Total Complexity | 99 |
Total Lines | 2624 |
Duplicated Lines | 3.47 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.sanity_checks often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
2 | This module does sanity checks for both the eGon2035 and the eGon100RE scenario |
||
3 | separately where a percentage error is given to showcase difference in output |
||
4 | and input values. Please note that there are missing input technologies in the |
||
5 | supply tables. |
||
6 | Authors: @ALonso, @dana, @nailend, @nesnoj, @khelfen |
||
7 | """ |
||
8 | from math import isclose |
||
9 | from pathlib import Path |
||
10 | import ast |
||
11 | |||
12 | from sqlalchemy import Numeric |
||
13 | from sqlalchemy.sql import and_, cast, func, or_ |
||
14 | import matplotlib.pyplot as plt |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import seaborn as sns |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
22 | EgonCtsElectricityDemandBuildingShare, |
||
23 | EgonCtsHeatDemandBuildingShare, |
||
24 | ) |
||
25 | from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( # noqa: E501 |
||
26 | EgonEvCountMunicipality, |
||
27 | EgonEvCountMvGridDistrict, |
||
28 | EgonEvCountRegistrationDistrict, |
||
29 | EgonEvMvGridDistrict, |
||
30 | EgonEvPool, |
||
31 | EgonEvTrip, |
||
32 | ) |
||
33 | from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
||
34 | DATASET_CFG, |
||
35 | read_simbev_metadata_file, |
||
36 | ) |
||
37 | from egon.data.datasets.etrago_setup import ( |
||
38 | EgonPfHvLink, |
||
39 | EgonPfHvLinkTimeseries, |
||
40 | EgonPfHvLoad, |
||
41 | EgonPfHvLoadTimeseries, |
||
42 | EgonPfHvStore, |
||
43 | EgonPfHvStoreTimeseries, |
||
44 | ) |
||
45 | from egon.data.datasets.gas_grid import ( |
||
46 | define_gas_buses_abroad, |
||
47 | define_gas_nodes_list, |
||
48 | define_gas_pipeline_list, |
||
49 | ) |
||
50 | from egon.data.datasets.gas_neighbours.eGon2035 import ( |
||
51 | calc_capacities, |
||
52 | calc_ch4_storage_capacities, |
||
53 | calc_global_ch4_demand, |
||
54 | calc_global_power_to_h2_demand, |
||
55 | calculate_ch4_grid_capacities, |
||
56 | import_ch4_demandTS, |
||
57 | ) |
||
58 | from egon.data.datasets.hydrogen_etrago.storage import ( |
||
59 | calculate_and_map_saltcavern_storage_potential, |
||
60 | ) |
||
61 | from egon.data.datasets.industrial_gas_demand import ( |
||
62 | calculate_total_demand_100RE, |
||
63 | ) |
||
64 | from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
||
65 | PV_CAP_PER_SQ_M, |
||
66 | ROOF_FACTOR, |
||
67 | SCENARIOS, |
||
68 | load_building_data, |
||
69 | scenario_data, |
||
70 | ) |
||
71 | from egon.data.datasets.pypsaeursec import read_network |
||
72 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
73 | from egon.data.datasets.storages.home_batteries import get_cbat_pbat_ratio |
||
74 | import egon.data |
||
75 | |||
76 | TESTMODE_OFF = ( |
||
77 | config.settings()["egon-data"]["--dataset-boundary"] == "Everything" |
||
78 | ) |
||
79 | |||
80 | |||
81 | class SanityChecks(Dataset): |
||
82 | #: |
||
83 | name: str = "SanityChecks" |
||
84 | #: |
||
85 | version: str = "0.0.9" |
||
86 | |||
87 | def __init__(self, dependencies): |
||
88 | super().__init__( |
||
89 | name=self.name, |
||
90 | version=self.version, |
||
91 | dependencies=dependencies, |
||
92 | tasks={ |
||
93 | etrago_eGon2035_electricity, |
||
94 | etrago_eGon2035_heat, |
||
95 | residential_electricity_annual_sum, |
||
96 | residential_electricity_hh_refinement, |
||
97 | cts_electricity_demand_share, |
||
98 | cts_heat_demand_share, |
||
99 | sanitycheck_emobility_mit, |
||
100 | sanitycheck_pv_rooftop_buildings, |
||
101 | sanitycheck_home_batteries, |
||
102 | etrago_eGon2035_gas_DE, |
||
103 | etrago_eGon2035_gas_abroad, |
||
104 | etrago_eGon100RE_gas_DE, |
||
105 | sanitycheck_dsm, |
||
106 | }, |
||
107 | ) |
||
108 | |||
109 | |||
110 | def etrago_eGon2035_electricity(): |
||
111 | """Execute basic sanity checks. |
||
112 | |||
113 | Returns print statements as sanity checks for the electricity sector in |
||
114 | the eGon2035 scenario. |
||
115 | |||
116 | Parameters |
||
117 | ---------- |
||
118 | None |
||
119 | |||
120 | Returns |
||
121 | ------- |
||
122 | None |
||
123 | """ |
||
124 | |||
125 | scn = "eGon2035" |
||
126 | |||
127 | # Section to check generator capacities |
||
128 | logger.info(f"Sanity checks for scenario {scn}") |
||
129 | logger.info( |
||
130 | "For German electricity generators the following deviations between " |
||
131 | "the inputs and outputs can be observed:" |
||
132 | ) |
||
133 | |||
134 | carriers_electricity = [ |
||
135 | "others", |
||
136 | "reservoir", |
||
137 | "run_of_river", |
||
138 | "oil", |
||
139 | "wind_onshore", |
||
140 | "wind_offshore", |
||
141 | "solar", |
||
142 | "solar_rooftop", |
||
143 | "biomass", |
||
144 | ] |
||
145 | |||
146 | for carrier in carriers_electricity: |
||
147 | |||
148 | if carrier == "biomass": |
||
149 | sum_output = db.select_dataframe( |
||
150 | """SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
151 | FROM grid.egon_etrago_generator |
||
152 | WHERE bus IN ( |
||
153 | SELECT bus_id FROM grid.egon_etrago_bus |
||
154 | WHERE scn_name = 'eGon2035' |
||
155 | AND country = 'DE') |
||
156 | AND carrier IN ('biomass', 'industrial_biomass_CHP', |
||
157 | 'central_biomass_CHP') |
||
158 | GROUP BY (scn_name); |
||
159 | """, |
||
160 | warning=False, |
||
161 | ) |
||
162 | |||
163 | else: |
||
164 | sum_output = db.select_dataframe( |
||
165 | f"""SELECT scn_name, |
||
166 | SUM(p_nom::numeric) as output_capacity_mw |
||
167 | FROM grid.egon_etrago_generator |
||
168 | WHERE scn_name = '{scn}' |
||
169 | AND carrier IN ('{carrier}') |
||
170 | AND bus IN |
||
171 | (SELECT bus_id |
||
172 | FROM grid.egon_etrago_bus |
||
173 | WHERE scn_name = 'eGon2035' |
||
174 | AND country = 'DE') |
||
175 | GROUP BY (scn_name); |
||
176 | """, |
||
177 | warning=False, |
||
178 | ) |
||
179 | |||
180 | sum_input = db.select_dataframe( |
||
181 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
182 | FROM supply.egon_scenario_capacities |
||
183 | WHERE carrier= '{carrier}' |
||
184 | AND scenario_name ='{scn}' |
||
185 | GROUP BY (carrier); |
||
186 | """, |
||
187 | warning=False, |
||
188 | ) |
||
189 | |||
190 | View Code Duplication | if ( |
|
|
|||
191 | sum_output.output_capacity_mw.sum() == 0 |
||
192 | and sum_input.input_capacity_mw.sum() == 0 |
||
193 | ): |
||
194 | logger.info( |
||
195 | f"No capacity for carrier '{carrier}' needed to be" |
||
196 | f" distributed. Everything is fine" |
||
197 | ) |
||
198 | |||
199 | elif ( |
||
200 | sum_input.input_capacity_mw.sum() > 0 |
||
201 | and sum_output.output_capacity_mw.sum() == 0 |
||
202 | ): |
||
203 | logger.info( |
||
204 | f"Error: Capacity for carrier '{carrier}' was not distributed " |
||
205 | f"at all!" |
||
206 | ) |
||
207 | |||
208 | elif ( |
||
209 | sum_output.output_capacity_mw.sum() > 0 |
||
210 | and sum_input.input_capacity_mw.sum() == 0 |
||
211 | ): |
||
212 | logger.info( |
||
213 | f"Error: Eventhough no input capacity was provided for carrier" |
||
214 | f"'{carrier}' a capacity got distributed!" |
||
215 | ) |
||
216 | |||
217 | else: |
||
218 | sum_input["error"] = ( |
||
219 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
220 | / sum_input.input_capacity_mw |
||
221 | ) * 100 |
||
222 | g = sum_input["error"].values[0] |
||
223 | |||
224 | logger.info(f"{carrier}: " + str(round(g, 2)) + " %") |
||
225 | |||
226 | # Section to check storage units |
||
227 | |||
228 | logger.info(f"Sanity checks for scenario {scn}") |
||
229 | logger.info( |
||
230 | "For German electrical storage units the following deviations between" |
||
231 | "the inputs and outputs can be observed:" |
||
232 | ) |
||
233 | |||
234 | carriers_electricity = ["pumped_hydro"] |
||
235 | |||
236 | for carrier in carriers_electricity: |
||
237 | |||
238 | sum_output = db.select_dataframe( |
||
239 | f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
240 | FROM grid.egon_etrago_storage |
||
241 | WHERE scn_name = '{scn}' |
||
242 | AND carrier IN ('{carrier}') |
||
243 | AND bus IN |
||
244 | (SELECT bus_id |
||
245 | FROM grid.egon_etrago_bus |
||
246 | WHERE scn_name = 'eGon2035' |
||
247 | AND country = 'DE') |
||
248 | GROUP BY (scn_name); |
||
249 | """, |
||
250 | warning=False, |
||
251 | ) |
||
252 | |||
253 | sum_input = db.select_dataframe( |
||
254 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
255 | FROM supply.egon_scenario_capacities |
||
256 | WHERE carrier= '{carrier}' |
||
257 | AND scenario_name ='{scn}' |
||
258 | GROUP BY (carrier); |
||
259 | """, |
||
260 | warning=False, |
||
261 | ) |
||
262 | |||
263 | View Code Duplication | if ( |
|
264 | sum_output.output_capacity_mw.sum() == 0 |
||
265 | and sum_input.input_capacity_mw.sum() == 0 |
||
266 | ): |
||
267 | print( |
||
268 | f"No capacity for carrier '{carrier}' needed to be " |
||
269 | f"distributed. Everything is fine" |
||
270 | ) |
||
271 | |||
272 | elif ( |
||
273 | sum_input.input_capacity_mw.sum() > 0 |
||
274 | and sum_output.output_capacity_mw.sum() == 0 |
||
275 | ): |
||
276 | print( |
||
277 | f"Error: Capacity for carrier '{carrier}' was not distributed" |
||
278 | f" at all!" |
||
279 | ) |
||
280 | |||
281 | elif ( |
||
282 | sum_output.output_capacity_mw.sum() > 0 |
||
283 | and sum_input.input_capacity_mw.sum() == 0 |
||
284 | ): |
||
285 | print( |
||
286 | f"Error: Eventhough no input capacity was provided for carrier" |
||
287 | f" '{carrier}' a capacity got distributed!" |
||
288 | ) |
||
289 | |||
290 | else: |
||
291 | sum_input["error"] = ( |
||
292 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
293 | / sum_input.input_capacity_mw |
||
294 | ) * 100 |
||
295 | g = sum_input["error"].values[0] |
||
296 | |||
