Total Complexity | 98 |
Total Lines | 2278 |
Duplicated Lines | 3.07 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.power_plants.pv_rooftop_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate |
||
3 | new PV rooftop generators for scenarios eGon2035 and eGon100RE. |
||
4 | |||
5 | Data cleaning and inference: |
||
6 | * Drop duplicates and entries with missing critical data. |
||
7 | * Determine most plausible capacity from multiple values given in MaStR data. |
||
8 | * Drop generators which don't have any plausible capacity data |
||
9 | (23.5MW > P > 0.1). |
||
10 | * Randomly and weighted add a start-up date if it is missing. |
||
11 | * Extract zip and municipality from 'site' given in MaStR data. |
||
12 | * Geocode unique zip and municipality combinations with Nominatim (1 sec |
||
13 | delay). Drop generators for which geocoding failed or which are located |
||
14 | outside the municipalities of Germany. |
||
15 | * Add some visual sanity checks for cleaned data. |
||
16 | |||
17 | Allocation of MaStR data: |
||
18 | * Allocate each generator to an existing building from OSM. |
||
19 | * Determine the quantile each generator and building is in depending on the |
||
20 | capacity of the generator and the area of the polygon of the building. |
||
21 | * Randomly distribute generators within each municipality preferably within |
||
22 | the same building area quantile as the generators are capacity wise. |
||
23 | * If not enough buildings exists within a municipality and quantile additional |
||
24 | buildings from other quantiles are chosen randomly. |
||
25 | |||
26 | Desegregation of pv rooftop scenarios: |
||
27 | * The scenario data per federal state is linearly distributed to the mv grid |
||
28 | districts according to the pv rooftop potential per mv grid district. |
||
29 | * The rooftop potential is estimated from the building area given from the OSM |
||
30 | buildings. |
||
31 | * Grid districts, which are located in several federal states, are allocated |
||
32 | PV capacity according to their respective roof potential in the individual |
||
33 | federal states. |
||
34 | * The desegregation of PV plants within a grid districts respects existing |
||
35 | plants from MaStR, which did not reach their end of life. |
||
36 | * New PV plants are randomly and weighted generated using a breakdown of MaStR |
||
37 | data as generator basis. |
||
38 | * Plant metadata (e.g. plant orientation) is also added random and weighted |
||
39 | from MaStR data as basis. |
||
40 | """ |
||
41 | from __future__ import annotations |
||
42 | |||
43 | from collections import Counter |
||
44 | from functools import wraps |
||
45 | from time import perf_counter |
||
46 | |||
47 | from geoalchemy2 import Geometry |
||
48 | from loguru import logger |
||
49 | from numpy.random import RandomState, default_rng |
||
50 | from pyproj.crs.crs import CRS |
||
51 | from sqlalchemy import BigInteger, Column, Float, Integer, String |
||
52 | from sqlalchemy.dialects.postgresql import HSTORE |
||
53 | from sqlalchemy.ext.declarative import declarative_base |
||
54 | import geopandas as gpd |
||
55 | import numpy as np |
||
56 | import pandas as pd |
||
57 | |||
58 | from egon.data import config, db |
||
59 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
60 | OsmBuildingsSynthetic, |
||
61 | ) |
||
62 | from egon.data.datasets.power_plants.mastr_db_classes import EgonPowerPlantsPv |
||
63 | from egon.data.datasets.scenario_capacities import EgonScenarioCapacities |
||
64 | from egon.data.datasets.zensus_vg250 import Vg250Gem |
||
65 | |||
66 | engine = db.engine() |
||
67 | Base = declarative_base() |
||
68 | SEED = int(config.settings()["egon-data"]["--random-seed"]) |
||
69 | |||
70 | # TODO: move to yml |
||
71 | MASTR_INDEX_COL = "gens_id" |
||
72 | |||
73 | EPSG = 4326 |
||
74 | SRID = 3035 |
||
75 | |||
76 | # data cleaning |
||
77 | MAX_REALISTIC_PV_CAP = 23500 / 10**3 |
||
78 | MIN_REALISTIC_PV_CAP = 0.1 / 10**3 |
||
79 | |||
80 | # show additional logging information |
||
81 | VERBOSE = False |
||
82 | |||
83 | # Number of quantiles |
||
84 | Q = 5 |
||
85 | |||
86 | # Scenario Data |
||
87 | SCENARIOS = ["eGon2035", "eGon100RE"] |
||
88 | SCENARIO_TIMESTAMP = { |
||
89 | "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"), |
||
90 | "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"), |
||
91 | } |
||
92 | PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D") |
||
93 | |||
94 | # Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp |
||
95 | # https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf |
||
96 | MODUL_CAP = 0.4 / 10**3 # MWp |
||
97 | MODUL_SIZE = 1.096 * 1.754 # m² |
||
98 | PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE |
||
99 | |||
100 | # Estimation of usable roof area |
||
101 | # Factor for the conversion of building area to roof area |
||
102 | # estimation mean roof pitch: 35° |
||
103 | # estimation usable roof share: 80% |
||
104 | # estimation that only the south side of the building is used for pv |
||
105 | # see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf |
||
106 | # AREA_FACTOR = 1.221 |
||
107 | # USABLE_ROOF_SHARE = 0.8 |
||
108 | # SOUTH_SHARE = 0.5 |
||
109 | # ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE |
||
110 | ROOF_FACTOR = 0.5 |
||
111 | |||
112 | CAP_RANGES = [ |
||
113 | (0, 30 / 10**3), |
||
114 | (30 / 10**3, 100 / 10**3), |
||
115 | (100 / 10**3, float("inf")), |
||
116 | ] |
||
117 | |||
118 | MIN_BUILDING_SIZE = 10.0 |
||
119 | UPPER_QUANTILE = 0.95 |
||
120 | LOWER_QUANTILE = 0.05 |
||
121 | |||
122 | COLS_TO_EXPORT = [ |
||
123 | "scenario", |
||
124 | "bus_id", |
||
125 | "building_id", |
||
126 | "gens_id", |
||
127 | "capacity", |
||
128 | "orientation_uniform", |
||
129 | "orientation_primary", |
||
130 | "orientation_primary_angle", |
||
131 | "voltage_level", |
||
132 | "weather_cell_id", |
||
133 | ] |
||
134 | |||
135 | # TODO |
||
136 | INCLUDE_SYNTHETIC_BUILDINGS = True |
||
137 | ONLY_BUILDINGS_WITH_DEMAND = True |
||
138 | TEST_RUN = False |
||
139 | |||
140 | |||
141 | def timer_func(func): |
||
142 | @wraps(func) |
||
143 | def timeit_wrapper(*args, **kwargs): |
||
144 | start_time = perf_counter() |
||
145 | result = func(*args, **kwargs) |
||
146 | end_time = perf_counter() |
||
147 | total_time = end_time - start_time |
||
148 | logger.debug( |
||
149 | f"Function {func.__name__} took {total_time:.4f} seconds." |
||
150 | ) |
||
151 | return result |
||
152 | |||
153 | return timeit_wrapper |
||
154 | |||
155 | |||
156 | @timer_func |
||
157 | def mastr_data( |
||
158 | index_col: str | int | list[str] | list[int], |
||
159 | ) -> gpd.GeoDataFrame: |
||
160 | """ |
||
161 | Read MaStR data from database. |
||
162 | |||
163 | Parameters |
||
164 | ----------- |
||
165 | index_col : str, int or list of str or int |
||
166 | Column(s) to use as the row labels of the DataFrame. |
||
167 | Returns |
||
168 | ------- |
||
169 | pandas.DataFrame |
||
170 | DataFrame containing MaStR data. |
||
171 | """ |
||
172 | with db.session_scope() as session: |
||
173 | query = session.query(EgonPowerPlantsPv).filter( |
||
174 | EgonPowerPlantsPv.status == "InBetrieb", |
||
175 | EgonPowerPlantsPv.site_type |
||
176 | == ("Bauliche Anlagen (Hausdach, Gebäude und Fassade)"), |
||
177 | ) |
||
178 | |||
179 | gdf = gpd.read_postgis( |
||
180 | query.statement, query.session.bind, index_col=index_col |
||
181 | ).drop(columns="id") |
||
182 | |||
183 | logger.debug("MaStR data loaded.") |
||
184 | |||
185 | return gdf |
||
186 | |||
187 | |||
188 | @timer_func |
||
189 | def clean_mastr_data( |
||
190 | mastr_gdf: gpd.GeoDataFrame, |
||
191 | max_realistic_pv_cap: int | float, |
||
192 | min_realistic_pv_cap: int | float, |
||
193 | seed: int, |
||
194 | ) -> gpd.GeoDataFrame: |
||
195 | """ |
||
196 | Clean the MaStR data from implausible data. |
||
197 | |||
198 | * Drop MaStR ID duplicates. |
||
199 | * Drop generators with implausible capacities. |
||
200 | |||
201 | Parameters |
||
202 | ----------- |
||
203 | mastr_gdf : pandas.DataFrame |
||
204 | DataFrame containing MaStR data. |
||
205 | max_realistic_pv_cap : int or float |
||
206 | Maximum capacity, which is considered to be realistic. |
||
207 | min_realistic_pv_cap : int or float |
||
208 | Minimum capacity, which is considered to be realistic. |
||
209 | seed : int |
||
210 | Seed to use for random operations with NumPy and pandas. |
||
211 | Returns |
||
212 | ------- |
||
213 | pandas.DataFrame |
||
214 | DataFrame containing cleaned MaStR data. |
||
215 | """ |
||
216 | init_len = len(mastr_gdf) |
||
217 | |||
218 | # drop duplicates |
||
219 | mastr_gdf = mastr_gdf.loc[~mastr_gdf.index.duplicated()] |
||
220 | |||
221 | # drop generators without any capacity info |
||
222 | # and capacity of zero |
||
223 | # and if the capacity is > 23.5 MW, because |
||
224 | # Germanies largest rooftop PV is 23 MW |
||
225 | # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379 |
||
226 | mastr_gdf = mastr_gdf.loc[ |
||
227 | ~mastr_gdf.capacity.isna() |
||
228 | & (mastr_gdf.capacity <= max_realistic_pv_cap) |
||
229 | & (mastr_gdf.capacity > min_realistic_pv_cap) |
||
230 | ] |
||
231 | |||
232 | # get consistent start-up date |
||
233 | # randomly and weighted fill missing start-up dates |
||
234 | pool = mastr_gdf.loc[ |
||
235 | ~mastr_gdf.commissioning_date.isna() |
||
236 | ].commissioning_date.to_numpy() |
||
237 | |||
238 | size = len(mastr_gdf) - len(pool) |
||
239 | |||
240 | if size > 0: |
||
241 | rng = default_rng(seed=seed) |
||
242 | |||
243 | choice = rng.choice( |
||
244 | pool, |
||
245 | size=size, |
||
246 | replace=False, |
||
247 | ) |
||
248 | |||
249 | mastr_gdf.loc[mastr_gdf.commissioning_date.isna()] = mastr_gdf.loc[ |
||
250 | mastr_gdf.commissioning_date.isna() |
||
251 | ].assign(commissioning_date=choice) |
||
252 | |||
253 | logger.info( |
||
254 | f"Randomly and weigthed added start-up date to {size} generators." |
||
