|
|
elif not cts.empty: |
733
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
734
|
|
|
bus_id=int(grid), |
735
|
|
|
scenario=scenario, |
736
|
|
|
dist_aggregated_mw=(cts).tolist(), |
737
|
|
|
) |
738
|
|
|
|
739
|
|
|
session.add(entry) |
|
|
|
|
740
|
|
|
|
741
|
|
|
session.commit() |
742
|
|
|
|
743
|
|
|
print( |
744
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
745
|
|
|
) |
746
|
|
|
print(datetime.now() - start_time) |
747
|
|
|
|
748
|
|
|
|
749
|
|
|
def district_heating(method="python"): |
750
|
|
|
|
751
|
|
|
engine = db.engine() |
752
|
|
|
EgonTimeseriesDistrictHeating.__table__.drop(bind=engine, checkfirst=True) |
753
|
|
|
EgonTimeseriesDistrictHeating.__table__.create( |
754
|
|
|
bind=engine, checkfirst=True |
755
|
|
|
) |
756
|
|
|
|
757
|
|
|
if method == "python": |
758
|
|
|
create_district_heating_profile_python_like("eGon2035") |
759
|
|
|
create_district_heating_profile_python_like("eGon100RE") |
760
|
|
|
|
761
|
|
|
else: |
762
|
|
|
|
763
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
764
|
|
|
aggregation_level="district" |
765
|
|
|
) |
766
|
|
|
|
767
|
|
|
ids = db.select_dataframe( |
768
|
|
|
""" |
769
|
|
|
SELECT area_id, scenario |
770
|
|
|
FROM demand.egon_district_heating_areas |
771
|
|
|
""" |
772
|
|
|
) |
773
|
|
|
|
774
|
|
|
df = pd.DataFrame( |
775
|
|
|
columns=["area_id", "scenario", "dist_aggregated_mw"] |
776
|
|
|
) |
777
|
|
|
|
778
|
|
|
for index, row in ids.iterrows(): |
779
|
|
|
series = create_district_heating_profile( |
780
|
|
|
scenario=row.scenario, area_id=row.area_id |
781
|
|
|
) |
782
|
|
|
|
783
|
|
|
cts = ( |
784
|
|
|
CTS_demand_dist[ |
785
|
|
|
(CTS_demand_dist.scenario == row.scenario) |
786
|
|
|
& (CTS_demand_dist.index == row.area_id) |
787
|
|
|
] |
788
|
|
|
.drop("scenario", axis="columns") |
789
|
|
|
.transpose() |
790
|
|
|
) |
791
|
|
|
|
792
|
|
|
if not cts.empty: |
793
|
|
|
data = ( |
794
|
|
|
cts[row.area_id] + series.demand_profile |
795
|
|
|
).values.tolist() |
796
|
|
|
else: |
797
|
|
|
data = series.demand_profile.values.tolist() |
798
|
|
|
|
799
|
|
|
df = df.append( |
800
|
|
|
pd.Series( |
801
|
|
|
data={ |
802
|
|
|
"area_id": row.area_id, |
803
|
|
|
"scenario": row.scenario, |
804
|
|
|
"dist_aggregated_mw": data, |
805
|
|
|
}, |
806
|
|
|
), |
807
|
|
|
ignore_index=True, |
808
|
|
|
) |
809
|
|
|
|
810
|
|
|
df.to_sql( |
811
|
|
|
"egon_timeseries_district_heating", |
812
|
|
|
schema="demand", |
813
|
|
|
con=db.engine(), |
814
|
|
|
if_exists="append", |
815
|
|
|
index=False, |
816
|
|
|
) |
817
|
|
|
|
818
|
|
|
|
819
|
|
|
def individual_heating_per_mv_grid(method="python"): |
820
|
|
|
|
821
|
|
|
if method == "python": |
822
|
|
|
engine = db.engine() |
823
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
824
|
|
|
bind=engine, checkfirst=True |
825
|
|
|
) |
826
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
827
|
|
|
bind=engine, checkfirst=True |
828
|
|
|
) |
829
|
|
|
|
830
|
|
|
create_individual_heating_profile_python_like("eGon2035") |
831
|
|
|
create_individual_heating_profile_python_like("eGon100RE") |
832
|
|
|
|
833
|
|
|
else: |
834
|
|
|
|
835
|
|
|
engine = db.engine() |
836
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
837
|
|
|
bind=engine, checkfirst=True |
838
|
|
|
) |
839