297 | print(f"{carrier}: " + str(round(g, 2)) + " %") |
||
298 | |||
299 | # Section to check loads |
||
300 | |||
301 | print( |
||
302 | "For German electricity loads the following deviations between the" |
||
303 | " input and output can be observed:" |
||
304 | ) |
||
305 | |||
306 | output_demand = db.select_dataframe( |
||
307 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
308 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
309 | FROM grid.egon_etrago_load a |
||
310 | JOIN grid.egon_etrago_load_timeseries b |
||
311 | ON (a.load_id = b.load_id) |
||
312 | JOIN grid.egon_etrago_bus c |
||
313 | ON (a.bus=c.bus_id) |
||
314 | AND b.scn_name = 'eGon2035' |
||
315 | AND a.scn_name = 'eGon2035' |
||
316 | AND a.carrier = 'AC' |
||
317 | AND c.scn_name= 'eGon2035' |
||
318 | AND c.country='DE' |
||
319 | GROUP BY (a.scn_name, a.carrier); |
||
320 | |||
321 | """, |
||
322 | warning=False, |
||
323 | )["load_twh"].values[0] |
||
324 | |||
325 | input_cts_ind = db.select_dataframe( |
||
326 | """SELECT scenario, |
||
327 | SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
||
328 | FROM demand.egon_demandregio_cts_ind |
||
329 | WHERE scenario= 'eGon2035' |
||
330 | AND year IN ('2035') |
||
331 | GROUP BY (scenario); |
||
332 | |||
333 | """, |
||
334 | warning=False, |
||
335 | )["demand_mw_regio_cts_ind"].values[0] |
||
336 | |||
337 | input_hh = db.select_dataframe( |
||
338 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
||
339 | FROM demand.egon_demandregio_hh |
||
340 | WHERE scenario= 'eGon2035' |
||
341 | AND year IN ('2035') |
||
342 | GROUP BY (scenario); |
||
343 | """, |
||
344 | warning=False, |
||
345 | )["demand_mw_regio_hh"].values[0] |
||
346 | |||
347 | input_demand = input_hh + input_cts_ind |
||
348 | |||
349 | e = round((output_demand - input_demand) / input_demand, 2) * 100 |
||
350 | |||
351 | print(f"electricity demand: {e} %") |
||
352 | |||
353 | |||
354 | def etrago_eGon2035_heat(): |
||
355 | """Execute basic sanity checks. |
||
356 | |||
357 | Returns print statements as sanity checks for the heat sector in |
||
358 | the eGon2035 scenario. |
||
359 | |||
360 | Parameters |
||
361 | ---------- |
||
362 | None |
||
363 | |||
364 | Returns |
||
365 | ------- |
||
366 | None |
||
367 | """ |
||
368 | |||
369 | # Check input and output values for the carriers "others", |
||
370 | # "reservoir", "run_of_river" and "oil" |
||
371 | |||
372 | scn = "eGon2035" |
||
373 | |||
374 | # Section to check generator capacities |
||
375 | print(f"Sanity checks for scenario {scn}") |
||
376 | print( |
||
377 | "For German heat demands the following deviations between the inputs" |
||
378 | " and outputs can be observed:" |
||
379 | ) |
||
380 | |||
381 | # Sanity checks for heat demand |
||
382 | |||
383 | output_heat_demand = db.select_dataframe( |
||
384 | """SELECT a.scn_name, |
||
385 | (SUM( |
||
386 | (SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
387 | FROM grid.egon_etrago_load a |
||
388 | JOIN grid.egon_etrago_load_timeseries b |
||
389 | ON (a.load_id = b.load_id) |
||
390 | JOIN grid.egon_etrago_bus c |
||
391 | ON (a.bus=c.bus_id) |
||
392 | AND b.scn_name = 'eGon2035' |
||
393 | AND a.scn_name = 'eGon2035' |
||
394 | AND c.scn_name= 'eGon2035' |
||
395 | AND c.country='DE' |
||
396 | AND a.carrier IN ('rural_heat', 'central_heat') |
||
397 | GROUP BY (a.scn_name); |
||
398 | """, |
||
399 | warning=False, |
||
400 | )["load_twh"].values[0] |
||
401 | |||
402 | input_heat_demand = db.select_dataframe( |
||
403 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
||
404 | FROM demand.egon_peta_heat |
||
405 | WHERE scenario= 'eGon2035' |
||
406 | GROUP BY (scenario); |
||
407 | """, |
||
408 | warning=False, |
||
409 | )["demand_mw_peta_heat"].values[0] |
||
410 | |||
411 | e_demand = ( |
||
412 | round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
||
413 | * 100 |
||
414 | ) |
||
415 | |||
416 | logger.info(f"heat demand: {e_demand} %") |
||
417 | |||
418 | # Sanity checks for heat supply |
||
419 | |||
420 | logger.info( |
||
421 | "For German heat supplies the following deviations between the inputs " |
||
422 | "and outputs can be observed:" |
||
423 | ) |
||
424 | |||
425 | # Comparison for central heat pumps |
||
426 | heat_pump_input = db.select_dataframe( |
||
427 | """SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
||
428 | FROM supply.egon_scenario_capacities |
||
429 | WHERE carrier= 'urban_central_heat_pump' |
||
430 | AND scenario_name IN ('eGon2035') |
||
431 | GROUP BY (carrier); |
||
432 | """, |
||
433 | warning=False, |
||
434 | )["urban_central_heat_pump_mw"].values[0] |
||
435 | |||
436 | heat_pump_output = db.select_dataframe( |
||
437 | """SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
||
438 | FROM grid.egon_etrago_link |
||
439 | WHERE carrier= 'central_heat_pump' |
||
440 | AND scn_name IN ('eGon2035') |
||
441 | GROUP BY (carrier); |
||
442 | """, |
||
443 | warning=False, |
||
444 | )["central_heat_pump_mw"].values[0] |
||
445 | |||
446 | e_heat_pump = ( |
||
447 | round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
||
448 | ) |
||
449 | |||
450 | logger.info(f"'central_heat_pump': {e_heat_pump} % ") |
||
451 | |||
452 | # Comparison for residential heat pumps |
||
453 | |||
454 | input_residential_heat_pump = db.select_dataframe( |
||
455 | """SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
||
456 | FROM supply.egon_scenario_capacities |
||
457 | WHERE carrier= 'residential_rural_heat_pump' |
||
458 | AND scenario_name IN ('eGon2035') |
||
459 | GROUP BY (carrier); |
||
460 | """, |
||
461 | warning=False, |
||
462 | )["residential_heat_pump_mw"].values[0] |
||
463 | |||
464 | output_residential_heat_pump = db.select_dataframe( |
||
465 | """SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
||
466 | FROM grid.egon_etrago_link |
||
467 | WHERE carrier= 'rural_heat_pump' |
||
468 | AND scn_name IN ('eGon2035') |
||
469 | GROUP BY (carrier); |
||
470 | """, |
||
471 | warning=False, |
||
472 | )["rural_heat_pump_mw"].values[0] |
||
473 | |||
474 | e_residential_heat_pump = ( |
||
475 | round( |
||
476 | (output_residential_heat_pump - input_residential_heat_pump) |
||
477 | / input_residential_heat_pump, |
||
478 | 2, |
||
479 | ) |
||
480 | * 100 |
||
481 | ) |
||
482 | logger.info(f"'residential heat pumps': {e_residential_heat_pump} %") |
||
483 | |||
484 | # Comparison for resistive heater |
||
485 | resistive_heater_input = db.select_dataframe( |
||
486 | """SELECT carrier, |
||
487 | SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
||
488 | FROM supply.egon_scenario_capacities |
||
489 | WHERE carrier= 'urban_central_resistive_heater' |
||
490 | AND scenario_name IN ('eGon2035') |
||
491 | GROUP BY (carrier); |
||
492 | """, |
||
493 | warning=False, |
||
494 | )["urban_central_resistive_heater_mw"].values[0] |
||
495 | |||
496 | resistive_heater_output = db.select_dataframe( |
||
497 | """SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
||
498 | FROM grid.egon_etrago_link |
||
499 | WHERE carrier= 'central_resistive_heater' |
||
500 | AND scn_name IN ('eGon2035') |
||
501 | GROUP BY (carrier); |
||
502 | """, |
||
503 | warning=False, |
||
504 | )["central_resistive_heater_mw"].values[0] |
||
505 | |||
506 | e_resistive_heater = ( |
||
507 | round( |
||
508 | (resistive_heater_output - resistive_heater_input) |
||
509 | / resistive_heater_input, |
||
510 | 2, |
||
511 | ) |
||
512 | * 100 |
||
513 | ) |
||
514 | |||
515 | logger.info(f"'resistive heater': {e_resistive_heater} %") |
||
516 | |||
517 | # Comparison for solar thermal collectors |
||
518 | |||
519 | input_solar_thermal = db.select_dataframe( |
||
520 | """SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
||
521 | FROM supply.egon_scenario_capacities |
||
522 | WHERE carrier= 'urban_central_solar_thermal_collector' |
||
523 | AND scenario_name IN ('eGon2035') |
||
524 | GROUP BY (carrier); |
||
525 | """, |
||
526 | warning=False, |
||
527 | )["solar_thermal_collector_mw"].values[0] |
||
528 | |||
529 | output_solar_thermal = db.select_dataframe( |
||
530 | """SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
||
531 | FROM grid.egon_etrago_generator |
||
532 | WHERE carrier= 'solar_thermal_collector' |
||
533 | AND scn_name IN ('eGon2035') |
||
534 | GROUP BY (carrier); |
||
535 | """, |
||
536 | warning=False, |
||
537 | )["solar_thermal_collector_mw"].values[0] |
||
538 | |||
539 | e_solar_thermal = ( |
||
540 | round( |
||
541 | (output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
||
542 | 2, |
||
543 | ) |
||
544 | * 100 |
||
545 | ) |
||
546 | logger.info(f"'solar thermal collector': {e_solar_thermal} %") |
||
547 | |||
548 | # Comparison for geothermal |
||
549 | |||
550 | input_geo_thermal = db.select_dataframe( |
||
551 | """SELECT carrier, |
||
552 | SUM(capacity::numeric) as Urban_central_geo_thermal_MW |
||
553 | FROM supply.egon_scenario_capacities |
||
554 | WHERE carrier= 'urban_central_geo_thermal' |
||
555 | AND scenario_name IN ('eGon2035') |
||
556 | GROUP BY (carrier); |
||
557 | """, |
||
558 | warning=False, |
||
559 | )["urban_central_geo_thermal_mw"].values[0] |
||
560 | |||
561 | output_geo_thermal = db.select_dataframe( |
||
562 | """SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW |
||
563 | FROM grid.egon_etrago_generator |
||
564 | WHERE carrier= 'geo_thermal' |
||
565 | AND scn_name IN ('eGon2035') |
||
566 | GROUP BY (carrier); |
||
567 | """, |
||
568 | warning=False, |
||
569 | )["geo_thermal_mw"].values[0] |
||
570 | |||
571 | e_geo_thermal = ( |
||
572 | round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2) |
||
573 | * 100 |
||
574 | ) |
||
575 | logger.info(f"'geothermal': {e_geo_thermal} %") |
||
576 | |||
577 | |||
578 | def residential_electricity_annual_sum(rtol=1e-5): |