255 | ) |
||
256 | |||
257 | mastr_gdf = mastr_gdf.assign( |
||
258 | commissioning_date=pd.to_datetime( |
||
259 | mastr_gdf.commissioning_date, utc=True |
||
260 | ) |
||
261 | ) |
||
262 | |||
263 | end_len = len(mastr_gdf) |
||
264 | logger.debug( |
||
265 | f"Dropped {init_len - end_len} " |
||
266 | f"({((init_len - end_len) / init_len) * 100:g}%)" |
||
267 | f" of {init_len} rows from MaStR DataFrame." |
||
268 | ) |
||
269 | |||
270 | return mastr_gdf |
||
271 | |||
272 | |||
273 | @timer_func |
||
274 | def municipality_data() -> gpd.GeoDataFrame: |
||
275 | """ |
||
276 | Get municipality data from eGo^n Database. |
||
277 | Returns |
||
278 | ------- |
||
279 | gepandas.GeoDataFrame |
||
280 | GeoDataFrame with municipality data. |
||
281 | """ |
||
282 | with db.session_scope() as session: |
||
283 | query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom")) |
||
284 | |||
285 | return gpd.read_postgis( |
||
286 | query.statement, query.session.bind, index_col="ags" |
||
287 | ) |
||
288 | |||
289 | |||
290 | @timer_func |
||
291 | def add_ags_to_gens( |
||
292 | mastr_gdf: gpd.GeoDataFrame, |
||
293 | municipalities_gdf: gpd.GeoDataFrame, |
||
294 | ) -> gpd.GeoDataFrame: |
||
295 | """ |
||
296 | Add information about AGS ID to generators. |
||
297 | Parameters |
||
298 | ----------- |
||
299 | mastr_gdf : geopandas.GeoDataFrame |
||
300 | GeoDataFrame with valid and cleaned MaStR data. |
||
301 | municipalities_gdf : geopandas.GeoDataFrame |
||
302 | GeoDataFrame with municipality data. |
||
303 | Returns |
||
304 | ------- |
||
305 | gepandas.GeoDataFrame |
||
306 | GeoDataFrame with valid and cleaned MaStR data |
||
307 | with AGS ID added. |
||
308 | """ |
||
309 | return mastr_gdf.sjoin( |
||
310 | municipalities_gdf, |
||
311 | how="left", |
||
312 | predicate="intersects", |
||
313 | ).rename(columns={"index_right": "ags"}) |
||
314 | |||
315 | |||
316 | def drop_gens_outside_muns( |
||
317 | mastr_gdf: gpd.GeoDataFrame, |
||
318 | ) -> gpd.GeoDataFrame: |
||
319 | """ |
||
320 | Drop all generators outside of municipalities. |
||
321 | Parameters |
||
322 | ----------- |
||
323 | mastr_gdf : geopandas.GeoDataFrame |
||
324 | GeoDataFrame with valid and cleaned MaStR data. |
||
325 | Returns |
||
326 | ------- |
||
327 | gepandas.GeoDataFrame |
||
328 | GeoDataFrame with valid and cleaned MaStR data |
||
329 | with generatos without an AGS ID dropped. |
||
330 | """ |
||
331 | gdf = mastr_gdf.loc[~mastr_gdf.ags.isna()] |
||
332 | |||
333 | logger.debug( |
||
334 | f"{len(mastr_gdf) - len(gdf)} (" |
||
335 | f"{(len(mastr_gdf) - len(gdf)) / len(mastr_gdf) * 100:g}%)" |
||
336 | f" of {len(mastr_gdf)} values are outside of the municipalities" |
||
337 | " and are therefore dropped." |
||
338 | ) |
||
339 | |||
340 | return gdf |
||
341 | |||
342 | |||
343 | def load_mastr_data(): |
||
344 | """Read PV rooftop data from MaStR CSV |
||
345 | Note: the source will be replaced as soon as the MaStR data is available |
||
346 | in DB. |
||
347 | Returns |
||
348 | ------- |
||
349 | geopandas.GeoDataFrame |
||
350 | GeoDataFrame containing MaStR data with geocoded locations. |
||
351 | """ |
||
352 | mastr_gdf = mastr_data( |
||
353 | MASTR_INDEX_COL, |
||
354 | ) |
||
355 | |||
356 | clean_mastr_gdf = clean_mastr_data( |
||
357 | mastr_gdf, |
||
358 | max_realistic_pv_cap=MAX_REALISTIC_PV_CAP, |
||
359 | min_realistic_pv_cap=MIN_REALISTIC_PV_CAP, |
||
360 | seed=SEED, |
||
361 | ) |
||
362 | |||
363 | municipalities_gdf = municipality_data() |
||
364 | |||
365 | clean_mastr_gdf = add_ags_to_gens(clean_mastr_gdf, municipalities_gdf) |
||
366 | |||
367 | return drop_gens_outside_muns(clean_mastr_gdf) |
||
368 | |||
369 | |||
370 | class OsmBuildingsFiltered(Base): |
||
371 | __tablename__ = "osm_buildings_filtered" |
||
372 | __table_args__ = {"schema": "openstreetmap"} |
||
373 | |||
374 | osm_id = Column(BigInteger) |
||
375 | amenity = Column(String) |
||
376 | building = Column(String) |
||
377 | name = Column(String) |
||
378 | geom = Column(Geometry(srid=SRID), index=True) |
||
379 | area = Column(Float) |
||
380 | geom_point = Column(Geometry(srid=SRID), index=True) |
||
381 | tags = Column(HSTORE) |
||
382 | id = Column(BigInteger, primary_key=True, index=True) |
||
383 | |||
384 | |||
385 | @timer_func |
||
386 | def osm_buildings( |
||
387 | to_crs: CRS, |
||
388 | ) -> gpd.GeoDataFrame: |
||
389 | """ |
||
390 | Read OSM buildings data from eGo^n Database. |
||
391 | Parameters |
||
392 | ----------- |
||
393 | to_crs : pyproj.crs.crs.CRS |
||
394 | CRS to transform geometries to. |
||
395 | Returns |
||
396 | ------- |
||
397 | geopandas.GeoDataFrame |
||
398 | GeoDataFrame containing OSM buildings data. |
||
399 | """ |
||
400 | with db.session_scope() as session: |
||
401 | query = session.query( |
||
402 | OsmBuildingsFiltered.id, |
||
403 | OsmBuildingsFiltered.area, |
||
404 | OsmBuildingsFiltered.geom_point.label("geom"), |
||
405 | ) |
||
406 | |||
407 | return gpd.read_postgis( |
||
408 | query.statement, query.session.bind, index_col="id" |
||
409 | ).to_crs(to_crs) |
||
410 | |||
411 | |||
412 | @timer_func |
||
413 | def synthetic_buildings( |
||
414 | to_crs: CRS, |
||
415 | ) -> gpd.GeoDataFrame: |
||
416 | """ |
||
417 | Read synthetic buildings data from eGo^n Database. |
||
418 | Parameters |
||
419 | ----------- |
||
420 | to_crs : pyproj.crs.crs.CRS |
||
421 | CRS to transform geometries to. |
||
422 | Returns |
||
423 | ------- |
||
424 | geopandas.GeoDataFrame |
||
425 | GeoDataFrame containing OSM buildings data. |
||
426 | """ |
||
427 | with db.session_scope() as session: |
||
428 | query = session.query( |
||
429 | OsmBuildingsSynthetic.id, |
||
430 | OsmBuildingsSynthetic.area, |
||
431 | OsmBuildingsSynthetic.geom_point.label("geom"), |
||
432 | ) |
||
433 | |||
434 | return gpd.read_postgis( |
||
435 | query.statement, query.session.bind, index_col="id" |
||
436 | ).to_crs(to_crs) |
||
437 | |||
438 | |||
439 | @timer_func |
||
440 | def add_ags_to_buildings( |
||
441 | buildings_gdf: gpd.GeoDataFrame, |
||
442 | municipalities_gdf: gpd.GeoDataFrame, |
||
443 | ) -> gpd.GeoDataFrame: |
||
444 | """ |
||
445 | Add information about AGS ID to buildings. |
||
446 | Parameters |
||
447 | ----------- |
||
448 | buildings_gdf : geopandas.GeoDataFrame |
||
449 | GeoDataFrame containing OSM buildings data. |
||
450 | municipalities_gdf : geopandas.GeoDataFrame |
||
451 | GeoDataFrame with municipality data. |
||
452 | Returns |
||
453 | ------- |
||
454 | gepandas.GeoDataFrame |
||
455 | GeoDataFrame containing OSM buildings data |
||
456 | with AGS ID added. |
||
457 | """ |
||
458 | return buildings_gdf.sjoin( |
||
459 | municipalities_gdf, |
||
460 | how="left", |
||
461 | predicate="intersects", |
||
462 | ).rename(columns={"index_right": "ags"}) |
||
463 | |||
464 | |||
465 | def drop_buildings_outside_muns( |
||
466 | buildings_gdf: gpd.GeoDataFrame, |
||
467 | ) -> gpd.GeoDataFrame: |
||
468 | """ |
||
469 | Drop all buildings outside of municipalities. |
||
470 | Parameters |
||
471 | ----------- |
||
472 | buildings_gdf : geopandas.GeoDataFrame |
||
473 | GeoDataFrame containing OSM buildings data. |
||
474 | Returns |
||
475 | ------- |
||
476 | gepandas.GeoDataFrame |
||
477 | GeoDataFrame containing OSM buildings data |
||
478 | with buildings without an AGS ID dropped. |
||
479 | """ |
||
480 | gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()] |
||
481 | |||
482 | logger.debug( |
||
483 | f"{len(buildings_gdf) - len(gdf)} " |
||
484 | f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
||
485 | f"of {len(buildings_gdf)} values are outside of the municipalities " |
||
486 | "and are therefore dropped." |
||
487 | ) |
||
488 | |||
489 | return gdf |
||
490 | |||
491 | |||
492 | def egon_building_peak_loads(): |
||
493 | sql = """ |
||
494 | SELECT building_id |
||
495 | FROM demand.egon_building_electricity_peak_loads |
||
496 | WHERE scenario = 'eGon2035' |
||
497 | """ |
||
498 | |||
499 | return ( |
||
500 | db.select_dataframe(sql).building_id.astype(int).sort_values().unique() |
||
501 | ) |
||
502 | |||
503 | |||
504 | @timer_func |
||
505 | def load_building_data(): |
||
506 | """ |
||
507 | Read buildings from DB |
||
508 | Tables: |
||
509 | |||
510 | * `openstreetmap.osm_buildings_filtered` (from OSM) |
||
511 | * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us) |
||
512 | |||
513 | Use column `id` for both as it is unique hence you concat both datasets. |
||
514 | If INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be |
||
515 | loaded. |
||
516 | |||
517 | Returns |
||
518 | ------- |
||
519 | gepandas.GeoDataFrame |
||
520 | GeoDataFrame containing OSM buildings data with buildings without an |
||
521 | AGS ID dropped. |
||
522 | """ |
||
523 | |||
524 | municipalities_gdf = municipality_data() |
||
525 | |||
526 | osm_buildings_gdf = osm_buildings(municipalities_gdf.crs) |
||
527 | |||
528 | if INCLUDE_SYNTHETIC_BUILDINGS: |
||
529 | synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs) |
||
530 | |||
531 | buildings_gdf = gpd.GeoDataFrame( |
||
532 | pd.concat( |
||
533 | [ |
||
534 | osm_buildings_gdf, |
||
535 | synthetic_buildings_gdf, |
||
536 | ] |
||
537 | ), |
||
538 | geometry="geom", |
||
539 | crs=osm_buildings_gdf.crs, |
||
540 | ).rename(columns={"area": "building_area"}) |
||
541 | |||
542 | buildings_gdf.index = buildings_gdf.index.astype(int) |
||
543 | |||
544 | else: |
||
545 | buildings_gdf = osm_buildings_gdf.rename( |
||
546 | columns={"area": "building_area"} |
||
547 | ) |
||
548 | |||
549 | if ONLY_BUILDINGS_WITH_DEMAND: |
||
550 | building_ids = egon_building_peak_loads() |
||
551 | |||
552 | init_len = len(building_ids) |
||
553 | |||
554 | building_ids = np.intersect1d( |
||
555 | list(map(int, building_ids)), |
||
556 | list(map(int, buildings_gdf.index.to_numpy())), |
||
557 | ) |
||
558 | |||
559 | end_len = len(building_ids) |
||
560 | |||
561 | logger.debug( |
||