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
840
|
|
|
bind=engine, checkfirst=True |
841
|
|
|
) |
842
|
|
|
|
843
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
844
|
|
|
aggregation_level="district" |
845
|
|
|
) |
846
|
|
|
df = pd.DataFrame(columns=["bus_id", "scenario", "dist_aggregated_mw"]) |
847
|
|
|
|
848
|
|
|
ids = db.select_dataframe( |
849
|
|
|
""" |
850
|
|
|
SELECT bus_id |
851
|
|
|
FROM grid.egon_mv_grid_district |
852
|
|
|
""" |
853
|
|
|
) |
854
|
|
|
|
855
|
|
|
for index, row in ids.iterrows(): |
856
|
|
|
|
857
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
858
|
|
|
series = create_individual_heat_per_mv_grid( |
859
|
|
|
scenario, row.bus_id |
860
|
|
|
) |
861
|
|
|
cts = ( |
862
|
|
|
CTS_demand_grid[ |
863
|
|
|
(CTS_demand_grid.scenario == scenario) |
864
|
|
|
& (CTS_demand_grid.index == row.bus_id) |
865
|
|
|
] |
866
|
|
|
.drop("scenario", axis="columns") |
867
|
|
|
.transpose() |
868
|
|
|
) |
869
|
|
|
if not cts.empty: |
870
|
|
|
data = ( |
871
|
|
|
cts[row.bus_id] + series.demand_profile |
872
|
|
|
).values.tolist() |
873
|
|
|
else: |
874
|
|
|
data = series.demand_profile.values.tolist() |
875
|
|
|
|
876
|
|
|
df = df.append( |
877
|
|
|
pd.Series( |
878
|
|
|
data={ |
879
|
|
|
"bus_id": row.bus_id, |
880
|
|
|
"scenario": scenario, |
881
|
|
|
"dist_aggregated_mw": data, |
882
|
|
|
}, |
883
|
|
|
), |
884
|
|
|
ignore_index=True, |
885
|
|
|
) |
886
|
|
|
|
887
|
|
|
df.to_sql( |
888
|
|
|
"egon_etrago_timeseries_individual_heating", |
889
|
|
|
schema="demand", |
890
|
|
|
con=db.engine(), |
891
|
|
|
if_exists="append", |
892
|
|
|
index=False, |
893
|
|
|
) |
894
|
|
|
|
895
|
|
|
|
896
|
|
|
def store_national_profiles(): |
897
|
|
|
|
898
|
|
|
scenario = "eGon100RE" |
899
|
|
|
|
900
|
|
|
df = db.select_dataframe( |
901
|
|
|
f""" |
902
|
|
|
|
903
|
|
|
SELECT SUM(building_demand_per_hour) as "residential rural" |
904
|
|
|
FROM |
905
|
|
|
|
906
|
|
|
( |
907
|
|
|
SELECT demand.demand * |
908
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
909
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
910
|
|
|
demand_profile.building_id, |
911
|
|
|
c.day_of_year, |
912
|
|
|
ordinality |
913
|
|
|
|
914
|
|
|
FROM |
915
|
|
|
|
916
|
|
|
(SELECT zensus_population_id, demand FROM |
917
|
|
|
demand.egon_peta_heat |
918
|
|
|
WHERE scenario = '{scenario}' |
919
|
|
|
AND sector = 'residential' |
920
|
|
|
) as demand |
921
|
|
|
|
922
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
923
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
924
|
|
|
|
925
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
926
|
|
|
ON c.climate_zone = b.climate_zone |
927
|
|
|
|
928
|
|
|
JOIN (SELECT e.idp, ordinality as day, zensus_population_id, building_id |
929
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
930
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
931
|
|
|
JOIN demand.egon_heat_idp_pool e |
932
|
|
|
ON selected_idp = e.index |
933
|
|
|
) demand_profile |
934
|
|
|
ON (demand_profile.day = c.day_of_year AND |
935
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
936
|
|
|
|
937
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
938
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
939
|
|
|
WHERE zensus_population_id IN( |
940
|
|
|
SELECT zensus_population_id FROM |