||
579 | """Sanity check for dataset electricity_demand_timeseries : |
||
580 | Demand_Building_Assignment |
||
581 | |||
582 | Aggregate the annual demand of all census cells at NUTS3 to compare |
||
583 | with initial scaling parameters from DemandRegio. |
||
584 | """ |
||
585 | |||
586 | df_nuts3_annual_sum = db.select_dataframe( |
||
587 | sql=""" |
||
588 | SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
||
589 | FROM ( |
||
590 | SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
||
591 | FROM demand.egon_demandregio_zensus_electricity AS egon, |
||
592 | boundaries.egon_map_zensus_vg250 AS boundaries |
||
593 | Where egon.zensus_population_id = boundaries.zensus_population_id |
||
594 | AND sector = 'residential' |
||
595 | GROUP BY vg250_nuts3, scenario |
||
596 | ) AS profiles |
||
597 | JOIN ( |
||
598 | SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
||
599 | FROM demand.egon_demandregio_hh |
||
600 | GROUP BY year, scenario, nuts3 |
||
601 | ) AS dr |
||
602 | ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario |
||
603 | """ |
||
604 | ) |
||
605 | |||
606 | np.testing.assert_allclose( |
||
607 | actual=df_nuts3_annual_sum["profile_sum"], |
||
608 | desired=df_nuts3_annual_sum["demand_regio_sum"], |
||
609 | rtol=rtol, |
||
610 | verbose=False, |
||
611 | ) |
||
612 | |||
613 | logger.info( |
||
614 | "Aggregated annual residential electricity demand" |
||
615 | " matches with DemandRegio at NUTS-3." |
||
616 | ) |
||
617 | |||
618 | |||
619 | def residential_electricity_hh_refinement(rtol=1e-5): |
||
620 | """Sanity check for dataset electricity_demand_timeseries : |
||
621 | Household Demands |
||
622 | |||
623 | Check sum of aggregated household types after refinement method |
||
624 | was applied and compare it to the original census values.""" |
||
625 | |||
626 | df_refinement = db.select_dataframe( |
||
627 | sql=""" |
||
628 | SELECT refined.nuts3, refined.characteristics_code, |
||
629 | refined.sum_refined::int, census.sum_census::int |
||
630 | FROM( |
||
631 | SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
||
632 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
633 | GROUP BY nuts3, characteristics_code) |
||
634 | AS refined |
||
635 | JOIN( |
||
636 | SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
||
637 | FROM( |
||
638 | SELECT nuts3, cell_id, characteristics_code, |
||
639 | sum(DISTINCT(hh_5types))as orig |
||
640 | FROM society.egon_destatis_zensus_household_per_ha_refined |
||
641 | GROUP BY cell_id, characteristics_code, nuts3) AS t |
||
642 | GROUP BY t.nuts3, t.characteristics_code ) AS census |
||
643 | ON refined.nuts3 = census.nuts3 |
||
644 | AND refined.characteristics_code = census.characteristics_code |
||
645 | """ |
||
646 | ) |
||
647 | |||
648 | np.testing.assert_allclose( |
||
649 | actual=df_refinement["sum_refined"], |
||
650 | desired=df_refinement["sum_census"], |
||
651 | rtol=rtol, |
||
652 | verbose=False, |
||
653 | ) |
||
654 | |||
655 | logger.info("All Aggregated household types match at NUTS-3.") |
||
656 | |||
657 | |||
658 | def cts_electricity_demand_share(rtol=1e-5): |
||
659 | """Sanity check for dataset electricity_demand_timeseries : |
||
660 | CtsBuildings |
||
661 | |||
662 | Check sum of aggregated cts electricity demand share which equals to one |
||
663 | for every substation as the substation profile is linearly disaggregated |
||
664 | to all buildings.""" |
||
665 | |||
666 | with db.session_scope() as session: |
||
667 | cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
||
668 | |||
669 | df_demand_share = pd.read_sql( |
||
670 | cells_query.statement, cells_query.session.bind, index_col=None |
||
671 | ) |
||
672 | |||
673 | np.testing.assert_allclose( |
||
674 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
675 | "profile_share" |
||
676 | ].sum(), |
||
677 | desired=1, |
||
678 | rtol=rtol, |
||
679 | verbose=False, |
||
680 | ) |
||
681 | |||
682 | logger.info("The aggregated demand shares equal to one!.") |
||
683 | |||
684 | |||
685 | def cts_heat_demand_share(rtol=1e-5): |
||
686 | """Sanity check for dataset electricity_demand_timeseries |
||
687 | : CtsBuildings |
||
688 | |||
689 | Check sum of aggregated cts heat demand share which equals to one |
||
690 | for every substation as the substation profile is linearly disaggregated |
||
691 | to all buildings.""" |
||
692 | |||
693 | with db.session_scope() as session: |
||
694 | cells_query = session.query(EgonCtsHeatDemandBuildingShare) |
||
695 | |||
696 | df_demand_share = pd.read_sql( |
||
697 | cells_query.statement, cells_query.session.bind, index_col=None |
||
698 | ) |
||
699 | |||
700 | np.testing.assert_allclose( |
||
701 | actual=df_demand_share.groupby(["bus_id", "scenario"])[ |
||
702 | "profile_share" |
||
703 | ].sum(), |
||
704 | desired=1, |
||
705 | rtol=rtol, |
||
706 | verbose=False, |
||
707 | ) |
||
708 | |||
709 | logger.info("The aggregated demand shares equal to one!.") |
||
710 | |||
711 | |||
712 | def sanitycheck_pv_rooftop_buildings(): |
||
713 | def egon_power_plants_pv_roof_building(): |
||
714 | sql = """ |
||
715 | SELECT * |
||
716 | FROM supply.egon_power_plants_pv_roof_building |
||
717 | """ |
||
718 | |||
719 | return db.select_dataframe(sql, index_col="index") |
||
720 | |||
721 | pv_roof_df = egon_power_plants_pv_roof_building() |
||
722 | |||
723 | valid_buildings_gdf = load_building_data() |
||
724 | |||
725 | valid_buildings_gdf = valid_buildings_gdf.assign( |
||
726 | bus_id=valid_buildings_gdf.bus_id.astype(int), |
||
727 | overlay_id=valid_buildings_gdf.overlay_id.astype(int), |
||
728 | max_cap=valid_buildings_gdf.building_area.multiply( |
||
729 | ROOF_FACTOR * PV_CAP_PER_SQ_M |
||
730 | ), |
||
731 | ) |
||
732 | |||
733 | merge_df = pv_roof_df.merge( |
||
734 | valid_buildings_gdf[["building_area"]], |
||
735 | how="left", |
||
736 | left_on="building_id", |
||
737 | right_index=True, |
||
738 | ) |
||
739 | |||
740 | assert ( |
||
741 | len(merge_df.loc[merge_df.building_area.isna()]) == 0 |
||
742 | ), f"{len(merge_df.loc[merge_df.building_area.isna()])} != 0" |
||
743 | |||
744 | scenarios = ["status_quo", "eGon2035"] |
||
745 | |||
746 | base_path = Path(egon.data.__path__[0]).resolve() |
||
747 | |||
748 | res_dir = base_path / "sanity_checks" |
||
749 | |||
750 | res_dir.mkdir(parents=True, exist_ok=True) |
||
751 | |||
752 | for scenario in scenarios: |
||
753 | fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
||
754 | |||
755 | scenario_df = merge_df.loc[merge_df.scenario == scenario] |
||
756 | |||
757 | logger.info( |
||
758 | scenario + " Capacity:\n" + str(scenario_df.capacity.describe()) |
||
759 | ) |
||
760 | |||
761 | small_gens_df = scenario_df.loc[scenario_df.capacity < 100] |
||
762 | |||
763 | sns.histplot(data=small_gens_df, x="capacity", ax=ax1).set_title( |
||
764 | scenario |
||
765 | ) |
||
766 | |||
767 | sns.scatterplot( |
||
768 | data=small_gens_df, x="capacity", y="building_area", ax=ax2 |
||
769 | ).set_title(scenario) |
||
770 | |||
771 | plt.tight_layout() |
||
772 | |||
773 | plt.savefig( |
||
774 | res_dir / f"{scenario}_pv_rooftop_distribution.png", |
||
775 | bbox_inches="tight", |
||
776 | ) |
||
777 | |||
778 | for scenario in SCENARIOS: |
||
779 | if scenario == "eGon2035": |
||
780 | assert isclose( |
||
781 | scenario_data(scenario=scenario).capacity.sum(), |
||
782 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
783 | rel_tol=1e-02, |
||
784 | ), ( |
||
785 | f"{scenario_data(scenario=scenario).capacity.sum()} != " |
||
786 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
787 | ) |
||
788 | elif scenario == "eGon100RE": |
||
789 | sources = config.datasets()["solar_rooftop"]["sources"] |
||
790 | |||
791 | target = db.select_dataframe( |
||
792 | f""" |
||
793 | SELECT capacity |
||
794 | FROM {sources['scenario_capacities']['schema']}. |
||
795 | {sources['scenario_capacities']['table']} a |
||
796 | WHERE carrier = 'solar_rooftop' |
||
797 | AND scenario_name = '{scenario}' |
||
798 | """ |
||
799 | ).capacity[0] |
||
800 | |||
801 | dataset = config.settings()["egon-data"]["--dataset-boundary"] |
||
802 | |||
803 | View Code Duplication | if dataset == "Schleswig-Holstein": |
|
804 | sources = config.datasets()["scenario_input"]["sources"] |
||
805 | |||
806 | path = Path( |
||
807 | f"./data_bundle_egon_data/nep2035_version2021/" |
||
808 | f"{sources['eGon2035']['capacities']}" |
||
809 | ).resolve() |
||
810 | |||
811 | total_2035 = ( |
||
812 | pd.read_excel( |
||
813 | path, |
||
814 | sheet_name="1.Entwurf_NEP2035_V2021", |
||
815 | index_col="Unnamed: 0", |
||
816 | ).at["PV (Aufdach)", "Summe"] |
||
817 | * 1000 |
||
818 | ) |
||
819 | sh_2035 = scenario_data(scenario="eGon2035").capacity.sum() |
||
820 | |||
821 | share = sh_2035 / total_2035 |
||
822 | |||
823 | target *= share |
||
824 | |||
825 | assert isclose( |
||
826 | target, |
||
827 | merge_df.loc[merge_df.scenario == scenario].capacity.sum(), |
||
828 | rel_tol=1e-02, |
||
829 | ), ( |
||
830 | f"{target} != " |
||
831 | f"{merge_df.loc[merge_df.scenario == scenario].capacity.sum()}" |
||
832 | ) |
||
833 | else: |
||
834 | raise ValueError(f"Scenario {scenario} is not valid.") |
||
835 | |||
836 | |||
837 | def sanitycheck_emobility_mit(): |
||
838 | """Execute sanity checks for eMobility: motorized individual travel |
||
839 | |||
840 | Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario |
||
841 | using assertions: |
||
842 | 1. Allocated EV numbers and EVs allocated to grid districts |
||
843 | 2. Trip data (original inout data from simBEV) |
||
844 | 3. Model data in eTraGo PF tables (grid.egon_etrago_*) |
||
845 | |||
846 | Parameters |
||
847 | ---------- |
||
848 | None |
||
849 | |||
850 | Returns |
||
851 | ------- |
||
852 | None |