562 | f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) " |
||
563 | f"of buildings have peak load." |
||
564 | ) |
||
565 | |||
566 | buildings_gdf = buildings_gdf.loc[building_ids] |
||
567 | |||
568 | buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf) |
||
569 | |||
570 | buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf) |
||
571 | |||
572 | grid_districts_gdf = grid_districts(EPSG) |
||
573 | |||
574 | federal_state_gdf = federal_state_data(grid_districts_gdf.crs) |
||
575 | |||
576 | grid_federal_state_gdf = overlay_grid_districts_with_counties( |
||
577 | grid_districts_gdf, |
||
578 | federal_state_gdf, |
||
579 | ) |
||
580 | |||
581 | buildings_overlay_gdf = add_overlay_id_to_buildings( |
||
582 | buildings_ags_gdf, |
||
583 | grid_federal_state_gdf, |
||
584 | ) |
||
585 | |||
586 | logger.debug("Loaded buildings.") |
||
587 | |||
588 | buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf) |
||
589 | |||
590 | # overwrite bus_id with data from new table |
||
591 | sql = ( |
||
592 | "SELECT building_id, bus_id FROM " |
||
593 | "boundaries.egon_map_zensus_mvgd_buildings" |
||
594 | ) |
||
595 | map_building_bus_df = db.select_dataframe(sql) |
||
596 | |||
597 | building_ids = np.intersect1d( |
||
598 | list(map(int, map_building_bus_df.building_id.unique())), |
||
599 | list(map(int, buildings_overlay_gdf.index.to_numpy())), |
||
600 | ) |
||
601 | |||
602 | buildings_within_gdf = buildings_overlay_gdf.loc[building_ids] |
||
603 | |||
604 | gdf = ( |
||
605 | buildings_within_gdf.reset_index() |
||
606 | .drop(columns=["bus_id"]) |
||
607 | .merge( |
||
608 | how="left", |
||
609 | right=map_building_bus_df, |
||
610 | left_on="id", |
||
611 | right_on="building_id", |
||
612 | ) |
||
613 | .drop(columns=["building_id"]) |
||
614 | .set_index("id") |
||
615 | .sort_index() |
||
616 | ) |
||
617 | |||
618 | return gdf[~gdf.index.duplicated(keep="first")] |
||
619 | |||
620 | |||
621 | @timer_func |
||
622 | def sort_and_qcut_df( |
||
623 | df: pd.DataFrame | gpd.GeoDataFrame, |
||
624 | col: str, |
||
625 | q: int, |
||
626 | ) -> pd.DataFrame | gpd.GeoDataFrame: |
||
627 | """ |
||
628 | Determine the quantile of a given attribute in a (Geo)DataFrame. |
||
629 | Sort the (Geo)DataFrame in ascending order for the given attribute. |
||
630 | Parameters |
||
631 | ----------- |
||
632 | df : pandas.DataFrame or geopandas.GeoDataFrame |
||
633 | (Geo)DataFrame to sort and qcut. |
||
634 | col : str |
||
635 | Name of the attribute to sort and qcut the (Geo)DataFrame on. |
||
636 | q : int |
||
637 | Number of quantiles. |
||
638 | Returns |
||
639 | ------- |
||
640 | pandas.DataFrame or gepandas.GeoDataFrame |
||
641 | Sorted and qcut (Geo)DataFrame. |
||
642 | """ |
||
643 | df = df.sort_values(col, ascending=True) |
||
644 | |||
645 | return df.assign( |
||
646 | quant=pd.qcut( |
||
647 | df[col], |
||
648 | q=q, |
||
649 | labels=range(q), |
||
650 | ) |
||
651 | ) |
||
652 | |||
653 | |||
654 | @timer_func |
||
655 | def allocate_pv( |
||
656 | q_mastr_gdf: gpd.GeoDataFrame, |
||
657 | q_buildings_gdf: gpd.GeoDataFrame, |
||
658 | seed: int, |
||
659 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
||
660 | """ |
||
661 | Allocate the MaStR pv generators to the OSM buildings. |
||
662 | This will determine a building for each pv generator if there are more |
||
663 | buildings than generators within a given AGS. Primarily generators are |
||
664 | distributed with the same qunatile as the buildings. Multiple assignment |
||
665 | is excluded. |
||
666 | Parameters |
||
667 | ----------- |
||
668 | q_mastr_gdf : geopandas.GeoDataFrame |
||
669 | GeoDataFrame containing geocoded and qcut MaStR data. |
||
670 | q_buildings_gdf : geopandas.GeoDataFrame |
||
671 | GeoDataFrame containing qcut OSM buildings data. |
||
672 | seed : int |
||
673 | Seed to use for random operations with NumPy and pandas. |
||
674 | Returns |
||
675 | ------- |
||
676 | tuple with two geopandas.GeoDataFrame s |
||
677 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
678 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
679 | """ |
||
680 | rng = default_rng(seed=seed) |
||
681 | |||
682 | q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan).sort_values( |
||
683 | by=["ags", "quant"] |
||
684 | ) |
||
685 | q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan).sort_values( |
||
686 | by=["ags", "quant"] |
||
687 | ) |
||
688 | |||
689 | ags_list = q_buildings_gdf.ags.unique() |
||
690 | |||
691 | if TEST_RUN: |
||
692 | ags_list = ags_list[:250] |
||
693 | |||
694 | num_ags = len(ags_list) |
||
695 | |||
696 | t0 = perf_counter() |
||
697 | |||
698 | for count, ags in enumerate(ags_list): |
||
699 | |||
700 | buildings = q_buildings_gdf.loc[q_buildings_gdf.ags == ags] |
||
701 | gens = q_mastr_gdf.loc[q_mastr_gdf.ags == ags] |
||
702 | |||
703 | len_build = len(buildings) |
||
704 | len_gens = len(gens) |
||
705 | |||
706 | if len_build < len_gens: |
||
707 | gens = gens.sample(len_build, random_state=RandomState(seed=seed)) |
||
708 | logger.error( |
||
709 | f"There are {len_gens} generators and only {len_build}" |
||
710 | f" buildings in AGS {ags}. {len_gens - len(gens)} " |
||
711 | "generators were truncated to match the amount of buildings." |
||
712 | ) |
||
713 | |||
714 | assert len_build == len(gens) |
||
715 | |||
716 | for quant in gens.quant.unique(): |
||
717 | q_buildings = buildings.loc[buildings.quant == quant] |
||
718 | q_gens = gens.loc[gens.quant == quant] |
||
719 | |||
720 | len_build = len(q_buildings) |
||
721 | len_gens = len(q_gens) |
||
722 | |||
723 | if len_build < len_gens: |
||
724 | delta = len_gens - len_build |
||
725 | |||
726 | logger.warning( |
||
727 | f"There are {len_gens} generators and only {len_build} " |
||
728 | f"buildings in AGS {ags} and quantile {quant}. {delta} " |
||
729 | f"buildings from AGS {ags} will be added randomly." |
||
730 | ) |
||
731 | |||
732 | add_buildings = pd.Index( |
||
733 | rng.choice( |
||
734 | list(set(buildings.index) - set(q_buildings.index)), |
||
735 | size=delta, |
||
736 | replace=False, |
||
737 | ) |
||
738 | ) |
||
739 | |||
740 | chosen_buildings = q_buildings.index.append(add_buildings) |
||
741 | |||
742 | else: |
||
743 | chosen_buildings = rng.choice( |
||
744 | q_buildings.index, |
||
745 | size=len_gens, |
||
746 | replace=False, |
||
747 | ) |
||
748 | |||
749 | q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index |
||
750 | buildings = buildings.drop(chosen_buildings) |
||
751 | |||
752 | if count % 500 == 0: |
||
753 | logger.debug( |
||
754 | f"Allocation of {count / num_ags * 100:g} % of AGS done. " |
||
755 | f"It took {perf_counter() - t0:g} seconds." |
||
756 | ) |
||
757 | |||
758 | t0 = perf_counter() |
||
759 | |||
760 | assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()] |
||
761 | |||
762 | assert len(assigned_buildings) == len(assigned_buildings.gens_id.unique()) |
||
763 | |||
764 | q_mastr_gdf.loc[ |
||
765 | assigned_buildings.gens_id, "building_id" |
||
766 | ] = assigned_buildings.index |
||
767 | |||
768 | assigned_gens = q_mastr_gdf.loc[~q_mastr_gdf.building_id.isna()] |
||
769 | |||
770 | assert len(assigned_buildings) == len(assigned_gens) |
||
771 | |||
772 | logger.debug("Allocated status quo generators to buildings.") |
||
773 | |||
774 | return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf) |
||
775 | |||
776 | |||
777 | def frame_to_numeric( |
||
778 | df: pd.DataFrame | gpd.GeoDataFrame, |
||
779 | ) -> pd.DataFrame | gpd.GeoDataFrame: |
||
780 | """ |
||
781 | Try to convert all columns of a DataFrame to numeric ignoring errors. |
||
782 | Parameters |
||
783 | ---------- |
||
784 | df : pandas.DataFrame or geopandas.GeoDataFrame |
||
785 | Returns |
||
786 | ------- |
||
787 | pandas.DataFrame or geopandas.GeoDataFrame |
||
788 | """ |
||
789 | if str(df.index.dtype) == "object": |
||
790 | df.index = pd.to_numeric(df.index, errors="ignore") |
||
791 | |||
792 | for col in df.columns: |
||
793 | if str(df[col].dtype) == "object": |
||
794 | df[col] = pd.to_numeric(df[col], errors="ignore") |
||
795 | |||
796 | return df |
||
797 | |||
798 | |||
799 | def validate_output( |
||
800 | desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame, |
||
801 | desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame, |
||
802 | ) -> None: |
||
803 | """ |
||
804 | Validate output. |
||
805 | |||
806 | * Validate that there are exactly as many buildings with a pv system as |
||
807 | there are pv systems with a building |
||
808 | * Validate that the building IDs with a pv system are the same building |
||
809 | IDs as assigned to the pv systems |
||
810 | * Validate that the pv system IDs with a building are the same pv system |
||
811 | IDs as assigned to the buildings |
||
812 | |||
813 | Parameters |
||
814 | ----------- |
||
815 | desagg_mastr_gdf : geopandas.GeoDataFrame |
||
816 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
817 | desagg_buildings_gdf : geopandas.GeoDataFrame |
||
818 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
819 | """ |
||
820 | assert len( |
||
821 | desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()] |
||
822 | ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()]) |
||
823 | assert ( |
||
824 | np.sort( |
||
825 | desagg_mastr_gdf.loc[ |
||
826 | ~desagg_mastr_gdf.building_id.isna() |
||
827 | ].building_id.unique() |
||
828 | ) |
||
829 | == np.sort( |
||
830 | desagg_buildings_gdf.loc[ |
||
831 | ~desagg_buildings_gdf.gens_id.isna() |
||
832 | ].index.unique() |
||
833 | ) |
||
834 | ).all() |
||
835 | assert ( |
||
836 | np.sort( |
||
837 | desagg_mastr_gdf.loc[ |
||
838 | ~desagg_mastr_gdf.building_id.isna() |
||
839 | ].index.unique() |
||
840 | ) |
||
841 | == np.sort( |
||
842 | desagg_buildings_gdf.loc[ |
||
843 | ~desagg_buildings_gdf.gens_id.isna() |
||
844 | ].gens_id.unique() |
||
845 | ) |
||
846 | ).all() |
||
847 | |||
848 | logger.debug("Validated output.") |
||
849 | |||
850 | |||