941
|
|
|
demand.egon_heat_timeseries_selected_profiles |
942
|
|
|
) |
943
|
|
|
GROUP BY zensus_population_id) building |
944
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
945
|
|
|
|
946
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
947
|
|
|
) result |
948
|
|
|
|
949
|
|
|
|
950
|
|
|
GROUP BY hour_of_year |
951
|
|
|
|
952
|
|
|
""" |
953
|
|
|
) |
954
|
|
|
|
955
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
956
|
|
|
aggregation_level="district" |
957
|
|
|
) |
958
|
|
|
|
959
|
|
|
df["service rural"] = ( |
960
|
|
|
CTS_demand_dist.loc[CTS_demand_dist.scenario == scenario] |
961
|
|
|
.drop("scenario", axis=1) |
962
|
|
|
.sum() |
963
|
|
|
) |
964
|
|
|
|
965
|
|
|
df["urban central"] = db.select_dataframe( |
966
|
|
|
f""" |
967
|
|
|
SELECT sum(demand) as "urban central" |
968
|
|
|
|
969
|
|
|
FROM demand.egon_timeseries_district_heating, |
970
|
|
|
UNNEST (dist_aggregated_mw) WITH ORDINALITY as demand |
971
|
|
|
|
972
|
|
|
WHERE scenario = '{scenario}' |
973
|
|
|
|
974
|
|
|
GROUP BY ordinality |
975
|
|
|
|
976
|
|
|
""" |
977
|
|
|
) |
978
|
|
|
|
979
|
|
|
folder = Path(".") / "input-pypsa-eur-sec" |
980
|
|
|
# Create the folder, if it does not exists already |
981
|
|
|
if not os.path.exists(folder): |
982
|
|
|
os.mkdir(folder) |
983
|
|
|
|
984
|
|
|
df.to_csv(folder / f"heat_demand_timeseries_DE_{scenario}.csv") |
985
|
|
|
|
986
|
|
|
|
987
|
|
|
def export_etrago_cts_heat_profiles(): |
988
|
|
|
"""Export heat cts load profiles at mv substation level |
989
|
|
|
to etrago-table in the database |
990
|
|
|
|
991
|
|
|
Returns |
992
|
|
|
------- |
993
|
|
|
None. |
994
|
|
|
|
995
|
|
|
""" |
996
|
|
|
|
997
|
|
|
# Calculate cts heat profiles at substation |
998
|
|
|
_, CTS_grid, _ = CTS_demand_scale("district") |
999
|
|
|
|
1000
|
|
|
# Change format |
1001
|
|
|
data = CTS_grid.drop(columns="scenario") |
1002
|
|
|
df_etrago_cts_heat_profiles = pd.DataFrame( |
1003
|
|
|
index=data.index, columns=["scn_name", "p_set"] |
1004
|
|
|
) |
1005
|
|
|
df_etrago_cts_heat_profiles.p_set = data.values.tolist() |
1006
|
|
|
df_etrago_cts_heat_profiles.scn_name = CTS_grid["scenario"] |
1007
|
|
|
df_etrago_cts_heat_profiles.reset_index(inplace=True) |
1008
|
|
|
|
1009
|
|
|
# Drop and recreate Table if exists |
1010
|
|
|
EgonEtragoHeatCts.__table__.drop(bind=db.engine(), checkfirst=True) |
1011
|
|
|
EgonEtragoHeatCts.__table__.create(bind=db.engine(), checkfirst=True) |
1012
|
|
|
|
1013
|
|
|
# Write heat ts into db |
1014
|
|
|
with db.session_scope() as session: |
1015
|
|
|
session.bulk_insert_mappings( |
1016
|
|
|
EgonEtragoHeatCts, |
1017
|
|
|
df_etrago_cts_heat_profiles.to_dict(orient="records"), |
1018
|
|
|
) |
1019
|
|
|
|
1020
|
|
|
|
1021
|
|
|
class HeatTimeSeries(Dataset): |
1022
|
|
|
def __init__(self, dependencies): |
1023
|
|
|
super().__init__( |
1024
|
|
|
name="HeatTimeSeries", |
1025
|
|
|
version="0.0.7.dev", |
1026
|
|
|
dependencies=dependencies, |
1027
|
|
|
tasks=( |
1028
|
|
|
{ |
1029
|
|
|
export_etrago_cts_heat_profiles, |
1030
|
|
|
map_climate_zones_to_zensus, |
1031
|
|
|
daily_demand_shares_per_climate_zone, |
1032
|
|
|
create, |
1033
|
|
|
}, |
1034
|
|
|
select, |
1035
|
|
|
district_heating, |
1036
|
|
|
store_national_profiles, |
1037
|
|
|
), |
1038
|
|
|
) |
1039
|
|
|
|