||
853 | """ |
||
854 | |||
855 | def check_ev_allocation(): |
||
856 | # Get target number for scenario |
||
857 | ev_count_target = scenario_variation_parameters["ev_count"] |
||
858 | print(f" Target count: {str(ev_count_target)}") |
||
859 | |||
860 | # Get allocated numbers |
||
861 | ev_counts_dict = {} |
||
862 | with db.session_scope() as session: |
||
863 | for table, level in zip( |
||
864 | [ |
||
865 | EgonEvCountMvGridDistrict, |
||
866 | EgonEvCountMunicipality, |
||
867 | EgonEvCountRegistrationDistrict, |
||
868 | ], |
||
869 | ["Grid District", "Municipality", "Registration District"], |
||
870 | ): |
||
871 | query = session.query( |
||
872 | func.sum( |
||
873 | table.bev_mini |
||
874 | + table.bev_medium |
||
875 | + table.bev_luxury |
||
876 | + table.phev_mini |
||
877 | + table.phev_medium |
||
878 | + table.phev_luxury |
||
879 | ).label("ev_count") |
||
880 | ).filter( |
||
881 | table.scenario == scenario_name, |
||
882 | table.scenario_variation == scenario_var_name, |
||
883 | ) |
||
884 | |||
885 | ev_counts = pd.read_sql( |
||
886 | query.statement, query.session.bind, index_col=None |
||
887 | ) |
||
888 | ev_counts_dict[level] = ev_counts.iloc[0].ev_count |
||
889 | print( |
||
890 | f" Count table: Total count for level {level} " |
||
891 | f"(table: {table.__table__}): " |
||
892 | f"{str(ev_counts_dict[level])}" |
||
893 | ) |
||
894 | |||
895 | # Compare with scenario target (only if not in testmode) |
||
896 | if TESTMODE_OFF: |
||
897 | for level, count in ev_counts_dict.items(): |
||
898 | np.testing.assert_allclose( |
||
899 | count, |
||
900 | ev_count_target, |
||
901 | rtol=0.0001, |
||
902 | err_msg=f"EV numbers in {level} seems to be flawed.", |
||
903 | ) |
||
904 | else: |
||
905 | print(" Testmode is on, skipping sanity check...") |
||
906 | |||
907 | # Get allocated EVs in grid districts |
||
908 | with db.session_scope() as session: |
||
909 | query = session.query( |
||
910 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
911 | "ev_count" |
||
912 | ), |
||
913 | ).filter( |
||
914 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
915 | EgonEvMvGridDistrict.scenario_variation == scenario_var_name, |
||
916 | ) |
||
917 | ev_count_alloc = ( |
||
918 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
919 | .iloc[0] |
||
920 | .ev_count |
||
921 | ) |
||
922 | print( |
||
923 | f" EVs allocated to Grid Districts " |
||
924 | f"(table: {EgonEvMvGridDistrict.__table__}) total count: " |
||
925 | f"{str(ev_count_alloc)}" |
||
926 | ) |
||
927 | |||
928 | # Compare with scenario target (only if not in testmode) |
||
929 | if TESTMODE_OFF: |
||
930 | np.testing.assert_allclose( |
||
931 | ev_count_alloc, |
||
932 | ev_count_target, |
||
933 | rtol=0.0001, |
||
934 | err_msg=( |
||
935 | "EV numbers allocated to Grid Districts seems to be " |
||
936 | "flawed." |
||
937 | ), |
||
938 | ) |
||
939 | else: |
||
940 | print(" Testmode is on, skipping sanity check...") |
||
941 | |||
942 | return ev_count_alloc |
||
943 | |||
944 | def check_trip_data(): |
||
945 | # Check if trips start at timestep 0 and have a max. of 35040 steps |
||
946 | # (8760h in 15min steps) |
||
947 | print(" Checking timeranges...") |
||
948 | with db.session_scope() as session: |
||
949 | query = session.query( |
||
950 | func.count(EgonEvTrip.event_id).label("cnt") |
||
951 | ).filter( |
||
952 | or_( |
||
953 | and_( |
||
954 | EgonEvTrip.park_start > 0, |
||
955 | EgonEvTrip.simbev_event_id == 0, |
||
956 | ), |
||
957 | EgonEvTrip.park_end |
||
958 | > (60 / int(meta_run_config.stepsize)) * 8760, |
||
959 | ), |
||
960 | EgonEvTrip.scenario == scenario_name, |
||
961 | ) |
||
962 | invalid_trips = pd.read_sql( |
||
963 | query.statement, query.session.bind, index_col=None |
||
964 | ) |
||
965 | np.testing.assert_equal( |
||
966 | invalid_trips.iloc[0].cnt, |
||
967 | 0, |
||
968 | err_msg=( |
||
969 | f"{str(invalid_trips.iloc[0].cnt)} trips in table " |
||
970 | f"{EgonEvTrip.__table__} have invalid timesteps." |
||
971 | ), |
||
972 | ) |
||
973 | |||
974 | # Check if charging demand can be covered by available charging energy |
||
975 | # while parking |
||
976 | print(" Compare charging demand with available power...") |
||
977 | with db.session_scope() as session: |
||
978 | query = session.query( |
||
979 | func.count(EgonEvTrip.event_id).label("cnt") |
||
980 | ).filter( |
||
981 | func.round( |
||
982 | cast( |
||
983 | (EgonEvTrip.park_end - EgonEvTrip.park_start + 1) |
||
984 | * EgonEvTrip.charging_capacity_nominal |
||
985 | * (int(meta_run_config.stepsize) / 60), |
||
986 | Numeric, |
||
987 | ), |
||
988 | 3, |
||
989 | ) |
||
990 | < cast(EgonEvTrip.charging_demand, Numeric), |
||
991 | EgonEvTrip.scenario == scenario_name, |
||
992 | ) |
||
993 | invalid_trips = pd.read_sql( |
||
994 | query.statement, query.session.bind, index_col=None |
||
995 | ) |
||
996 | np.testing.assert_equal( |
||
997 | invalid_trips.iloc[0].cnt, |
||
998 | 0, |
||
999 | err_msg=( |
||
1000 | f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " |
||
1001 | f"{EgonEvTrip.__table__}) the charging demand cannot be " |
||
1002 | f"covered by available charging power." |
||
1003 | ), |
||
1004 | ) |
||
1005 | |||
1006 | def check_model_data(): |
||
1007 | # Check if model components were fully created |
||
1008 | print(" Check if all model components were created...") |
||
1009 | # Get MVGDs which got EV allocated |
||
1010 | with db.session_scope() as session: |
||
1011 | query = ( |
||
1012 | session.query( |
||
1013 | EgonEvMvGridDistrict.bus_id, |
||
1014 | ) |
||
1015 | .filter( |
||
1016 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
1017 | EgonEvMvGridDistrict.scenario_variation |
||
1018 | == scenario_var_name, |
||
1019 | ) |
||
1020 | .group_by(EgonEvMvGridDistrict.bus_id) |
||
1021 | ) |
||
1022 | mvgds_with_ev = ( |
||
1023 | pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
1024 | .bus_id.sort_values() |
||
1025 | .to_list() |
||
1026 | ) |
||
1027 | |||
1028 | # Load model components |
||
1029 | with db.session_scope() as session: |
||
1030 | query = ( |
||
1031 | session.query( |
||
1032 | EgonPfHvLink.bus0.label("mvgd_bus_id"), |
||
1033 | EgonPfHvLoad.bus.label("emob_bus_id"), |
||
1034 | EgonPfHvLoad.load_id.label("load_id"), |
||
1035 | EgonPfHvStore.store_id.label("store_id"), |
||
1036 | ) |
||
1037 | .select_from(EgonPfHvLoad, EgonPfHvStore) |
||
1038 | .join( |
||
1039 | EgonPfHvLoadTimeseries, |
||
1040 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1041 | ) |
||
1042 | .join( |
||
1043 | EgonPfHvStoreTimeseries, |
||
1044 | EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id, |
||
1045 | ) |
||
1046 | .filter( |
||
1047 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
1048 | EgonPfHvLoad.scn_name == scenario_name, |
||
1049 | EgonPfHvLoadTimeseries.scn_name == scenario_name, |
||
1050 | EgonPfHvStore.carrier == "battery_storage", |
||
1051 | EgonPfHvStore.scn_name == scenario_name, |
||
1052 | EgonPfHvStoreTimeseries.scn_name == scenario_name, |
||
1053 | EgonPfHvLink.scn_name == scenario_name, |
||
1054 | EgonPfHvLink.bus1 == EgonPfHvLoad.bus, |
||
1055 | EgonPfHvLink.bus1 == EgonPfHvStore.bus, |
||
1056 | ) |
||
1057 | ) |
||
1058 | model_components = pd.read_sql( |
||
1059 | query.statement, query.session.bind, index_col=None |
||
1060 | ) |
||
1061 | |||
1062 | # Check number of buses with model components connected |
||
1063 | mvgd_buses_with_ev = model_components.loc[ |
||
1064 | model_components.mvgd_bus_id.isin(mvgds_with_ev) |
||
1065 | ] |
||
1066 | np.testing.assert_equal( |
||
1067 | len(mvgds_with_ev), |
||
1068 | len(mvgd_buses_with_ev), |
||
1069 | err_msg=( |
||
1070 | f"Number of Grid Districts with connected model components " |
||
1071 | f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " |
||
1072 | f"differ from number of Grid Districts that got EVs " |
||
1073 | f"allocated ({len(mvgds_with_ev)} in table " |
||
1074 | f"{EgonEvMvGridDistrict.__table__})." |
||
1075 | ), |
||
1076 | ) |
||
1077 | |||
1078 | # Check if all required components exist (if no id is NaN) |
||
1079 | np.testing.assert_equal( |
||
1080 | model_components.drop_duplicates().isna().any().any(), |
||
1081 | False, |
||
1082 | err_msg=( |
||
1083 | f"Some components are missing (see True values): " |
||
1084 | f"{model_components.drop_duplicates().isna().any()}" |
||
1085 | ), |
||
1086 | ) |
||
1087 | |||
1088 | # Get all model timeseries |
||
1089 | print(" Loading model timeseries...") |
||
1090 | # Get all model timeseries |
||
1091 | model_ts_dict = { |
||
1092 | "Load": { |
||
1093 | "carrier": "land_transport_EV", |
||
1094 | "table": EgonPfHvLoad, |
||
1095 | "table_ts": EgonPfHvLoadTimeseries, |
||
1096 | "column_id": "load_id", |
||
1097 | "columns_ts": ["p_set"], |
||
1098 | "ts": None, |
||
1099 | }, |
||
1100 | "Link": { |
||
1101 | "carrier": "BEV_charger", |
||
1102 | "table": EgonPfHvLink, |
||
1103 | "table_ts": EgonPfHvLinkTimeseries, |
||
1104 | "column_id": "link_id", |
||
1105 | "columns_ts": ["p_max_pu"], |
||
1106 | "ts": None, |
||
1107 | }, |
||
1108 | "Store": { |
||
1109 | "carrier": "battery_storage", |
||
1110 | "table": EgonPfHvStore, |
||
1111 | "table_ts": EgonPfHvStoreTimeseries, |
||
1112 | "column_id": "store_id", |
||
1113 | "columns_ts": ["e_min_pu", "e_max_pu"], |
||
1114 | "ts": None, |
||
1115 | }, |
||
1116 | } |
||
1117 | |||
1118 | with db.session_scope() as session: |
||
1119 | for node, attrs in model_ts_dict.items(): |
||
1120 | print(f" Loading {node} timeseries...") |
||
1121 | subquery = ( |
||
1122 | session.query(getattr(attrs["table"], attrs["column_id"])) |
||
1123 | .filter(attrs["table"].carrier == attrs["carrier"]) |
||
1124 | .filter(attrs["table"].scn_name == scenario_name) |
||
1125 | .subquery() |