851 | def drop_unallocated_gens( |
||
852 | gdf: gpd.GeoDataFrame, |
||
853 | ) -> gpd.GeoDataFrame: |
||
854 | """ |
||
855 | Drop generators which did not get allocated. |
||
856 | |||
857 | Parameters |
||
858 | ----------- |
||
859 | gdf : geopandas.GeoDataFrame |
||
860 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
861 | Returns |
||
862 | ------- |
||
863 | geopandas.GeoDataFrame |
||
864 | GeoDataFrame containing MaStR data with generators dropped which did |
||
865 | not get allocated. |
||
866 | """ |
||
867 | init_len = len(gdf) |
||
868 | gdf = gdf.loc[~gdf.building_id.isna()] |
||
869 | end_len = len(gdf) |
||
870 | |||
871 | logger.debug( |
||
872 | f"Dropped {init_len - end_len} " |
||
873 | f"({((init_len - end_len) / init_len) * 100:g}%)" |
||
874 | f" of {init_len} unallocated rows from MaStR DataFrame." |
||
875 | ) |
||
876 | |||
877 | return gdf |
||
878 | |||
879 | |||
880 | @timer_func |
||
881 | def allocate_to_buildings( |
||
882 | mastr_gdf: gpd.GeoDataFrame, |
||
883 | buildings_gdf: gpd.GeoDataFrame, |
||
884 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
||
885 | """ |
||
886 | Allocate status quo pv rooftop generators to buildings. |
||
887 | Parameters |
||
888 | ----------- |
||
889 | mastr_gdf : geopandas.GeoDataFrame |
||
890 | GeoDataFrame containing MaStR data with geocoded locations. |
||
891 | buildings_gdf : geopandas.GeoDataFrame |
||
892 | GeoDataFrame containing OSM buildings data with buildings without an |
||
893 | AGS ID dropped. |
||
894 | Returns |
||
895 | ------- |
||
896 | tuple with two geopandas.GeoDataFrame s |
||
897 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
898 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
899 | """ |
||
900 | logger.debug("Starting allocation of status quo.") |
||
901 | |||
902 | q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q) |
||
903 | q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q) |
||
904 | |||
905 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv( |
||
906 | q_mastr_gdf, q_buildings_gdf, SEED |
||
907 | ) |
||
908 | |||
909 | validate_output(desagg_mastr_gdf, desagg_buildings_gdf) |
||
910 | |||
911 | return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf |
||
912 | |||
913 | |||
914 | @timer_func |
||
915 | def grid_districts( |
||
916 | epsg: int, |
||
917 | ) -> gpd.GeoDataFrame: |
||
918 | """ |
||
919 | Load mv grid district geo data from eGo^n Database as |
||
920 | geopandas.GeoDataFrame. |
||
921 | Parameters |
||
922 | ----------- |
||
923 | epsg : int |
||
924 | EPSG ID to use as CRS. |
||
925 | Returns |
||
926 | ------- |
||
927 | geopandas.GeoDataFrame |
||
928 | GeoDataFrame containing mv grid district ID and geo shapes data. |
||
929 | """ |
||
930 | gdf = db.select_geodataframe( |
||
931 | """ |
||
932 | SELECT bus_id, geom |
||
933 | FROM grid.egon_mv_grid_district |
||
934 | ORDER BY bus_id |
||
935 | """, |
||
936 | index_col="bus_id", |
||
937 | geom_col="geom", |
||
938 | epsg=epsg, |
||
939 | ) |
||
940 | |||
941 | gdf.index = gdf.index.astype(int) |
||
942 | |||
943 | logger.debug("Grid districts loaded.") |
||
944 | |||
945 | return gdf |
||
946 | |||
947 | |||
948 | def scenario_data( |
||
949 | carrier: str = "solar_rooftop", |
||
950 | scenario: str = "eGon2035", |
||
951 | ) -> pd.DataFrame: |
||
952 | """ |
||
953 | Get scenario capacity data from eGo^n Database. |
||
954 | Parameters |
||
955 | ----------- |
||
956 | carrier : str |
||
957 | Carrier type to filter table by. |
||
958 | scenario : str |
||
959 | Scenario to filter table by. |
||
960 | Returns |
||
961 | ------- |
||
962 | geopandas.GeoDataFrame |
||
963 | GeoDataFrame with scenario capacity data in GW. |
||
964 | """ |
||
965 | with db.session_scope() as session: |
||
966 | query = session.query(EgonScenarioCapacities).filter( |
||
967 | EgonScenarioCapacities.carrier == carrier, |
||
968 | EgonScenarioCapacities.scenario_name == scenario, |
||
969 | ) |
||
970 | |||
971 | df = pd.read_sql( |
||
972 | query.statement, query.session.bind, index_col="index" |
||
973 | ).sort_index() |
||
974 | |||
975 | logger.debug("Scenario capacity data loaded.") |
||
976 | |||
977 | return df |
||
978 | |||
979 | |||
980 | View Code Duplication | class Vg250Lan(Base): |
|
|
|||
981 | __tablename__ = "vg250_lan" |
||
982 | __table_args__ = {"schema": "boundaries"} |
||
983 | |||
984 | id = Column(BigInteger, primary_key=True, index=True) |
||
985 | ade = Column(BigInteger) |
||
986 | gf = Column(BigInteger) |
||
987 | bsg = Column(BigInteger) |
||
988 | ars = Column(String) |
||
989 | ags = Column(String) |
||
990 | sdv_ars = Column(String) |
||
991 | gen = Column(String) |
||
992 | bez = Column(String) |
||
993 | ibz = Column(BigInteger) |
||
994 | bem = Column(String) |
||
995 | nbd = Column(String) |
||
996 | sn_l = Column(String) |
||
997 | sn_r = Column(String) |
||
998 | sn_k = Column(String) |
||
999 | sn_v1 = Column(String) |
||
1000 | sn_v2 = Column(String) |
||
1001 | sn_g = Column(String) |
||
1002 | fk_s3 = Column(String) |
||
1003 | nuts = Column(String) |
||
1004 | ars_0 = Column(String) |
||
1005 | ags_0 = Column(String) |
||
1006 | wsk = Column(String) |
||
1007 | debkg_id = Column(String) |
||
1008 | rs = Column(String) |
||
1009 | sdv_rs = Column(String) |
||
1010 | rs_0 = Column(String) |
||
1011 | geometry = Column(Geometry(srid=EPSG), index=True) |
||
1012 | |||
1013 | |||
1014 | def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame: |
||
1015 | """ |
||
1016 | Get feder state data from eGo^n Database. |
||
1017 | Parameters |
||
1018 | ----------- |
||
1019 | to_crs : pyproj.crs.crs.CRS |
||
1020 | CRS to transform geometries to. |
||
1021 | Returns |
||
1022 | ------- |
||
1023 | geopandas.GeoDataFrame |
||
1024 | GeoDataFrame with federal state data. |
||
1025 | """ |
||
1026 | with db.session_scope() as session: |
||
1027 | query = session.query( |
||
1028 | Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom") |
||
1029 | ) |
||
1030 | |||
1031 | gdf = gpd.read_postgis( |
||
1032 | query.statement, session.connection(), index_col="id" |
||
1033 | ).to_crs(to_crs) |
||
1034 | |||
1035 | logger.debug("Federal State data loaded.") |
||
1036 | |||
1037 | return gdf |
||
1038 | |||
1039 | |||
1040 | @timer_func |
||
1041 | def overlay_grid_districts_with_counties( |
||
1042 | mv_grid_district_gdf: gpd.GeoDataFrame, |
||
1043 | federal_state_gdf: gpd.GeoDataFrame, |
||
1044 | ) -> gpd.GeoDataFrame: |
||
1045 | """ |
||
1046 | Calculate the intersections of mv grid districts and counties. |
||
1047 | Parameters |
||
1048 | ----------- |
||
1049 | mv_grid_district_gdf : gpd.GeoDataFrame |
||
1050 | GeoDataFrame containing mv grid district ID and geo shapes data. |
||
1051 | federal_state_gdf : gpd.GeoDataFrame |
||
1052 | GeoDataFrame with federal state data. |
||
1053 | Returns |
||
1054 | ------- |
||
1055 | geopandas.GeoDataFrame |
||
1056 | GeoDataFrame containing OSM buildings data. |
||
1057 | """ |
||
1058 | logger.debug( |
||
1059 | "Calculating intersection overlay between mv grid districts and " |
||
1060 | "counties. This may take a while..." |
||
1061 | ) |
||
1062 | |||
1063 | gdf = gpd.overlay( |
||
1064 | federal_state_gdf.to_crs(mv_grid_district_gdf.crs), |
||
1065 | mv_grid_district_gdf.reset_index(), |
||
1066 | how="intersection", |
||
1067 | keep_geom_type=True, |
||
1068 | ) |
||
1069 | |||
1070 | logger.debug("Done!") |
||
1071 | |||
1072 | return gdf |
||
1073 | |||
1074 | |||
1075 | @timer_func |
||
1076 | def add_overlay_id_to_buildings( |
||
1077 | buildings_gdf: gpd.GeoDataFrame, |
||
1078 | grid_federal_state_gdf: gpd.GeoDataFrame, |
||
1079 | ) -> gpd.GeoDataFrame: |
||
1080 | """ |
||
1081 | Add information about overlay ID to buildings. |
||
1082 | Parameters |
||
1083 | ----------- |
||
1084 | buildings_gdf : geopandas.GeoDataFrame |
||
1085 | GeoDataFrame containing OSM buildings data. |
||
1086 | grid_federal_state_gdf : geopandas.GeoDataFrame |
||
1087 | GeoDataFrame with intersection shapes between counties and grid |
||
1088 | districts. |
||
1089 | Returns |
||
1090 | ------- |
||
1091 | geopandas.GeoDataFrame |
||
1092 | GeoDataFrame containing OSM buildings data with overlay ID added. |
||
1093 | """ |
||
1094 | gdf = ( |
||
1095 | buildings_gdf.to_crs(grid_federal_state_gdf.crs) |
||
1096 | .sjoin( |
||
1097 | grid_federal_state_gdf, |
||
1098 | how="left", |
||
1099 | predicate="intersects", |
||
1100 | ) |
||
1101 | .rename(columns={"index_right": "overlay_id"}) |
||
1102 | ) |
||
1103 | |||
1104 | logger.debug("Added overlay ID to OSM buildings.") |
||
1105 | |||
1106 | return gdf |
||
1107 | |||
1108 | |||
1109 | def drop_buildings_outside_grids( |
||
1110 | buildings_gdf: gpd.GeoDataFrame, |
||
1111 | ) -> gpd.GeoDataFrame: |
||
1112 | """ |
||
1113 | Drop all buildings outside of grid areas. |
||
1114 | Parameters |
||
1115 | ----------- |
||
1116 | buildings_gdf : geopandas.GeoDataFrame |
||
1117 | GeoDataFrame containing OSM buildings data. |
||
1118 | Returns |
||
1119 | ------- |
||
1120 | gepandas.GeoDataFrame |
||
1121 | GeoDataFrame containing OSM buildings data |
||
1122 | with buildings without an bus ID dropped. |
||
1123 | """ |
||
1124 | gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()] |
||
1125 | |||
1126 | logger.debug( |
||
1127 | f"{len(buildings_gdf) - len(gdf)} " |
||
1128 | f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
||
1129 | f"of {len(buildings_gdf)} values are outside of the grid areas " |
||
1130 | "and are therefore dropped." |
||
1131 | ) |
||
1132 | |||
1133 | return gdf |
||
1134 | |||
1135 | |||
1136 | def cap_per_bus_id( |
||
1137 | scenario: str, |
||
1138 | ) -> pd.DataFrame: |
||
1139 | """ |
||
1140 | Get table with total pv rooftop capacity per grid district. |
||
1141 | |||
1142 | Parameters |
||
1143 | ----------- |
||
1144 | scenario : str |
||
1145 | Scenario name. |
||
1146 | Returns |
||
1147 | ------- |
||
1148 | pandas.DataFrame |
||
1149 | DataFrame with total rooftop capacity per mv grid. |