||
1126 | ) |
||
1127 | |||
1128 | cols = [ |
||
1129 | getattr(attrs["table_ts"], c) for c in attrs["columns_ts"] |
||
1130 | ] |
||
1131 | query = session.query( |
||
1132 | getattr(attrs["table_ts"], attrs["column_id"]), *cols |
||
1133 | ).filter( |
||
1134 | getattr(attrs["table_ts"], attrs["column_id"]).in_( |
||
1135 | subquery |
||
1136 | ), |
||
1137 | attrs["table_ts"].scn_name == scenario_name, |
||
1138 | ) |
||
1139 | attrs["ts"] = pd.read_sql( |
||
1140 | query.statement, |
||
1141 | query.session.bind, |
||
1142 | index_col=attrs["column_id"], |
||
1143 | ) |
||
1144 | |||
1145 | # Check if all timeseries have 8760 steps |
||
1146 | print(" Checking timeranges...") |
||
1147 | for node, attrs in model_ts_dict.items(): |
||
1148 | for col in attrs["columns_ts"]: |
||
1149 | ts = attrs["ts"] |
||
1150 | invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][ |
||
1151 | col |
||
1152 | ].apply(len) |
||
1153 | np.testing.assert_equal( |
||
1154 | len(invalid_ts), |
||
1155 | 0, |
||
1156 | err_msg=( |
||
1157 | f"{str(len(invalid_ts))} rows in timeseries do not " |
||
1158 | f"have 8760 timesteps. Table: " |
||
1159 | f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " |
||
1160 | f"{str(list(invalid_ts.index))}" |
||
1161 | ), |
||
1162 | ) |
||
1163 | |||
1164 | # Compare total energy demand in model with some approximate values |
||
1165 | # (per EV: 14,000 km/a, 0.17 kWh/km) |
||
1166 | print(" Checking energy demand in model...") |
||
1167 | total_energy_model = ( |
||
1168 | model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum() |
||
1169 | / 1e6 |
||
1170 | ) |
||
1171 | print(f" Total energy amount in model: {total_energy_model} TWh") |
||
1172 | total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9 |
||
1173 | print( |
||
1174 | f" Total approximated energy amount in scenario: " |
||
1175 | f"{total_energy_scenario_approx} TWh" |
||
1176 | ) |
||
1177 | np.testing.assert_allclose( |
||
1178 | total_energy_model, |
||
1179 | total_energy_scenario_approx, |
||
1180 | rtol=0.1, |
||
1181 | err_msg=( |
||
1182 | "The total energy amount in the model deviates heavily " |
||
1183 | "from the approximated value for current scenario." |
||
1184 | ), |
||
1185 | ) |
||
1186 | |||
1187 | # Compare total storage capacity |
||
1188 | print(" Checking storage capacity...") |
||
1189 | # Load storage capacities from model |
||
1190 | with db.session_scope() as session: |
||
1191 | query = session.query( |
||
1192 | func.sum(EgonPfHvStore.e_nom).label("e_nom") |
||
1193 | ).filter( |
||
1194 | EgonPfHvStore.scn_name == scenario_name, |
||
1195 | EgonPfHvStore.carrier == "battery_storage", |
||
1196 | ) |
||
1197 | storage_capacity_model = ( |
||
1198 | pd.read_sql( |
||
1199 | query.statement, query.session.bind, index_col=None |
||
1200 | ).e_nom.sum() |
||
1201 | / 1e3 |
||
1202 | ) |
||
1203 | print( |
||
1204 | f" Total storage capacity ({EgonPfHvStore.__table__}): " |
||
1205 | f"{round(storage_capacity_model, 1)} GWh" |
||
1206 | ) |
||
1207 | |||
1208 | # Load occurences of each EV |
||
1209 | with db.session_scope() as session: |
||
1210 | query = ( |
||
1211 | session.query( |
||
1212 | EgonEvMvGridDistrict.bus_id, |
||
1213 | EgonEvPool.type, |
||
1214 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label( |
||
1215 | "count" |
||
1216 | ), |
||
1217 | ) |
||
1218 | .join( |
||
1219 | EgonEvPool, |
||
1220 | EgonEvPool.ev_id |
||
1221 | == EgonEvMvGridDistrict.egon_ev_pool_ev_id, |
||
1222 | ) |
||
1223 | .filter( |
||
1224 | EgonEvMvGridDistrict.scenario == scenario_name, |
||
1225 | EgonEvMvGridDistrict.scenario_variation |
||
1226 | == scenario_var_name, |
||
1227 | EgonEvPool.scenario == scenario_name, |
||
1228 | ) |
||
1229 | .group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type) |
||
1230 | ) |
||
1231 | count_per_ev_all = pd.read_sql( |
||
1232 | query.statement, query.session.bind, index_col="bus_id" |
||
1233 | ) |
||
1234 | count_per_ev_all["bat_cap"] = count_per_ev_all.type.map( |
||
1235 | meta_tech_data.battery_capacity |
||
1236 | ) |
||
1237 | count_per_ev_all["bat_cap_total_MWh"] = ( |
||
1238 | count_per_ev_all["count"] * count_per_ev_all.bat_cap / 1e3 |
||
1239 | ) |
||
1240 | storage_capacity_simbev = count_per_ev_all.bat_cap_total_MWh.div( |
||
1241 | 1e3 |
||
1242 | ).sum() |
||
1243 | print( |
||
1244 | f" Total storage capacity (simBEV): " |
||
1245 | f"{round(storage_capacity_simbev, 1)} GWh" |
||
1246 | ) |
||
1247 | |||
1248 | np.testing.assert_allclose( |
||
1249 | storage_capacity_model, |
||
1250 | storage_capacity_simbev, |
||
1251 | rtol=0.01, |
||
1252 | err_msg=( |
||
1253 | "The total storage capacity in the model deviates heavily " |
||
1254 | "from the input data provided by simBEV for current scenario." |
||
1255 | ), |
||
1256 | ) |
||
1257 | |||
1258 | # Check SoC storage constraint: e_min_pu < e_max_pu for all timesteps |
||
1259 | print(" Validating SoC constraints...") |
||
1260 | stores_with_invalid_soc = [] |
||
1261 | for idx, row in model_ts_dict["Store"]["ts"].iterrows(): |
||
1262 | ts = row[["e_min_pu", "e_max_pu"]] |
||
1263 | x = np.array(ts.e_min_pu) > np.array(ts.e_max_pu) |
||
1264 | if x.any(): |
||
1265 | stores_with_invalid_soc.append(idx) |
||
1266 | |||
1267 | np.testing.assert_equal( |
||
1268 | len(stores_with_invalid_soc), |
||
1269 | 0, |
||
1270 | err_msg=( |
||
1271 | f"The store constraint e_min_pu < e_max_pu does not apply " |
||
1272 | f"for some storages in {EgonPfHvStoreTimeseries.__table__}. " |
||
1273 | f"Invalid store_ids: {stores_with_invalid_soc}" |
||
1274 | ), |
||
1275 | ) |
||
1276 | |||
1277 | def check_model_data_lowflex_eGon2035(): |
||
1278 | # TODO: Add eGon100RE_lowflex |
||
1279 | print("") |
||
1280 | print("SCENARIO: eGon2035_lowflex") |
||
1281 | |||
1282 | # Compare driving load and charging load |
||
1283 | print(" Loading eGon2035 model timeseries: driving load...") |
||
1284 | with db.session_scope() as session: |
||
1285 | query = ( |
||
1286 | session.query( |
||
1287 | EgonPfHvLoad.load_id, |
||
1288 | EgonPfHvLoadTimeseries.p_set, |
||
1289 | ) |
||
1290 | .join( |
||
1291 | EgonPfHvLoadTimeseries, |
||
1292 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1293 | ) |
||
1294 | .filter( |
||
1295 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
1296 | EgonPfHvLoad.scn_name == "eGon2035", |
||
1297 | EgonPfHvLoadTimeseries.scn_name == "eGon2035", |
||
1298 | ) |
||
1299 | ) |
||
1300 | model_driving_load = pd.read_sql( |
||
1301 | query.statement, query.session.bind, index_col=None |
||
1302 | ) |
||
1303 | driving_load = np.array(model_driving_load.p_set.to_list()).sum(axis=0) |
||
1304 | |||
1305 | print( |
||
1306 | " Loading eGon2035_lowflex model timeseries: dumb charging " |
||
1307 | "load..." |
||
1308 | ) |
||
1309 | with db.session_scope() as session: |
||
1310 | query = ( |
||
1311 | session.query( |
||
1312 | EgonPfHvLoad.load_id, |
||
1313 | EgonPfHvLoadTimeseries.p_set, |
||
1314 | ) |
||
1315 | .join( |
||
1316 | EgonPfHvLoadTimeseries, |
||
1317 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id, |
||
1318 | ) |
||
1319 | .filter( |
||
1320 | EgonPfHvLoad.carrier == "land_transport_EV", |
||
1321 | EgonPfHvLoad.scn_name == "eGon2035_lowflex", |
||
1322 | EgonPfHvLoadTimeseries.scn_name == "eGon2035_lowflex", |
||
1323 | ) |
||
1324 | ) |
||
1325 | model_charging_load_lowflex = pd.read_sql( |
||
1326 | query.statement, query.session.bind, index_col=None |
||
1327 | ) |
||
1328 | charging_load = np.array( |
||
1329 | model_charging_load_lowflex.p_set.to_list() |
||
1330 | ).sum(axis=0) |
||
1331 | |||
1332 | # Ratio of driving and charging load should be 0.9 due to charging |
||
1333 | # efficiency |
||
1334 | print(" Compare cumulative loads...") |
||
1335 | print(f" Driving load (eGon2035): {driving_load.sum() / 1e6} TWh") |
||
1336 | print( |
||
1337 | f" Dumb charging load (eGon2035_lowflex): " |
||
1338 | f"{charging_load.sum() / 1e6} TWh" |
||
1339 | ) |
||
1340 | driving_load_theoretical = ( |
||
1341 | float(meta_run_config.eta_cp) * charging_load.sum() |
||
1342 | ) |
||
1343 | np.testing.assert_allclose( |
||
1344 | driving_load.sum(), |
||
1345 | driving_load_theoretical, |
||
1346 | rtol=0.01, |
||
1347 | err_msg=( |
||
1348 | f"The driving load (eGon2035) deviates by more than 1% " |
||
1349 | f"from the theoretical driving load calculated from charging " |
||
1350 | f"load (eGon2035_lowflex) with an efficiency of " |
||
1351 | f"{float(meta_run_config.eta_cp)}." |
||
1352 | ), |
||
1353 | ) |
||
1354 | |||
1355 | print("=====================================================") |
||
1356 | print("=== SANITY CHECKS FOR MOTORIZED INDIVIDUAL TRAVEL ===") |
||
1357 | print("=====================================================") |
||
1358 | |||
1359 | for scenario_name in ["eGon2035", "eGon100RE"]: |
||
1360 | scenario_var_name = DATASET_CFG["scenario"]["variation"][scenario_name] |
||
1361 | |||
1362 | print("") |
||
1363 | print(f"SCENARIO: {scenario_name}, VARIATION: {scenario_var_name}") |
||
1364 | |||
1365 | # Load scenario params for scenario and scenario variation |
||
1366 | scenario_variation_parameters = get_sector_parameters( |
||
1367 | "mobility", scenario=scenario_name |
||
1368 | )["motorized_individual_travel"][scenario_var_name] |
||
1369 | |||
1370 | # Load simBEV run config and tech data |
||
1371 | meta_run_config = read_simbev_metadata_file( |
||
1372 | scenario_name, "config" |
||
1373 | ).loc["basic"] |
||
1374 | meta_tech_data = read_simbev_metadata_file(scenario_name, "tech_data") |
||
1375 | |||
1376 | print("") |
||
1377 | print("Checking EV counts...") |
||
1378 | ev_count_alloc = check_ev_allocation() |
||
1379 | |||
1380 | print("") |
||
1381 | print("Checking trip data...") |
||
1382 | check_trip_data() |
||
1383 | |||