||
1150 | """ |
||
1151 | targets = config.datasets()["solar_rooftop"]["targets"] |
||
1152 | |||
1153 | sql = f""" |
||
1154 | SELECT bus as bus_id, control, p_nom as capacity |
||
1155 | FROM {targets['generators']['schema']}.{targets['generators']['table']} |
||
1156 | WHERE carrier = 'solar_rooftop' |
||
1157 | AND scn_name = '{scenario}' |
||
1158 | """ |
||
1159 | |||
1160 | df = db.select_dataframe(sql, index_col="bus_id") |
||
1161 | |||
1162 | return df.loc[df.control != "Slack"] |
||
1163 | |||
1164 | |||
1165 | def determine_end_of_life_gens( |
||
1166 | mastr_gdf: gpd.GeoDataFrame, |
||
1167 | scenario_timestamp: pd.Timestamp, |
||
1168 | pv_rooftop_lifetime: pd.Timedelta, |
||
1169 | ) -> gpd.GeoDataFrame: |
||
1170 | """ |
||
1171 | Determine if an old PV system has reached its end of life. |
||
1172 | Parameters |
||
1173 | ----------- |
||
1174 | mastr_gdf : geopandas.GeoDataFrame |
||
1175 | GeoDataFrame containing geocoded MaStR data. |
||
1176 | scenario_timestamp : pandas.Timestamp |
||
1177 | Timestamp at which the scenario takes place. |
||
1178 | pv_rooftop_lifetime : pandas.Timedelta |
||
1179 | Average expected lifetime of PV rooftop systems. |
||
1180 | Returns |
||
1181 | ------- |
||
1182 | geopandas.GeoDataFrame |
||
1183 | GeoDataFrame containing geocoded MaStR data and info if the system |
||
1184 | has reached its end of life. |
||
1185 | """ |
||
1186 | before = mastr_gdf.capacity.sum() |
||
1187 | |||
1188 | mastr_gdf = mastr_gdf.assign( |
||
1189 | age=scenario_timestamp - mastr_gdf.commissioning_date |
||
1190 | ) |
||
1191 | |||
1192 | mastr_gdf = mastr_gdf.assign( |
||
1193 | end_of_life=pv_rooftop_lifetime < mastr_gdf.age |
||
1194 | ) |
||
1195 | |||
1196 | after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum() |
||
1197 | |||
1198 | logger.debug( |
||
1199 | f"Determined if pv rooftop systems reached their end of life.\nTotal " |
||
1200 | f"capacity: {before}\nActive capacity: {after}" |
||
1201 | ) |
||
1202 | |||
1203 | return mastr_gdf |
||
1204 | |||
1205 | |||
1206 | def calculate_max_pv_cap_per_building( |
||
1207 | buildings_gdf: gpd.GeoDataFrame, |
||
1208 | mastr_gdf: gpd.GeoDataFrame, |
||
1209 | pv_cap_per_sq_m: float | int, |
||
1210 | roof_factor: float | int, |
||
1211 | ) -> gpd.GeoDataFrame: |
||
1212 | """ |
||
1213 | Calculate the estimated maximum possible PV capacity per building. |
||
1214 | |||
1215 | Parameters |
||
1216 | ----------- |
||
1217 | buildings_gdf : geopandas.GeoDataFrame |
||
1218 | GeoDataFrame containing OSM buildings data. |
||
1219 | mastr_gdf : geopandas.GeoDataFrame |
||
1220 | GeoDataFrame containing geocoded MaStR data. |
||
1221 | pv_cap_per_sq_m : float, int |
||
1222 | Average expected, installable PV capacity per square meter. |
||
1223 | roof_factor : float, int |
||
1224 | Average for PV usable roof area share. |
||
1225 | Returns |
||
1226 | ------- |
||
1227 | geopandas.GeoDataFrame |
||
1228 | GeoDataFrame containing OSM buildings data with estimated maximum PV |
||
1229 | capacity. |
||
1230 | """ |
||
1231 | gdf = ( |
||
1232 | buildings_gdf.reset_index() |
||
1233 | .rename(columns={"index": "id"}) |
||
1234 | .merge( |
||
1235 | mastr_gdf[ |
||
1236 | [ |
||
1237 | "capacity", |
||
1238 | "end_of_life", |
||
1239 | "building_id", |
||
1240 | "orientation_uniform", |
||
1241 | "orientation_primary", |
||
1242 | "orientation_primary_angle", |
||
1243 | ] |
||
1244 | ], |
||
1245 | how="left", |
||
1246 | left_on="id", |
||
1247 | right_on="building_id", |
||
1248 | ) |
||
1249 | .set_index("id") |
||
1250 | .drop(columns="building_id") |
||
1251 | ) |
||
1252 | |||
1253 | return gdf.assign( |
||
1254 | max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m), |
||
1255 | end_of_life=gdf.end_of_life.fillna(True).astype(bool), |
||
1256 | bus_id=gdf.bus_id.astype(int), |
||
1257 | ) |
||
1258 | |||
1259 | |||
1260 | def calculate_building_load_factor( |
||
1261 | mastr_gdf: gpd.GeoDataFrame, |
||
1262 | buildings_gdf: gpd.GeoDataFrame, |
||
1263 | rounding: int = 4, |
||
1264 | ) -> gpd.GeoDataFrame: |
||
1265 | """ |
||
1266 | Calculate the roof load factor from existing PV systems. |
||
1267 | Parameters |
||
1268 | ----------- |
||
1269 | mastr_gdf : geopandas.GeoDataFrame |
||
1270 | GeoDataFrame containing geocoded MaStR data. |
||
1271 | buildings_gdf : geopandas.GeoDataFrame |
||
1272 | GeoDataFrame containing OSM buildings data. |
||
1273 | rounding : int |
||
1274 | Rounding to use for load factor. |
||
1275 | Returns |
||
1276 | ------- |
||
1277 | geopandas.GeoDataFrame |
||
1278 | GeoDataFrame containing geocoded MaStR data with calculated load |
||
1279 | factor. |
||
1280 | """ |
||
1281 | gdf = mastr_gdf.merge( |
||
1282 | buildings_gdf[["max_cap", "building_area"]] |
||
1283 | .loc[~buildings_gdf["max_cap"].isna()] |
||
1284 | .reset_index(), |
||
1285 | how="left", |
||
1286 | left_on="building_id", |
||
1287 | right_on="id", |
||
1288 | ).set_index("id") |
||
1289 | |||
1290 | return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding)) |
||
1291 | |||
1292 | |||
1293 | def get_probability_for_property( |
||
1294 | mastr_gdf: gpd.GeoDataFrame, |
||
1295 | cap_range: tuple[int | float, int | float], |
||
1296 | prop: str, |
||
1297 | ) -> tuple[np.array, np.array]: |
||
1298 | """ |
||
1299 | Calculate the probability of the different options of a property of the |
||
1300 | existing PV plants. |
||
1301 | Parameters |
||
1302 | ----------- |
||
1303 | mastr_gdf : geopandas.GeoDataFrame |
||
1304 | GeoDataFrame containing geocoded MaStR data. |
||
1305 | cap_range : tuple(int, int) |
||
1306 | Capacity range of PV plants to look at. |
||
1307 | prop : str |
||
1308 | Property to calculate probabilities for. String needs to be in columns |
||
1309 | of mastr_gdf. |
||
1310 | Returns |
||
1311 | ------- |
||
1312 | tuple |
||
1313 | numpy.array |
||
1314 | Unique values of property. |
||
1315 | numpy.array |
||
1316 | Probabilties per unique value. |
||
1317 | """ |
||
1318 | cap_range_gdf = mastr_gdf.loc[ |
||
1319 | (mastr_gdf.capacity > cap_range[0]) |
||
1320 | & (mastr_gdf.capacity <= cap_range[1]) |
||
1321 | ] |
||
1322 | |||
1323 | if prop == "load_factor": |
||
1324 | cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1] |
||
1325 | |||
1326 | count = Counter( |
||
1327 | cap_range_gdf[prop].loc[ |
||
1328 | ~cap_range_gdf[prop].isna() |
||
1329 | & ~cap_range_gdf[prop].isnull() |
||
1330 | & ~(cap_range_gdf[prop] == "None") |
||
1331 | ] |
||
1332 | ) |
||
1333 | |||
1334 | values = np.array(list(count.keys())) |
||
1335 | probabilities = np.fromiter(count.values(), dtype=float) |
||
1336 | probabilities = probabilities / np.sum(probabilities) |
||
1337 | |||
1338 | return values, probabilities |
||
1339 | |||
1340 | |||
1341 | @timer_func |
||
1342 | def probabilities( |
||
1343 | mastr_gdf: gpd.GeoDataFrame, |
||
1344 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
1345 | properties: list[str] | None = None, |
||
1346 | ) -> dict: |
||
1347 | """ |
||
1348 | Calculate the probability of the different options of properties of the |
||
1349 | existing PV plants. |
||
1350 | Parameters |
||
1351 | ----------- |
||
1352 | mastr_gdf : geopandas.GeoDataFrame |
||
1353 | GeoDataFrame containing geocoded MaStR data. |
||
1354 | cap_ranges : list(tuple(int, int)) |
||
1355 | List of capacity ranges to distinguish between. The first tuple should |
||
1356 | start with a zero and the last one should end with infinite. |
||
1357 | properties : list(str) |
||
1358 | List of properties to calculate probabilities for. Strings need to be |
||
1359 | in columns of mastr_gdf. |
||
1360 | Returns |
||
1361 | ------- |
||
1362 | dict |
||
1363 | Dictionary with values and probabilities per capacity range. |
||
1364 | """ |
||
1365 | if cap_ranges is None: |
||
1366 | cap_ranges = [ |
||
1367 | (0, 30 / 10**3), |
||
1368 | (30 / 10**3, 100 / 10**3), |
||
1369 | (100 / 10**3, float("inf")), |
||
1370 | ] |
||
1371 | if properties is None: |
||
1372 | properties = [ |
||
1373 | "orientation_uniform", |
||
1374 | "orientation_primary", |
||
1375 | "orientation_primary_angle", |
||
1376 | "load_factor", |
||
1377 | ] |
||
1378 | |||
1379 | prob_dict = {} |
||
1380 | |||
1381 | for cap_range in cap_ranges: |
||
1382 | prob_dict[cap_range] = { |
||
1383 | "values": {}, |
||
1384 | "probabilities": {}, |
||
1385 | } |
||
1386 | |||
1387 | for prop in properties: |
||
1388 | v, p = get_probability_for_property( |
||
1389 | mastr_gdf, |
||
1390 | cap_range, |
||
1391 | prop, |
||
1392 | ) |
||
1393 | |||
1394 | prob_dict[cap_range]["values"][prop] = v |
||
1395 | prob_dict[cap_range]["probabilities"][prop] = p |
||
1396 | |||
1397 | return prob_dict |
||
1398 | |||
1399 | |||
1400 | def cap_share_per_cap_range( |
||
1401 | mastr_gdf: gpd.GeoDataFrame, |
||
1402 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
1403 | ) -> dict[tuple[int | float, int | float], float]: |
||
1404 | """ |
||
1405 | Calculate the share of PV capacity from the total PV capacity within |
||
1406 | capacity ranges. |
||
1407 | |||
1408 | Parameters |
||
1409 | ----------- |
||
1410 | mastr_gdf : geopandas.GeoDataFrame |
||
1411 | GeoDataFrame containing geocoded MaStR data. |
||
1412 | cap_ranges : list(tuple(int, int)) |
||
1413 | List of capacity ranges to distinguish between. The first tuple should |
||
1414 | start with a zero and the last one should end with infinite. |
||
1415 | Returns |
||
1416 | ------- |
||
1417 | dict |
||
1418 | Dictionary with share of PV capacity from the total PV capacity within |
||
1419 | capacity ranges. |
||
1420 | """ |
||
1421 | if cap_ranges is None: |
||
1422 | cap_ranges = [ |
||
1423 | (0, 30 / 10**3), |
||
1424 | (30 / 10**3, 100 / 10**3), |
||
1425 | (100 / 10**3, float("inf")), |
||
1426 | ] |
||
1427 | |||
1428 | cap_share_dict = {} |
||
1429 | |||
1430 | total_cap = mastr_gdf.capacity.sum() |
||
1431 | |||
1432 | for cap_range in cap_ranges: |
||
1433 | cap_share = ( |
||
1434 | mastr_gdf.loc[ |
||
1435 | (mastr_gdf.capacity > cap_range[0]) |
||
1436 | & (mastr_gdf.capacity <= cap_range[1]) |
||
1437 | ].capacity.sum() |
||
1438 | / total_cap |
||
1439 | ) |
||
1440 | |||
1441 | cap_share_dict[cap_range] = cap_share |
||
1442 | |||
1443 | return cap_share_dict |
||
1444 | |||
1445 | |||
1446 | def mean_load_factor_per_cap_range( |
||
1447 | mastr_gdf: gpd.GeoDataFrame, |
||
1448 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
1449 | ) -> dict[tuple[int | float, int | float], float]: |
||
1450 | """ |
||
1451 | Calculate the mean roof load factor per capacity range from existing PV |
||
1452 | plants. |
||
1453 | Parameters |
||
1454 | ----------- |
||
1455 | mastr_gdf : geopandas.GeoDataFrame |
||
1456 | GeoDataFrame containing geocoded MaStR data. |
||
1457 | cap_ranges : list(tuple(int, int)) |
||
1458 | List of capacity ranges to distinguish between. The first tuple should |
||
1459 | start with a zero and the last one should end with infinite. |
||
1460 | Returns |
||
1461 | ------- |
||
1462 | dict |
||
1463 | Dictionary with mean roof load factor per capacity range. |
||
1464 | """ |
||
1465 | if cap_ranges is None: |
||
1466 | cap_ranges = [ |
||
1467 | (0, 30 / 10**3), |
||
1468 | (30 / 10**3, 100 / 10**3), |
||
1469 | (100 / 10**3, float("inf")), |
||
1470 | ] |
||
1471 | |||
1472 | load_factor_dict = {} |
||
1473 | |||
1474 | for cap_range in cap_ranges: |
||
1475 | load_factor = mastr_gdf.loc[ |
||
1476 | (mastr_gdf.load_factor <= 1) |
||
1477 | & (mastr_gdf.capacity > cap_range[0]) |
||
1478 | & (mastr_gdf.capacity <= cap_range[1]) |
||
1479 | ].load_factor.mean() |
||
1480 | |||
1481 | load_factor_dict[cap_range] = load_factor |
||
1482 | |||
1483 | return load_factor_dict |
||
1484 | |||
1485 | |||
1486 | def building_area_range_per_cap_range( |
||
1487 | mastr_gdf: gpd.GeoDataFrame, |
||
1488 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
1489 | min_building_size: int | float = 10.0, |
||
1490 | upper_quantile: float = 0.95, |
||
1491 | lower_quantile: float = 0.05, |
||
1492 | ) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]: |
||
1493 | """ |
||
1494 | Estimate normal building area range per capacity range. |
||
1495 | Calculate the mean roof load factor per capacity range from existing PV |
||
1496 | plants. |
||
1497 | Parameters |
||
1498 | ----------- |
||
1499 | mastr_gdf : geopandas.GeoDataFrame |
||
1500 | GeoDataFrame containing geocoded MaStR data. |
||
1501 | cap_ranges : list(tuple(int, int)) |
||
1502 | List of capacity ranges to distinguish between. The first tuple should |
||
1503 | start with a zero and the last one should end with infinite. |
||
1504 | min_building_size : int, float |
||
1505 | Minimal building size to consider for PV plants. |
||
1506 | upper_quantile : float |
||
1507 | Upper quantile to estimate maximum building size per capacity range. |
||
1508 | lower_quantile : float |
||
1509 | Lower quantile to estimate minimum building size per capacity range. |
||
1510 | Returns |
||
1511 | ------- |
||
1512 | dict |
||
1513 | Dictionary with estimated normal building area range per capacity |
||
1514 | range. |
||
1515 | """ |
||
1516 | if cap_ranges is None: |
||
1517 | cap_ranges = [ |
||
1518 | (0, 30 / 10**3), |
||
1519 | (30 / 10**3, 100 / 10**3), |
||
1520 | (100 / 10**3, float("inf")), |
||
1521 | ] |
||
1522 | |||
1523 | building_area_range_dict = {} |
||
1524 | |||
1525 | n_ranges = len(cap_ranges) |
||
1526 | |||
1527 | for count, cap_range in enumerate(cap_ranges): |
||
1528 | cap_range_gdf = mastr_gdf.loc[ |
||
1529 | (mastr_gdf.capacity > cap_range[0]) |
||
1530 | & (mastr_gdf.capacity <= cap_range[1]) |
||
1531 | ] |
||
1532 | |||
1533 | if count == 0: |
||
1534 | building_area_range_dict[cap_range] = ( |
||
1535 | min_building_size, |
||
1536 | cap_range_gdf.building_area.quantile(upper_quantile), |
||
1537 | ) |
||
1538 | elif count == n_ranges - 1: |
||
1539 | building_area_range_dict[cap_range] = ( |
||
1540 | cap_range_gdf.building_area.quantile(lower_quantile), |
||
1541 | float("inf"), |
||
1542 | ) |
||
1543 | else: |
||
1544 | building_area_range_dict[cap_range] = ( |
||
1545 | cap_range_gdf.building_area.quantile(lower_quantile), |
||
1546 | cap_range_gdf.building_area.quantile(upper_quantile), |
||
1547 | ) |
||
1548 | |||
1549 | values = list(building_area_range_dict.values()) |
||
1550 | |||
1551 | building_area_range_normed_dict = {} |
||
1552 | |||
1553 | for count, (cap_range, (min_area, max_area)) in enumerate( |
||
1554 | building_area_range_dict.items() |
||
1555 | ): |
||
1556 | if count == 0: |
||
1557 | building_area_range_normed_dict[cap_range] = ( |
||
1558 | min_area, |
||
1559 | np.mean((values[count + 1][0], max_area)), |
||
1560 | ) |
||
1561 | elif count == n_ranges - 1: |
||
1562 | building_area_range_normed_dict[cap_range] = ( |
||
1563 | np.mean((values[count - 1][1], min_area)), |
||
1564 | max_area, |
||
1565 | ) |
||
1566 | else: |
||
1567 | building_area_range_normed_dict[cap_range] = ( |
||
1568 | np.mean((values[count - 1][1], min_area)), |
||
1569 | np.mean((values[count + 1][0], max_area)), |
||
1570 | ) |
||
1571 | |||
1572 | return building_area_range_normed_dict |
||
1573 | |||
1574 | |||
1575 | @timer_func |
||
1576 | def desaggregate_pv_in_mv_grid( |
||
1577 | buildings_gdf: gpd.GeoDataFrame, |
||
1578 | pv_cap: float | int, |
||
1579 | **kwargs, |
||
1580 | ) -> gpd.GeoDataFrame: |
||
1581 | """ |
||
1582 | Desaggregate PV capacity on buildings within a given grid district. |
||
1583 | Parameters |
||
1584 | ----------- |
||
1585 | buildings_gdf : geopandas.GeoDataFrame |
||
1586 | GeoDataFrame containing buildings within the grid district. |
||
1587 | pv_cap : float, int |
||
1588 | PV capacity to desaggregate. |
||
1589 | Other Parameters |
||
1590 | ----------- |
||
1591 | prob_dict : dict |
||
1592 | Dictionary with values and probabilities per capacity range. |
||
1593 | cap_share_dict : dict |
||
1594 | Dictionary with share of PV capacity from the total PV capacity within |
||
1595 | capacity ranges. |
||
1596 | building_area_range_dict : dict |
||
1597 | Dictionary with estimated normal building area range per capacity |
||
1598 | range. |
||
1599 | load_factor_dict : dict |
||
1600 | Dictionary with mean roof load factor per capacity range. |
||
1601 | seed : int |
||
1602 | Seed to use for random operations with NumPy and pandas. |
||
1603 | pv_cap_per_sq_m : float, int |
||
1604 | Average expected, installable PV capacity per square meter. |
||
1605 | Returns |
||
1606 | ------- |
||
1607 | geopandas.GeoDataFrame |
||
1608 | GeoDataFrame containing OSM building data with desaggregated PV |
||
1609 | plants. |
||
1610 | """ |
||
1611 | bus_id = int(buildings_gdf.bus_id.iat[0]) |
||
1612 | |||
1613 | rng = default_rng(seed=kwargs["seed"]) |
||
1614 | random_state = RandomState(seed=kwargs["seed"]) |
||
1615 | |||
1616 | results_df = pd.DataFrame(columns=buildings_gdf.columns) |
||
1617 | |||
1618 | for cap_range, share in kwargs["cap_share_dict"].items(): |
||
1619 | pv_cap_range = pv_cap * share |
||
1620 | |||
1621 | b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range] |
||
1622 | |||
1623 | cap_range_buildings_gdf = buildings_gdf.loc[ |
||
1624 | ~buildings_gdf.index.isin(results_df.index) |
||
1625 | & (buildings_gdf.building_area > b_area_min) |
||
1626 | & (buildings_gdf.building_area <= b_area_max) |
||
1627 | ] |
||
1628 | |||
1629 | mean_load_factor = kwargs["load_factor_dict"][cap_range] |
||
1630 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
||
1631 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
||
1632 | load_factor=np.nan, |
||
1633 | capacity=np.nan, |
||
1634 | ) |
||
1635 | |||
1636 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
||
1637 | |||
1638 | if total_mean_cap == 0: |
||
1639 | logger.warning( |
||
1640 | f"There are no matching roof for capacity range {cap_range} " |
||
1641 | f"kW in grid {bus_id}. Using all buildings as fallback." |
||
1642 | ) |
||
1643 | |||
1644 | cap_range_buildings_gdf = buildings_gdf.loc[ |
||
1645 | ~buildings_gdf.index.isin(results_df.index) |
||
1646 | ] |
||
1647 | |||
1648 | if len(cap_range_buildings_gdf) == 0: |
||
1649 | logger.warning( |
||
1650 | "There are no roofes available for capacity range " |
||
1651 | f"{cap_range} kW in grid {bus_id}. Allowing dual use." |
||
1652 | ) |
||
1653 | cap_range_buildings_gdf = buildings_gdf.copy() |
||
1654 | |||
1655 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
||
1656 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
||
1657 | load_factor=np.nan, |
||
1658 | capacity=np.nan, |
||
1659 | ) |
||
1660 | |||
1661 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
||
1662 | |||
1663 | elif total_mean_cap < pv_cap_range: |
||
1664 | logger.warning( |
||
1665 | f"Average roof utilization of the roof area in grid {bus_id} " |
||
1666 | f"and capacity range {cap_range} kW is not sufficient. The " |
||
1667 | "roof utilization will be above average." |
||
1668 | ) |
||
1669 | |||
1670 | frac = max( |
||
1671 | pv_cap_range / total_mean_cap, |
||
1672 | 1 / len(cap_range_buildings_gdf), |
||
1673 | ) |
||
1674 | |||
1675 | samples_gdf = cap_range_buildings_gdf.sample( |
||
1676 | frac=min(1, frac), |
||
1677 | random_state=random_state, |
||
1678 | ) |
||
1679 | |||
1680 | cap_range_dict = kwargs["prob_dict"][cap_range] |
||
1681 | |||
1682 | values_dict = cap_range_dict["values"] |
||
1683 | p_dict = cap_range_dict["probabilities"] |
||
1684 | |||
1685 | load_factors = rng.choice( |
||
1686 | a=values_dict["load_factor"], |
||
1687 | size=len(samples_gdf), |
||
1688 | p=p_dict["load_factor"], |
||
1689 | ) |
||
1690 | |||
1691 | samples_gdf = samples_gdf.assign( |
||
1692 | load_factor=load_factors, |
||
1693 | capacity=( |
||
1694 | samples_gdf.building_area |
||
1695 | * load_factors |
||
1696 | * kwargs["pv_cap_per_sq_m"] |
||
1697 | ).clip(lower=0.4), |
||
1698 | ) |
||
1699 | |||