1384 | print("") |
||
1385 | print("Checking model data...") |
||
1386 | check_model_data() |
||
1387 | |||
1388 | print("") |
||
1389 | check_model_data_lowflex_eGon2035() |
||
1390 | |||
1391 | print("=====================================================") |
||
1392 | |||
1393 | |||
1394 | def sanitycheck_home_batteries(): |
||
1395 | # get constants |
||
1396 | constants = config.datasets()["home_batteries"]["constants"] |
||
1397 | scenarios = constants["scenarios"] |
||
1398 | cbat_pbat_ratio = get_cbat_pbat_ratio() |
||
1399 | |||
1400 | sources = config.datasets()["home_batteries"]["sources"] |
||
1401 | targets = config.datasets()["home_batteries"]["targets"] |
||
1402 | |||
1403 | for scenario in scenarios: |
||
1404 | # get home battery capacity per mv grid id |
||
1405 | sql = f""" |
||
1406 | SELECT el_capacity as p_nom, bus_id FROM |
||
1407 | {sources["storage"]["schema"]} |
||
1408 | .{sources["storage"]["table"]} |
||
1409 | WHERE carrier = 'home_battery' |
||
1410 | AND scenario = '{scenario}' |
||
1411 | """ |
||
1412 | |||
1413 | home_batteries_df = db.select_dataframe(sql, index_col="bus_id") |
||
1414 | |||
1415 | home_batteries_df = home_batteries_df.assign( |
||
1416 | capacity=home_batteries_df.p_nom * cbat_pbat_ratio |
||
1417 | ) |
||
1418 | |||
1419 | sql = f""" |
||
1420 | SELECT * FROM |
||
1421 | {targets["home_batteries"]["schema"]} |
||
1422 | .{targets["home_batteries"]["table"]} |
||
1423 | WHERE scenario = '{scenario}' |
||
1424 | """ |
||
1425 | |||
1426 | home_batteries_buildings_df = db.select_dataframe( |
||
1427 | sql, index_col="index" |
||
1428 | ) |
||
1429 | |||
1430 | df = ( |
||
1431 | home_batteries_buildings_df[["bus_id", "p_nom", "capacity"]] |
||
1432 | .groupby("bus_id") |
||
1433 | .sum() |
||
1434 | ) |
||
1435 | |||
1436 | assert (home_batteries_df.round(6) == df.round(6)).all().all() |
||
1437 | |||
1438 | |||
1439 | def sanity_check_gas_buses(scn): |
||
1440 | """Execute sanity checks for the gas buses in Germany |
||
1441 | |||
1442 | Returns print statements as sanity checks for the CH4, H2_grid and |
||
1443 | H2_saltcavern buses. |
||
1444 | * For all of them, it is checked if they are not isolated. |
||
1445 | * For the grid buses, the deviation is calculated between the |
||
1446 | number of gas grid buses in the database and the original |
||
1447 | Scigrid_gas number of gas buses in Germany. |
||
1448 | |||
1449 | Parameters |
||
1450 | ---------- |
||
1451 | scn_name : str |
||
1452 | Name of the scenario |
||
1453 | |||
1454 | """ |
||
1455 | logger.info("BUSES") |
||
1456 | |||
1457 | # Are gas buses isolated? |
||
1458 | corresponding_carriers = { |
||
1459 | "eGon2035": { |
||
1460 | "CH4": "CH4", |
||
1461 | "H2_grid": "H2_feedin", |
||
1462 | "H2_saltcavern": "power_to_H2", |
||
1463 | }, |
||
1464 | "eGon100RE": { |
||
1465 | "CH4": "CH4", |
||
1466 | "H2_grid": "H2_retrofit", |
||
1467 | "H2_saltcavern": "H2_gridextension", |
||
1468 | }, |
||
1469 | } |
||
1470 | for key in corresponding_carriers[scn]: |
||
1471 | isolated_gas_buses = db.select_dataframe( |
||
1472 | f""" |
||
1473 | SELECT bus_id, carrier, country |
||
1474 | FROM grid.egon_etrago_bus |
||
1475 | WHERE scn_name = '{scn}' |
||
1476 | AND carrier = '{key}' |
||
1477 | AND country = 'DE' |
||
1478 | AND bus_id NOT IN |
||
1479 | (SELECT bus0 |
||
1480 | FROM grid.egon_etrago_link |
||
1481 | WHERE scn_name = '{scn}' |
||
1482 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
1483 | AND bus_id NOT IN |
||
1484 | (SELECT bus1 |
||
1485 | FROM grid.egon_etrago_link |
||
1486 | WHERE scn_name = '{scn}' |
||
1487 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
1488 | ; |
||
1489 | """, |
||
1490 | warning=False, |
||
1491 | ) |
||
1492 | if not isolated_gas_buses.empty: |
||
1493 | logger.info(f"Isolated {key} buses:") |
||
1494 | logger.info(isolated_gas_buses) |
||
1495 | |||
1496 | # Deviation of the gas grid buses number |
||
1497 | target_file = ( |
||
1498 | Path(".") / "datasets" / "gas_data" / "data" / "IGGIELGN_Nodes.csv" |
||
1499 | ) |
||
1500 | |||
1501 | Grid_buses_list = pd.read_csv( |
||
1502 | target_file, |
||
1503 | delimiter=";", |
||
1504 | decimal=".", |
||
1505 | usecols=["country_code"], |
||
1506 | ) |
||
1507 | |||
1508 | Grid_buses_list = Grid_buses_list[ |
||
1509 | Grid_buses_list["country_code"].str.match("DE") |
||
1510 | ] |
||
1511 | input_grid_buses = len(Grid_buses_list.index) |
||
1512 | |||
1513 | for carrier in ["CH4", "H2_grid"]: |
||
1514 | output_grid_buses_df = db.select_dataframe( |
||
1515 | f""" |
||
1516 | SELECT bus_id |
||
1517 | FROM grid.egon_etrago_bus |
||
1518 | WHERE scn_name = '{scn}' |
||
1519 | AND country = 'DE' |
||
1520 | AND carrier = '{carrier}'; |
||
1521 | """, |
||
1522 | warning=False, |
||
1523 | ) |
||
1524 | output_grid_buses = len(output_grid_buses_df.index) |
||
1525 | |||
1526 | e_grid_buses = ( |
||
1527 | round( |
||
1528 | (output_grid_buses - input_grid_buses) / input_grid_buses, |
||
1529 | 2, |
||
1530 | ) |
||
1531 | * 100 |
||
1532 | ) |
||
1533 | logger.info(f"Deviation {carrier} buses: {e_grid_buses} %") |
||
1534 | |||
1535 | |||
1536 | def sanity_check_CH4_stores(scn): |
||
1537 | """Execute sanity checks for the CH4 stores in Germany |
||
1538 | |||
1539 | Returns print statements as sanity checks for the CH4 stores |
||
1540 | capacity in Germany. The deviation is calculated between: |
||
1541 | * the sum of the capacities of the stores with carrier 'CH4' |
||
1542 | in the database (for one scenario) and |
||
1543 | * the sum of: |
||
1544 | * the capacity the gas grid allocated to CH4 (total capacity |
||
1545 | in eGon2035 and capacity reduced the share of the grid |
||
1546 | allocated to H2 in eGon100RE) |
||
1547 | * the total capacity of the CH4 stores in Germany (source: GIE) |
||
1548 | |||
1549 | Parameters |
||
1550 | ---------- |
||
1551 | scn_name : str |
||
1552 | Name of the scenario |
||
1553 | |||
1554 | """ |
||
1555 | output_CH4_stores = db.select_dataframe( |
||
1556 | f"""SELECT SUM(e_nom::numeric) as e_nom_germany |
||
1557 | FROM grid.egon_etrago_store |
||
1558 | WHERE scn_name = '{scn}' |
||
1559 | AND carrier = 'CH4' |
||
1560 | AND bus IN |
||
1561 | (SELECT bus_id |
||
1562 | FROM grid.egon_etrago_bus |
||
1563 | WHERE scn_name = '{scn}' |
||
1564 | AND country = 'DE' |
||
1565 | AND carrier = 'CH4'); |
||
1566 | """, |
||
1567 | warning=False, |
||
1568 | )["e_nom_germany"].values[0] |
||
1569 | |||
1570 | if scn == "eGon2035": |
||
1571 | grid_cap = 130000 |
||
1572 | elif scn == "eGon100RE": |
||
1573 | grid_cap = 13000 * ( |
||
1574 | 1 |
||
1575 | - get_sector_parameters("gas", "eGon100RE")[ |
||
1576 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
1577 | ] |
||
1578 | ) |
||
1579 | |||
1580 | stores_cap_D = 266424202 # MWh GIE https://www.gie.eu/transparency/databases/storage-database/ |
||
1581 | |||
1582 | input_CH4_stores = stores_cap_D + grid_cap |
||
1583 | |||
1584 | e_CH4_stores = ( |
||
1585 | round( |
||
1586 | (output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
||
1587 | 2, |
||
1588 | ) |
||
1589 | * 100 |
||
1590 | ) |
||
1591 | logger.info(f"Deviation CH4 stores: {e_CH4_stores} %") |
||
1592 | |||
1593 | |||
1594 | def sanity_check_H2_saltcavern_stores(scn): |
||
1595 | """Execute sanity checks for the H2 saltcavern stores in Germany |
||
1596 | |||
1597 | Returns print as sanity checks for the H2 saltcavern potential |
||
1598 | storage capacity in Germany. The deviation is calculated between: |
||
1599 | * the sum of the of the H2 saltcavern potential storage capacity |
||
1600 | (e_nom_max) in the database and |
||
1601 | * the sum of the H2 saltcavern potential storage capacity |
||
1602 | assumed to be the ratio of the areas of 500 m radius around |
||
1603 | substations in each german federal state and the estimated |
||
1604 | total hydrogen storage potential of the corresponding federal |
||
1605 | state (data from InSpEE-DS report). |
||
1606 | This test works also in test mode. |
||
1607 | |||
1608 | Parameters |
||
1609 | ---------- |
||
1610 | scn_name : str |
||
1611 | Name of the scenario |
||
1612 | |||
1613 | """ |
||
1614 | output_H2_stores = db.select_dataframe( |
||
1615 | f"""SELECT SUM(e_nom_max::numeric) as e_nom_max_germany |
||
1616 | FROM grid.egon_etrago_store |
||
1617 | WHERE scn_name = '{scn}' |
||
1618 | AND carrier = 'H2_underground' |
||
1619 | AND bus IN |
||
1620 | (SELECT bus_id |
||
1621 | FROM grid.egon_etrago_bus |
||
1622 | WHERE scn_name = '{scn}' |
||
1623 | AND country = 'DE' |
||
1624 | AND carrier = 'H2_saltcavern'); |
||
1625 | """, |
||
1626 | warning=False, |
||
1627 | )["e_nom_max_germany"].values[0] |
||
1628 | |||
1629 | storage_potentials = calculate_and_map_saltcavern_storage_potential() |
||
1630 | storage_potentials["storage_potential"] = ( |
||
1631 | storage_potentials["area_fraction"] * storage_potentials["potential"] |
||
1632 | ) |
||
1633 | input_H2_stores = sum(storage_potentials["storage_potential"].to_list()) |
||
1634 | |||
1635 | e_H2_stores = ( |
||
1636 | round( |
||
1637 | (output_H2_stores - input_H2_stores) / input_H2_stores, |
||
1638 | 2, |
||
1639 | ) |
||
1640 | * 100 |
||
1641 | ) |
||
1642 | logger.info(f"Deviation H2 saltcavern stores: {e_H2_stores} %") |
||
1643 | |||
1644 | |||
1645 | def sanity_check_gas_one_port(scn): |
||
1646 | """Check connections of gas one-port components |
||
1647 | |||
1648 | Verify that gas one-port component (loads, generators, stores) are |
||
1649 | all connected to a bus (of the right carrier) present in the data |
||
1650 | base. Return print statements if this is not the case. |
||
1651 | These sanity checks are not specific to Germany, they also include |
||
1652 | the neighbouring countries. |
||
1653 | |||
1654 | Parameters |