1700 | missing_factor = pv_cap_range / samples_gdf.capacity.sum() |
||
1701 | |||
1702 | samples_gdf = samples_gdf.assign( |
||
1703 | capacity=(samples_gdf.capacity * missing_factor), |
||
1704 | load_factor=(samples_gdf.load_factor * missing_factor), |
||
1705 | ) |
||
1706 | |||
1707 | assert np.isclose( |
||
1708 | samples_gdf.capacity.sum(), |
||
1709 | pv_cap_range, |
||
1710 | rtol=1e-03, |
||
1711 | ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}" |
||
1712 | |||
1713 | results_df = pd.concat( |
||
1714 | [ |
||
1715 | results_df, |
||
1716 | samples_gdf, |
||
1717 | ], |
||
1718 | ) |
||
1719 | |||
1720 | total_missing_factor = pv_cap / results_df.capacity.sum() |
||
1721 | |||
1722 | results_df = results_df.assign( |
||
1723 | capacity=(results_df.capacity * total_missing_factor), |
||
1724 | ) |
||
1725 | |||
1726 | assert np.isclose( |
||
1727 | results_df.capacity.sum(), |
||
1728 | pv_cap, |
||
1729 | rtol=1e-03, |
||
1730 | ), f"{results_df.capacity.sum()} != {pv_cap}" |
||
1731 | |||
1732 | return gpd.GeoDataFrame( |
||
1733 | results_df, |
||
1734 | crs=samples_gdf.crs, |
||
1735 | geometry="geom", |
||
1736 | ) |
||
1737 | |||
1738 | |||
1739 | @timer_func |
||
1740 | def desaggregate_pv( |
||
1741 | buildings_gdf: gpd.GeoDataFrame, |
||
1742 | cap_df: pd.DataFrame, |
||
1743 | **kwargs, |
||
1744 | ) -> gpd.GeoDataFrame: |
||
1745 | """ |
||
1746 | Desaggregate PV capacity on buildings within a given grid district. |
||
1747 | |||
1748 | Parameters |
||
1749 | ----------- |
||
1750 | buildings_gdf : geopandas.GeoDataFrame |
||
1751 | GeoDataFrame containing OSM buildings data. |
||
1752 | cap_df : pandas.DataFrame |
||
1753 | DataFrame with total rooftop capacity per mv grid. |
||
1754 | Other Parameters |
||
1755 | ----------- |
||
1756 | prob_dict : dict |
||
1757 | Dictionary with values and probabilities per capacity range. |
||
1758 | cap_share_dict : dict |
||
1759 | Dictionary with share of PV capacity from the total PV capacity within |
||
1760 | capacity ranges. |
||
1761 | building_area_range_dict : dict |
||
1762 | Dictionary with estimated normal building area range per capacity |
||
1763 | range. |
||
1764 | load_factor_dict : dict |
||
1765 | Dictionary with mean roof load factor per capacity range. |
||
1766 | seed : int |
||
1767 | Seed to use for random operations with NumPy and pandas. |
||
1768 | pv_cap_per_sq_m : float, int |
||
1769 | Average expected, installable PV capacity per square meter. |
||
1770 | Returns |
||
1771 | ------- |
||
1772 | geopandas.GeoDataFrame |
||
1773 | GeoDataFrame containing OSM building data with desaggregated PV |
||
1774 | plants. |
||
1775 | """ |
||
1776 | allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life] |
||
1777 | |||
1778 | building_bus_ids = set(buildings_gdf.bus_id) |
||
1779 | cap_bus_ids = set(cap_df.index) |
||
1780 | |||
1781 | logger.debug( |
||
1782 | f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from " |
||
1783 | f"capacity: {len(cap_bus_ids)}" |
||
1784 | ) |
||
1785 | |||
1786 | if len(building_bus_ids) > len(cap_bus_ids): |
||
1787 | missing = building_bus_ids - cap_bus_ids |
||
1788 | else: |
||
1789 | missing = cap_bus_ids - building_bus_ids |
||
1790 | |||
1791 | logger.debug(str(missing)) |
||
1792 | |||
1793 | bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids)) |
||
1794 | |||
1795 | # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index) |
||
1796 | |||
1797 | for bus_id in bus_ids: |
||
1798 | buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id] |
||
1799 | |||
1800 | pv_installed_gdf = buildings_grid_gdf.loc[ |
||
1801 | ~buildings_grid_gdf.end_of_life |
||
1802 | ] |
||
1803 | |||
1804 | pv_installed = pv_installed_gdf.capacity.sum() |
||
1805 | |||
1806 | pot_buildings_gdf = buildings_grid_gdf.drop( |
||
1807 | index=pv_installed_gdf.index |
||
1808 | ) |
||
1809 | |||
1810 | if len(pot_buildings_gdf) == 0: |
||
1811 | logger.error( |
||
1812 | f"In grid {bus_id} there are no potential buildings to " |
||
1813 | f"allocate PV capacity to. The grid is skipped. This message " |
||
1814 | f"should only appear doing test runs with few buildings." |
||
1815 | ) |
||
1816 | |||
1817 | continue |
||
1818 | |||
1819 | pv_target = cap_df.at[bus_id, "capacity"] |
||
1820 | |||
1821 | logger.debug(f"pv_target: {pv_target}") |
||
1822 | |||
1823 | pv_missing = pv_target - pv_installed |
||
1824 | |||
1825 | if pv_missing <= 0: |
||
1826 | logger.warning( |
||
1827 | f"In grid {bus_id} there is more PV installed " |
||
1828 | f"({pv_installed: g} kW) in status Quo than allocated within " |
||
1829 | f"the scenario ({pv_target: g} kW). " |
||
1830 | f"No new generators are added." |
||
1831 | ) |
||
1832 | |||
1833 | continue |
||
1834 | |||
1835 | if pot_buildings_gdf.max_cap.sum() < pv_missing: |
||
1836 | logger.error( |
||
1837 | f"In grid {bus_id} there is less PV potential (" |
||
1838 | f"{pot_buildings_gdf.max_cap.sum():g} MW) than allocated PV " |
||
1839 | f"capacity ({pv_missing:g} MW). The average roof utilization " |
||
1840 | f"will be very high." |
||
1841 | ) |
||
1842 | |||
1843 | gdf = desaggregate_pv_in_mv_grid( |
||
1844 | buildings_gdf=pot_buildings_gdf, |
||
1845 | pv_cap=pv_missing, |
||
1846 | **kwargs, |
||
1847 | ) |
||
1848 | |||
1849 | logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}") |
||
1850 | logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}") |
||
1851 | logger.debug( |
||
1852 | f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}" |
||
1853 | ) |
||
1854 | |||
1855 | if not np.isclose( |
||
1856 | gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3 |
||
1857 | ): |
||
1858 | logger.warning( |
||
1859 | f"The desired capacity and actual capacity in grid {bus_id} " |
||
1860 | f"differ.\n" |
||
1861 | f"Desired cap: {pv_target}\nActual cap: " |
||
1862 | f"{gdf.capacity.sum() + pv_installed}" |
||
1863 | ) |
||
1864 | |||
1865 | pre_cap = allocated_buildings_gdf.capacity.sum() |
||
1866 | new_cap = gdf.capacity.sum() |
||
1867 | |||
1868 | allocated_buildings_gdf = pd.concat( |
||
1869 | [ |
||
1870 | allocated_buildings_gdf, |
||
1871 | gdf, |
||
1872 | ] |
||
1873 | ) |
||
1874 | |||
1875 | total_cap = allocated_buildings_gdf.capacity.sum() |
||
1876 | |||
1877 | assert np.isclose(pre_cap + new_cap, total_cap) |
||
1878 | |||
1879 | logger.debug("Desaggregated scenario.") |
||
1880 | logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}") |
||
1881 | logger.debug( |
||
1882 | f"Generator capacity: " f"{allocated_buildings_gdf.capacity.sum(): g}" |
||
1883 | ) |
||
1884 | |||
1885 | return gpd.GeoDataFrame( |
||
1886 | allocated_buildings_gdf, |
||
1887 | crs=gdf.crs, |
||
1888 | geometry="geom", |
||
1889 | ) |
||
1890 | |||
1891 | |||
1892 | @timer_func |
||
1893 | def add_buildings_meta_data( |
||
1894 | buildings_gdf: gpd.GeoDataFrame, |
||
1895 | prob_dict: dict, |
||
1896 | seed: int, |
||
1897 | ) -> gpd.GeoDataFrame: |
||
1898 | """ |
||
1899 | Randomly add additional metadata to desaggregated PV plants. |
||
1900 | Parameters |
||
1901 | ----------- |
||
1902 | buildings_gdf : geopandas.GeoDataFrame |
||
1903 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
1904 | plants. |
||
1905 | prob_dict : dict |
||
1906 | Dictionary with values and probabilities per capacity range. |
||
1907 | seed : int |
||
1908 | Seed to use for random operations with NumPy and pandas. |
||
1909 | Returns |
||
1910 | ------- |
||
1911 | geopandas.GeoDataFrame |
||
1912 | GeoDataFrame containing OSM building data with desaggregated PV |
||
1913 | plants. |
||
1914 | """ |
||
1915 | rng = default_rng(seed=seed) |
||
1916 | buildings_gdf = buildings_gdf.reset_index().rename( |
||
1917 | columns={ |
||
1918 | "index": "building_id", |
||
1919 | } |
||
1920 | ) |
||
1921 | |||
1922 | for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items(): |
||
1923 | cap_range_gdf = buildings_gdf.loc[ |
||
1924 | (buildings_gdf.capacity >= min_cap) |
||
1925 | & (buildings_gdf.capacity < max_cap) |
||
1926 | ] |
||
1927 | |||
1928 | for key, values in cap_range_prob_dict["values"].items(): |
||
1929 | if key == "load_factor": |
||
1930 | continue |
||
1931 | |||
1932 | gdf = cap_range_gdf.loc[ |
||
1933 | cap_range_gdf[key].isna() |
||
1934 | | cap_range_gdf[key].isnull() |
||
1935 | | (cap_range_gdf[key] == "None") |
||
1936 | ] |
||
1937 | |||
1938 | key_vals = rng.choice( |
||
1939 | a=values, |
||
1940 | size=len(gdf), |
||
1941 | p=cap_range_prob_dict["probabilities"][key], |
||
1942 | ) |
||
1943 | |||
1944 | buildings_gdf.loc[gdf.index, key] = key_vals |
||
1945 | |||
1946 | return buildings_gdf |
||
1947 | |||
1948 | |||
1949 | def add_commissioning_date( |
||
1950 | buildings_gdf: gpd.GeoDataFrame, |
||
1951 | start: pd.Timestamp, |
||
1952 | end: pd.Timestamp, |
||
1953 | seed: int, |
||
1954 | ): |
||
1955 | """ |
||
1956 | Randomly and linear add start-up date to new pv generators. |
||
1957 | Parameters |
||
1958 | ---------- |
||
1959 | buildings_gdf : geopandas.GeoDataFrame |
||
1960 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
1961 | plants. |
||
1962 | start : pandas.Timestamp |
||
1963 | Minimum Timestamp to use. |
||
1964 | end : pandas.Timestamp |
||
1965 | Maximum Timestamp to use. |
||
1966 | seed : int |
||
1967 | Seed to use for random operations with NumPy and pandas. |
||
1968 | Returns |
||
1969 | ------- |
||
1970 | geopandas.GeoDataFrame |
||
1971 | GeoDataFrame containing OSM buildings data with start-up date added. |
||
1972 | """ |
||
1973 | rng = default_rng(seed=seed) |
||
1974 | |||
1975 | date_range = pd.date_range(start=start, end=end, freq="1D") |
||
1976 | |||
1977 | return buildings_gdf.assign( |
||
1978 | commissioning_date=rng.choice(date_range, size=len(buildings_gdf)) |
||
1979 | ) |
||
1980 | |||
1981 | |||
1982 | @timer_func |
||
1983 | def allocate_scenarios( |
||
1984 | mastr_gdf: gpd.GeoDataFrame, |
||
1985 | valid_buildings_gdf: gpd.GeoDataFrame, |
||
1986 | last_scenario_gdf: gpd.GeoDataFrame, |