||
1655 | ---------- |
||
1656 | scn_name : str |
||
1657 | Name of the scenario |
||
1658 | |||
1659 | """ |
||
1660 | # Loads |
||
1661 | if scn == "eGon2035": |
||
1662 | ## CH4_for_industry Germany |
||
1663 | isolated_one_port_c = db.select_dataframe( |
||
1664 | f""" |
||
1665 | SELECT load_id, bus, carrier, scn_name |
||
1666 | FROM grid.egon_etrago_load |
||
1667 | WHERE scn_name = '{scn}' |
||
1668 | AND carrier = 'CH4_for_industry' |
||
1669 | AND bus NOT IN |
||
1670 | (SELECT bus_id |
||
1671 | FROM grid.egon_etrago_bus |
||
1672 | WHERE scn_name = '{scn}' |
||
1673 | AND country = 'DE' |
||
1674 | AND carrier = 'CH4') |
||
1675 | ; |
||
1676 | """, |
||
1677 | warning=False, |
||
1678 | ) |
||
1679 | if not isolated_one_port_c.empty: |
||
1680 | logger.info("Isolated loads:") |
||
1681 | logger.info(isolated_one_port_c) |
||
1682 | |||
1683 | ## CH4_for_industry abroad |
||
1684 | isolated_one_port_c = db.select_dataframe( |
||
1685 | f""" |
||
1686 | SELECT load_id, bus, carrier, scn_name |
||
1687 | FROM grid.egon_etrago_load |
||
1688 | WHERE scn_name = '{scn}' |
||
1689 | AND carrier = 'CH4' |
||
1690 | AND bus NOT IN |
||
1691 | (SELECT bus_id |
||
1692 | FROM grid.egon_etrago_bus |
||
1693 | WHERE scn_name = '{scn}' |
||
1694 | AND country != 'DE' |
||
1695 | AND carrier = 'CH4') |
||
1696 | ; |
||
1697 | """, |
||
1698 | warning=False, |
||
1699 | ) |
||
1700 | if not isolated_one_port_c.empty: |
||
1701 | logger.info("Isolated loads:") |
||
1702 | logger.info(isolated_one_port_c) |
||
1703 | |||
1704 | ## H2_for_industry |
||
1705 | isolated_one_port_c = db.select_dataframe( |
||
1706 | f""" |
||
1707 | SELECT load_id, bus, carrier, scn_name |
||
1708 | FROM grid.egon_etrago_load |
||
1709 | WHERE scn_name = '{scn}' |
||
1710 | AND carrier = 'H2_for_industry' |
||
1711 | AND (bus NOT IN |
||
1712 | (SELECT bus_id |
||
1713 | FROM grid.egon_etrago_bus |
||
1714 | WHERE scn_name = '{scn}' |
||
1715 | AND country = 'DE' |
||
1716 | AND carrier = 'H2_grid') |
||
1717 | AND bus NOT IN |
||
1718 | (SELECT bus_id |
||
1719 | FROM grid.egon_etrago_bus |
||
1720 | WHERE scn_name = '{scn}' |
||
1721 | AND country != 'DE' |
||
1722 | AND carrier = 'AC')) |
||
1723 | ; |
||
1724 | """, |
||
1725 | warning=False, |
||
1726 | ) |
||
1727 | if not isolated_one_port_c.empty: |
||
1728 | logger.info("Isolated loads:") |
||
1729 | logger.info(isolated_one_port_c) |
||
1730 | |||
1731 | elif scn == "eGon100RE": |
||
1732 | # Loads |
||
1733 | load_carriers = { |
||
1734 | "CH4_for_industry": "CH4", |
||
1735 | "H2_for_industry": "H2_grid", |
||
1736 | "CH4_system_boundary": "CH4", |
||
1737 | "H2_system_boundary": "H2_grid", |
||
1738 | } |
||
1739 | for key in load_carriers: |
||
1740 | isolated_one_port_c = db.select_dataframe( |
||
1741 | f""" |
||
1742 | SELECT load_id, bus, carrier, scn_name |
||
1743 | FROM grid.egon_etrago_load |
||
1744 | WHERE scn_name = '{scn}' |
||
1745 | AND carrier = '{key}' |
||
1746 | AND bus NOT IN |
||
1747 | (SELECT bus_id |
||
1748 | FROM grid.egon_etrago_bus |
||
1749 | WHERE scn_name = '{scn}' |
||
1750 | AND carrier = '{load_carriers[key]}') |
||
1751 | ; |
||
1752 | """, |
||
1753 | warning=False, |
||
1754 | ) |
||
1755 | if not isolated_one_port_c.empty: |
||
1756 | logger.info("Isolated loads:") |
||
1757 | logger.info(isolated_one_port_c) |
||
1758 | |||
1759 | # Stores |
||
1760 | ## CH4 and H2_underground |
||
1761 | corresponding_carriers = { |
||
1762 | "CH4": "CH4", |
||
1763 | "H2_saltcavern": "H2_underground", |
||
1764 | } |
||
1765 | for key in corresponding_carriers: |
||
1766 | isolated_one_port_c = db.select_dataframe( |
||
1767 | f""" |
||
1768 | SELECT store_id, bus, carrier, scn_name |
||
1769 | FROM grid.egon_etrago_store |
||
1770 | WHERE scn_name = '{scn}' |
||
1771 | AND carrier = '{corresponding_carriers[key]}' |
||
1772 | AND bus NOT IN |
||
1773 | (SELECT bus_id |
||
1774 | FROM grid.egon_etrago_bus |
||
1775 | WHERE scn_name = '{scn}' |
||
1776 | AND carrier = '{key}') |
||
1777 | AND bus NOT IN |
||
1778 | (SELECT bus_id |
||
1779 | FROM grid.egon_etrago_bus |
||
1780 | WHERE scn_name = '{scn}' |
||
1781 | AND carrier = 'H2_grid') |
||
1782 | ; |
||
1783 | """, |
||
1784 | warning=False, |
||
1785 | ) |
||
1786 | if not isolated_one_port_c.empty: |
||
1787 | logger.info("Isolated stores:") |
||
1788 | logger.info(isolated_one_port_c) |
||
1789 | |||
1790 | ## H2_overground |
||
1791 | isolated_one_port_c = db.select_dataframe( |
||
1792 | f""" |
||
1793 | SELECT store_id, bus, carrier, scn_name |
||
1794 | FROM grid.egon_etrago_store |
||
1795 | WHERE scn_name = '{scn}' |
||
1796 | AND carrier = 'H2_overground' |
||
1797 | AND bus NOT IN |
||
1798 | (SELECT bus_id |
||
1799 | FROM grid.egon_etrago_bus |
||
1800 | WHERE scn_name = '{scn}' |
||
1801 | AND carrier = 'H2_saltcavern') |
||
1802 | AND bus NOT IN |
||
1803 | (SELECT bus_id |
||
1804 | FROM grid.egon_etrago_bus |
||
1805 | WHERE scn_name = '{scn}' |
||
1806 | AND carrier = 'H2_grid') |
||
1807 | ; |
||
1808 | """, |
||
1809 | warning=False, |
||
1810 | ) |
||
1811 | if not isolated_one_port_c.empty: |
||
1812 | logger.info("Isolated stores:") |
||
1813 | logger.info(isolated_one_port_c) |
||
1814 | |||
1815 | # Generators |
||
1816 | isolated_one_port_c = db.select_dataframe( |
||
1817 | f""" |
||
1818 | SELECT generator_id, bus, carrier, scn_name |
||
1819 | FROM grid.egon_etrago_generator |
||
1820 | WHERE scn_name = '{scn}' |
||
1821 | AND carrier = 'CH4' |
||
1822 | AND bus NOT IN |
||
1823 | (SELECT bus_id |
||
1824 | FROM grid.egon_etrago_bus |
||
1825 | WHERE scn_name = '{scn}' |
||
1826 | AND carrier = 'CH4'); |
||
1827 | ; |
||
1828 | """, |
||
1829 | warning=False, |
||
1830 | ) |
||
1831 | if not isolated_one_port_c.empty: |
||
1832 | logger.info("Isolated generators:") |
||
1833 | logger.info(isolated_one_port_c) |
||
1834 | |||
1835 | |||
1836 | def sanity_check_CH4_grid(scn): |
||
1837 | """Execute sanity checks for the gas grid capacity in Germany |
||
1838 | |||
1839 | Returns print statements as sanity checks for the CH4 links |
||
1840 | (pipelines) in Germany. The deviation is calculated between |
||
1841 | the sum of the power (p_nom) of all the CH4 pipelines in Germany |
||
1842 | for one scenario in the database and the sum of the powers of the |
||
1843 | imported pipelines. |
||
1844 | In eGon100RE, the sum is reduced by the share of the grid that is |
||
1845 | allocated to hydrogen (share calculated by PyPSA-eur-sec). |
||
1846 | This test works also in test mode. |
||
1847 | |||
1848 | Parameters |
||
1849 | ---------- |
||
1850 | scn_name : str |
||
1851 | Name of the scenario |
||
1852 | |||
1853 | Returns |
||
1854 | ------- |
||
1855 | scn_name : float |
||
1856 | Sum of the power (p_nom) of all the pipelines in Germany |
||
1857 | |||
1858 | """ |
||
1859 | grid_carrier = "CH4" |
||
1860 | output_gas_grid = db.select_dataframe( |
||
1861 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
1862 | FROM grid.egon_etrago_link |
||
1863 | WHERE scn_name = '{scn}' |
||
1864 | AND carrier = '{grid_carrier}' |
||
1865 | AND bus0 IN |
||
1866 | (SELECT bus_id |
||
1867 | FROM grid.egon_etrago_bus |
||
1868 | WHERE scn_name = '{scn}' |
||
1869 | AND country = 'DE' |
||
1870 | AND carrier = '{grid_carrier}') |
||
1871 | AND bus1 IN |
||
1872 | (SELECT bus_id |
||
1873 | FROM grid.egon_etrago_bus |
||
1874 | WHERE scn_name = '{scn}' |
||
1875 | AND country = 'DE' |
||
1876 | AND carrier = '{grid_carrier}') |
||
1877 | ; |
||
1878 | """, |
||
1879 | warning=False, |
||
1880 | )["p_nom_germany"].values[0] |
||
1881 | |||
1882 | gas_nodes_list = define_gas_nodes_list() |
||
1883 | abroad_gas_nodes_list = define_gas_buses_abroad() |
||
1884 | gas_grid = define_gas_pipeline_list(gas_nodes_list, abroad_gas_nodes_list) |
||
1885 | gas_grid_germany = gas_grid[ |
||
1886 | (gas_grid["country_0"] == "DE") & (gas_grid["country_1"] == "DE") |
||
1887 | ] |
||
1888 | p_nom_total = sum(gas_grid_germany["p_nom"].to_list()) |
||
1889 | |||
1890 | if scn == "eGon2035": |
||
1891 | input_gas_grid = p_nom_total |
||
1892 | if scn == "eGon100RE": |
||
1893 | input_gas_grid = p_nom_total * ( |
||
1894 | 1 |
||
1895 | - get_sector_parameters("gas", "eGon100RE")[ |
||
1896 | "retrofitted_CH4pipeline-to-H2pipeline_share" |
||
1897 | ] |
||
1898 | ) |
||
1899 | |||
1900 | e_gas_grid = ( |
||
1901 | round( |
||
1902 | (output_gas_grid - input_gas_grid) / input_gas_grid, |
||
1903 | 2, |
||
1904 | ) |
||
1905 | * 100 |
||
1906 | ) |
||
1907 | logger.info(f"Deviation of the capacity of the CH4 grid: {e_gas_grid} %") |
||
1908 | |||
1909 | return p_nom_total |
||
1910 | |||
1911 | |||
1912 | def sanity_check_gas_links(scn): |
||
1913 | """Check connections of gas links |
||
1914 | |||
1915 | Verify that gas links are all connected to buses present in the data |
||
1916 | base. Return print statements if this is not the case. |
||
1917 | This sanity check is not specific to Germany, it also includes |
||
1918 | the neighbouring countries. |
||
1919 | |||
1920 | Parameters |
||
1921 | ---------- |
||
1922 | scn_name : str |
||
1923 | Name of the scenario |
||
1924 | |||
1925 | """ |
||
1926 | carriers = [ |
||
1927 | "central_gas_boiler", |
||
1928 | "central_gas_CHP", |
||
1929 | "central_gas_CHP_heat", |
||
1930 | "CH4", |
||
1931 | "CH4_to_H2", |
||
1932 | "H2_feedin", |
||
1933 | "H2_grid_extension", |
||
1934 | "H2_retrofit", |
||
1935 | "H2_to_CH4", |
||
1936 | "H2_to_power", |
||
1937 | "industrial_gas_CHP", |
||
1938 | "OCGT", |
||
1939 | "power_to_H2", |
||
1940 | "urban_central_gas_CHP", |
||
1941 | "urban_central_gas_CHP_CC", |
||
1942 | ] |
||
1943 | for c in carriers: |
||
1944 | link_with_missing_bus = db.select_dataframe( |
||
1945 | f""" |
||
1946 | SELECT link_id, bus0, bus1, carrier, scn_name |