||
1987 | scenario: str, |
||
1988 | ): |
||
1989 | """ |
||
1990 | Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings. |
||
1991 | Parameters |
||
1992 | ---------- |
||
1993 | mastr_gdf : geopandas.GeoDataFrame |
||
1994 | GeoDataFrame containing geocoded MaStR data. |
||
1995 | valid_buildings_gdf : geopandas.GeoDataFrame |
||
1996 | GeoDataFrame containing OSM buildings data. |
||
1997 | last_scenario_gdf : geopandas.GeoDataFrame |
||
1998 | GeoDataFrame containing OSM buildings matched with pv generators from |
||
1999 | temporally preceding scenario. |
||
2000 | scenario : str |
||
2001 | Scenario to desaggrgate and allocate. |
||
2002 | Returns |
||
2003 | ------- |
||
2004 | tuple |
||
2005 | geopandas.GeoDataFrame |
||
2006 | GeoDataFrame containing OSM buildings matched with pv generators. |
||
2007 | pandas.DataFrame |
||
2008 | DataFrame containing pv rooftop capacity per grid id. |
||
2009 | """ |
||
2010 | cap_per_bus_id_df = cap_per_bus_id(scenario) |
||
2011 | |||
2012 | logger.debug( |
||
2013 | f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}" |
||
2014 | ) |
||
2015 | |||
2016 | last_scenario_gdf = determine_end_of_life_gens( |
||
2017 | last_scenario_gdf, |
||
2018 | SCENARIO_TIMESTAMP[scenario], |
||
2019 | PV_ROOFTOP_LIFETIME, |
||
2020 | ) |
||
2021 | |||
2022 | buildings_gdf = calculate_max_pv_cap_per_building( |
||
2023 | valid_buildings_gdf, |
||
2024 | last_scenario_gdf, |
||
2025 | PV_CAP_PER_SQ_M, |
||
2026 | ROOF_FACTOR, |
||
2027 | ) |
||
2028 | |||
2029 | mastr_gdf = calculate_building_load_factor( |
||
2030 | mastr_gdf, |
||
2031 | buildings_gdf, |
||
2032 | ) |
||
2033 | |||
2034 | probabilities_dict = probabilities( |
||
2035 | mastr_gdf, |
||
2036 | cap_ranges=CAP_RANGES, |
||
2037 | ) |
||
2038 | |||
2039 | cap_share_dict = cap_share_per_cap_range( |
||
2040 | mastr_gdf, |
||
2041 | cap_ranges=CAP_RANGES, |
||
2042 | ) |
||
2043 | |||
2044 | load_factor_dict = mean_load_factor_per_cap_range( |
||
2045 | mastr_gdf, |
||
2046 | cap_ranges=CAP_RANGES, |
||
2047 | ) |
||
2048 | |||
2049 | building_area_range_dict = building_area_range_per_cap_range( |
||
2050 | mastr_gdf, |
||
2051 | cap_ranges=CAP_RANGES, |
||
2052 | min_building_size=MIN_BUILDING_SIZE, |
||
2053 | upper_quantile=UPPER_QUANTILE, |
||
2054 | lower_quantile=LOWER_QUANTILE, |
||
2055 | ) |
||
2056 | |||
2057 | allocated_buildings_gdf = desaggregate_pv( |
||
2058 | buildings_gdf=buildings_gdf, |
||
2059 | cap_df=cap_per_bus_id_df, |
||
2060 | prob_dict=probabilities_dict, |
||
2061 | cap_share_dict=cap_share_dict, |
||
2062 | building_area_range_dict=building_area_range_dict, |
||
2063 | load_factor_dict=load_factor_dict, |
||
2064 | seed=SEED, |
||
2065 | pv_cap_per_sq_m=PV_CAP_PER_SQ_M, |
||
2066 | ) |
||
2067 | |||
2068 | allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario) |
||
2069 | |||
2070 | meta_buildings_gdf = frame_to_numeric( |
||
2071 | add_buildings_meta_data( |
||
2072 | allocated_buildings_gdf, |
||
2073 | probabilities_dict, |
||
2074 | SEED, |
||
2075 | ) |
||
2076 | ) |
||
2077 | |||
2078 | return ( |
||
2079 | add_commissioning_date( |
||
2080 | meta_buildings_gdf, |
||
2081 | start=last_scenario_gdf.commissioning_date.max(), |
||
2082 | end=SCENARIO_TIMESTAMP[scenario], |
||
2083 | seed=SEED, |
||
2084 | ), |
||
2085 | cap_per_bus_id_df, |
||
2086 | ) |
||
2087 | |||
2088 | |||
2089 | class EgonPowerPlantPvRoofBuilding(Base): |
||
2090 | __tablename__ = "egon_power_plants_pv_roof_building" |
||
2091 | __table_args__ = {"schema": "supply"} |
||
2092 | |||
2093 | index = Column(Integer, primary_key=True, index=True) |
||
2094 | scenario = Column(String) |
||
2095 | bus_id = Column(Integer, nullable=True) |
||
2096 | building_id = Column(Integer) |
||
2097 | gens_id = Column(String, nullable=True) |
||
2098 | capacity = Column(Float) |
||
2099 | orientation_uniform = Column(Float) |
||
2100 | orientation_primary = Column(String) |
||
2101 | orientation_primary_angle = Column(String) |
||
2102 | voltage_level = Column(Integer) |
||
2103 | weather_cell_id = Column(Integer) |
||
2104 | |||
2105 | |||
2106 | def create_scenario_table(buildings_gdf): |
||
2107 | """Create mapping table pv_unit <-> building for scenario""" |
||
2108 | EgonPowerPlantPvRoofBuilding.__table__.drop(bind=engine, checkfirst=True) |
||
2109 | EgonPowerPlantPvRoofBuilding.__table__.create(bind=engine, checkfirst=True) |
||
2110 | |||
2111 | buildings_gdf[COLS_TO_EXPORT].reset_index().to_sql( |
||
2112 | name=EgonPowerPlantPvRoofBuilding.__table__.name, |
||
2113 | schema=EgonPowerPlantPvRoofBuilding.__table__.schema, |
||
2114 | con=db.engine(), |
||
2115 | if_exists="append", |
||
2116 | index=False, |
||
2117 | ) |
||
2118 | |||
2119 | |||
2120 | def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: |
||
2121 | sql = """ |
||
2122 | SELECT building_id, zensus_population_id |
||
2123 | FROM boundaries.egon_map_zensus_mvgd_buildings |
||
2124 | """ |
||
2125 | |||
2126 | buildings_gdf = buildings_gdf.merge( |
||
2127 | right=db.select_dataframe(sql).drop_duplicates(subset="building_id"), |
||
2128 | how="left", |
||
2129 | on="building_id", |
||
2130 | ) |
||
2131 | |||
2132 | sql = """ |
||
2133 | SELECT zensus_population_id, w_id as weather_cell_id |
||
2134 | FROM boundaries.egon_map_zensus_weather_cell |
||
2135 | """ |
||
2136 | |||
2137 | buildings_gdf = buildings_gdf.merge( |
||
2138 | right=db.select_dataframe(sql).drop_duplicates( |
||
2139 | subset="zensus_population_id" |
||
2140 | ), |
||
2141 | how="left", |
||
2142 | on="zensus_population_id", |
||
2143 | ) |
||
2144 | |||
2145 | if buildings_gdf.weather_cell_id.isna().any(): |
||
2146 | missing = buildings_gdf.loc[ |
||
2147 | buildings_gdf.weather_cell_id.isna(), "building_id" |
||
2148 | ].tolist() |
||
2149 | |||
2150 | raise ValueError( |
||
2151 | f"Following buildings don't have a weather cell id: {missing}" |
||
2152 | ) |
||
2153 | |||
2154 | return buildings_gdf |
||
2155 | |||
2156 | |||
2157 | def add_bus_ids_sq( |
||
2158 | buildings_gdf: gpd.GeoDataFrame, |
||
2159 | ) -> gpd.GeoDataFrame: |
||
2160 | """Add bus ids for status_quo units |
||
2161 | |||
2162 | Parameters |
||
2163 | ----------- |
||
2164 | buildings_gdf : geopandas.GeoDataFrame |
||
2165 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
2166 | plants. |
||
2167 | Returns |
||
2168 | ------- |
||
2169 | geopandas.GeoDataFrame |
||
2170 | GeoDataFrame containing OSM building data with bus_id per |
||
2171 | generator. |
||
2172 | """ |
||
2173 | grid_districts_gdf = grid_districts(EPSG) |
||
2174 | |||
2175 | mask = buildings_gdf.scenario == "status_quo" |
||
2176 | buildings_gdf.loc[mask, "bus_id"] = ( |
||
2177 | buildings_gdf.loc[mask] |
||
2178 | .sjoin(grid_districts_gdf, how="left") |
||
2179 | .index_right |
||
2180 | ) |
||
2181 | |||
2182 | return buildings_gdf |
||
2183 | |||
2184 | |||
2185 | View Code Duplication | def infer_voltage_level( |
|
2186 | units_gdf: gpd.GeoDataFrame, |
||
2187 | ) -> gpd.GeoDataFrame: |
||
2188 | """ |
||
2189 | Infer nan values in voltage level derived from generator capacity to |
||
2190 | the power plants. |
||
2191 | |||
2192 | Parameters |
||
2193 | ----------- |
||
2194 | units_gdf : geopandas.GeoDataFrame |
||
2195 | GeoDataFrame containing units with voltage levels from MaStR |
||
2196 | Returnsunits_gdf: gpd.GeoDataFrame |
||
2197 | ------- |
||
2198 | geopandas.GeoDataFrame |
||
2199 | GeoDataFrame containing units all having assigned a voltage level. |
||
2200 | """ |
||
2201 | |||
2202 | def voltage_levels(p: float) -> int: |
||
2203 | if p <= 0.1: |
||
2204 | return 7 |
||
2205 | elif p <= 0.2: |
||
2206 | return 6 |
||
2207 | elif p <= 5.5: |
||
2208 | return 5 |
||
2209 | elif p <= 20: |
||
2210 | return 4 |
||
2211 | elif p <= 120: |
||
2212 | return 3 |
||
2213 | return 1 |
||
2214 | |||
2215 | units_gdf["voltage_level_inferred"] = False |
||
2216 | mask = units_gdf.voltage_level.isna() |
||
2217 | units_gdf.loc[mask, "voltage_level_inferred"] = True |
||
2218 | units_gdf.loc[mask, "voltage_level"] = units_gdf.loc[mask].capacity.apply( |
||
2219 | voltage_levels |
||
2220 | ) |
||
2221 | |||
2222 | return units_gdf |
||
2223 | |||
2224 | |||
2225 | def pv_rooftop_to_buildings(): |
||
2226 | """Main script, executed as task""" |
||
2227 | |||
2228 | mastr_gdf = load_mastr_data() |
||
2229 | |||
2230 | buildings_gdf = load_building_data() |
||
2231 | |||
2232 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings( |
||
2233 | mastr_gdf, buildings_gdf |
||
2234 | ) |
||
2235 | |||
2236 | all_buildings_gdf = ( |
||
2237 | desagg_mastr_gdf.assign(scenario="status_quo") |
||
2238 | .reset_index() |
||
2239 | .rename(columns={"geometry": "geom"}) |
||
2240 | ) |
||
2241 | |||
2242 | scenario_buildings_gdf = all_buildings_gdf.copy() |
||
2243 | |||
2244 | cap_per_bus_id_df = pd.DataFrame() |
||
2245 | |||
2246 | for scenario in SCENARIOS: |
||
2247 | logger.debug(f"Desaggregating scenario {scenario}.") |
||
2248 | ( |
||
2249 | scenario_buildings_gdf, |
||
2250 | cap_per_bus_id_scenario_df, |
||
2251 | ) = allocate_scenarios( # noqa: F841 |
||
2252 | desagg_mastr_gdf, |
||
2253 | desagg_buildings_gdf, |
||
2254 | scenario_buildings_gdf, |
||
2255 | scenario, |
||
2256 | ) |
||
2257 | |||
2258 | all_buildings_gdf = gpd.GeoDataFrame( |
||
2259 | pd.concat( |
||
2260 | [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True |
||
2261 | ), |
||
2262 | crs=scenario_buildings_gdf.crs, |
||
2263 | geometry="geom", |
||
2264 | ) |
||
2265 | |||
2266 | cap_per_bus_id_df = pd.concat( |
||
2267 | [cap_per_bus_id_df, cap_per_bus_id_scenario_df] |
||
2268 | ) |
||
2269 | |||
2270 | # add weather cell |
||
2271 | all_buildings_gdf = add_weather_cell_id(all_buildings_gdf) |
||
2272 | |||
2273 | # add bus IDs for status quo scenario |
||
2274 | all_buildings_gdf = add_bus_ids_sq(all_buildings_gdf) |
||
2275 | |||
2276 | # export scenario |
||
2277 | create_scenario_table(infer_voltage_level(all_buildings_gdf)) |
||
2278 |