||
1947 | FROM grid.egon_etrago_link |
||
1948 | WHERE scn_name = '{scn}' |
||
1949 | AND carrier = '{c}' |
||
1950 | AND (bus0 NOT IN |
||
1951 | (SELECT bus_id |
||
1952 | FROM grid.egon_etrago_bus |
||
1953 | WHERE scn_name = '{scn}') |
||
1954 | OR bus1 NOT IN |
||
1955 | (SELECT bus_id |
||
1956 | FROM grid.egon_etrago_bus |
||
1957 | WHERE scn_name = '{scn}')) |
||
1958 | ; |
||
1959 | """, |
||
1960 | warning=False, |
||
1961 | ) |
||
1962 | if not link_with_missing_bus.empty: |
||
1963 | logger.info("Links with missing bus:") |
||
1964 | logger.info(link_with_missing_bus) |
||
1965 | |||
1966 | |||
1967 | def sanity_check_gas_generators_DE(scn): |
||
1968 | """Execute sanity checks for the gas production capacity in Germany |
||
1969 | |||
1970 | The deviation is calculated between the sums of the nominal powers |
||
1971 | of the gas generators in the database and of the ones in the sources |
||
1972 | documents: |
||
1973 | * Biogaspartner Einspeiseatlas Deutschland from the dena for the |
||
1974 | biogas and Productions from the SciGRID_gas data for the natural |
||
1975 | gas for eGon2035 |
||
1976 | * Biogaspartner Einspeiseatlas Deutschland from the dena for the |
||
1977 | biogas only for eGon10RE |
||
1978 | |||
1979 | Parameters |
||
1980 | ---------- |
||
1981 | scn_name : str |
||
1982 | Name of the scenario |
||
1983 | |||
1984 | """ |
||
1985 | |||
1986 | logger.info("GENERATORS") |
||
1987 | carrier_generator = "CH4" |
||
1988 | |||
1989 | output_gas_generation = db.select_dataframe( |
||
1990 | f"""SELECT SUM(p_nom::numeric) as p_nom_germany |
||
1991 | FROM grid.egon_etrago_generator |
||
1992 | WHERE scn_name = '{scn}' |
||
1993 | AND carrier = '{carrier_generator}' |
||
1994 | AND bus IN |
||
1995 | (SELECT bus_id |
||
1996 | FROM grid.egon_etrago_bus |
||
1997 | WHERE scn_name = '{scn}' |
||
1998 | AND country = 'DE' |
||
1999 | AND carrier = '{carrier_generator}'); |
||
2000 | """, |
||
2001 | warning=False, |
||
2002 | )["p_nom_germany"].values[0] |
||
2003 | |||
2004 | basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx" |
||
2005 | target_file = Path(".") / "datasets" / "gas_data" / basename |
||
2006 | |||
2007 | conversion_factor_b = 0.010830 # m^3/h to MWh/h |
||
2008 | p_biogas = ( |
||
2009 | pd.read_excel( |
||
2010 | target_file, |
||
2011 | usecols=["Einspeisung Biomethan [(N*m^3)/h)]"], |
||
2012 | )["Einspeisung Biomethan [(N*m^3)/h)]"].sum() |
||
2013 | * conversion_factor_b |
||
2014 | ) |
||
2015 | |||
2016 | if scn == "eGon2035": |
||
2017 | target_file = ( |
||
2018 | Path(".") |
||
2019 | / "datasets" |
||
2020 | / "gas_data" |
||
2021 | / "data" |
||
2022 | / "IGGIELGN_Productions.csv" |
||
2023 | ) |
||
2024 | |||
2025 | NG_generators_list = pd.read_csv( |
||
2026 | target_file, |
||
2027 | delimiter=";", |
||
2028 | decimal=".", |
||
2029 | usecols=["country_code", "param"], |
||
2030 | ) |
||
2031 | |||
2032 | NG_generators_list = NG_generators_list[ |
||
2033 | NG_generators_list["country_code"].str.match("DE") |
||
2034 | ] |
||
2035 | |||
2036 | p_NG = 0 |
||
2037 | for index, row in NG_generators_list.iterrows(): |
||
2038 | param = ast.literal_eval(row["param"]) |
||
2039 | p_NG = p_NG + param["max_supply_M_m3_per_d"] |
||
2040 | conversion_factor = 437.5 # MCM/day to MWh/h |
||
2041 | p_NG = p_NG * conversion_factor |
||
2042 | |||
2043 | input_gas_generation = p_NG + p_biogas |
||
2044 | |||
2045 | elif scn == "eGon100RE": |
||
2046 | input_gas_generation = p_biogas |
||
2047 | |||
2048 | e_generation = ( |
||
2049 | round( |
||
2050 | (output_gas_generation - input_gas_generation) |
||
2051 | / input_gas_generation, |
||
2052 | 2, |
||
2053 | ) |
||
2054 | * 100 |
||
2055 | ) |
||
2056 | logger.info(f"Deviation {carrier_generator} generation: {e_generation} %") |
||
2057 | |||
2058 | |||
2059 | def etrago_eGon2035_gas_DE(): |
||
2060 | """Execute basic sanity checks for the gas sector in eGon2035 |
||
2061 | |||
2062 | Returns print statements as sanity checks for the gas sector in |
||
2063 | the eGon2035 scenario for the following components in Germany: |
||
2064 | * Buses: with the function :py:func:`sanity_check_gas_buses` |
||
2065 | * Loads: for the carriers 'CH4_for_industry' and 'H2_for_industry' |
||
2066 | the deviation is calculated between the sum of the loads in the |
||
2067 | database and the sum the loads in the sources document |
||
2068 | (opendata.ffe database) |
||
2069 | * Generators: with the function :py:func:`sanity_check_gas_generators_DE` |
||
2070 | * Stores: deviations for stores with following carriers are |
||
2071 | calculated: |
||
2072 | * 'CH4': with the function :py:func:`sanity_check_CH4_stores` |
||
2073 | * 'H2_underground': with the function :py:func:`sanity_check_H2_saltcavern_stores` |
||
2074 | * One-port components (loads, generators, stores): verification |
||
2075 | that they are all connected to a bus present in the database |
||
2076 | with the function :py:func:`sanity_check_gas_one_port` |
||
2077 | * Links: verification: |
||
2078 | * that the gas links are all connected to buses present in |
||
2079 | the database with the function :py:func:`sanity_check_gas_links` |
||
2080 | * of the capacity of the gas grid with the function |
||
2081 | :py:func:`sanity_check_CH4_grid` |
||
2082 | |||
2083 | """ |
||
2084 | scn = "eGon2035" |
||
2085 | |||
2086 | if TESTMODE_OFF: |
||
2087 | logger.info(f"Gas sanity checks for scenario {scn}") |
||
2088 | |||
2089 | # Buses |
||
2090 | sanity_check_gas_buses(scn) |
||
2091 | |||
2092 | # Loads |
||
2093 | logger.info("LOADS") |
||
2094 | |||
2095 | path = Path(".") / "datasets" / "gas_data" / "demand" |
||
2096 | corr_file = path / "region_corr.json" |
||
2097 | df_corr = pd.read_json(corr_file) |
||
2098 | df_corr = df_corr.loc[:, ["id_region", "name_short"]] |
||
2099 | df_corr.set_index("id_region", inplace=True) |
||
2100 | |||
2101 | for carrier in ["CH4_for_industry", "H2_for_industry"]: |
||
2102 | |||
2103 | output_gas_demand = db.select_dataframe( |
||
2104 | f"""SELECT (SUM( |
||
2105 | (SELECT SUM(p) |
||
2106 | FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
2107 | FROM grid.egon_etrago_load a |
||
2108 | JOIN grid.egon_etrago_load_timeseries b |
||
2109 | ON (a.load_id = b.load_id) |
||
2110 | JOIN grid.egon_etrago_bus c |
||
2111 | ON (a.bus=c.bus_id) |
||
2112 | AND b.scn_name = '{scn}' |
||
2113 | AND a.scn_name = '{scn}' |
||
2114 | AND c.scn_name = '{scn}' |
||
2115 | AND c.country = 'DE' |
||
2116 | AND a.carrier = '{carrier}'; |
||
2117 | """, |
||
2118 | warning=False, |
||
2119 | )["load_twh"].values[0] |
||
2120 | |||
2121 | input_gas_demand = pd.read_json( |
||
2122 | path / (carrier + "_eGon2035.json") |
||
2123 | ) |
||
2124 | input_gas_demand = input_gas_demand.loc[:, ["id_region", "value"]] |
||
2125 | input_gas_demand.set_index("id_region", inplace=True) |
||
2126 | input_gas_demand = pd.concat( |
||
2127 | [input_gas_demand, df_corr], axis=1, join="inner" |
||
2128 | ) |
||
2129 | input_gas_demand["NUTS0"] = (input_gas_demand["name_short"].str)[ |
||
2130 | 0:2 |
||
2131 | ] |
||
2132 | input_gas_demand = input_gas_demand[ |
||
2133 | input_gas_demand["NUTS0"].str.match("DE") |
||
2134 | ] |
||
2135 | input_gas_demand = sum(input_gas_demand.value.to_list()) / 1000000 |
||
2136 | |||
2137 | e_demand = ( |
||
2138 | round( |
||
2139 | (output_gas_demand - input_gas_demand) / input_gas_demand, |
||
2140 | 2, |
||
2141 | ) |
||
2142 | * 100 |
||
2143 | ) |
||
2144 | logger.info(f"Deviation {carrier}: {e_demand} %") |
||
2145 | |||
2146 | # Generators |
||
2147 | sanity_check_gas_generators_DE(scn) |
||
2148 | |||
2149 | # Stores |
||
2150 | logger.info("STORES") |
||
2151 | sanity_check_CH4_stores(scn) |
||
2152 | sanity_check_H2_saltcavern_stores(scn) |
||
2153 | |||
2154 | # One-port components |
||
2155 | sanity_check_gas_one_port(scn) |
||
2156 | |||
2157 | # Links |
||
2158 | logger.info("LINKS") |
||
2159 | sanity_check_CH4_grid(scn) |
||
2160 | sanity_check_gas_links(scn) |
||
2161 | |||
2162 | else: |
||
2163 | print("Testmode is on, skipping sanity check.") |
||
2164 | |||
2165 | |||
2166 | def etrago_eGon2035_gas_abroad(): |
||
2167 | """Execute basic sanity checks for the gas sector in eGon2035 abroad |
||
2168 | |||
2169 | Returns print statements as sanity checks for the gas sector in |
||
2170 | the eGon2035 scenario for the following components in Germany: |
||
2171 | * Buses |
||
2172 | * Loads: for the carriers 'CH4' and 'H2_for_industry' |
||
2173 | the deviation is calculated between the sum of the loads in the |
||
2174 | database and the sum in the sources document (TYNDP) |
||
2175 | * Generators: the deviation is calculated between the sums of the |
||
2176 | nominal powers of the methane generators abroad in the database |
||
2177 | and of the ones in the sources document (TYNDP) |
||
2178 | * Stores: the deviation for methane stores abroad is calculated |
||
2179 | between the sum of the capacities in the data base and the one |
||
2180 | of the source document (SciGRID_gas data) |
||
2181 | * Links: verification of the capacity of the crossbordering gas |
||
2182 | grid pipelines. |
||
2183 | |||
2184 | """ |
||
2185 | scn = "eGon2035" |
||
2186 | |||
2187 | if TESTMODE_OFF: |
||
2188 | logger.info(f"Gas sanity checks abroad for scenario {scn}") |
||
2189 | |||
2190 | # Buses |
||
2191 | logger.info("BUSES") |
||
2192 | |||
2193 | # Are gas buses isolated? |
||
2194 | corresponding_carriers = { |
||
2195 | "eGon2035": { |
||
2196 | "CH4": "CH4", |
||
2197 | }, |
||
2198 | # "eGon100RE": { |
||
2199 | # "CH4": "CH4", |
||
2200 | # "H2_grid": "H2_retrofit", |
||
2201 | # } |
||
2202 | } |
||
2203 | for key in corresponding_carriers[scn]: |
||
2204 | isolated_gas_buses_abroad = db.select_dataframe( |
||
2205 | f""" |
||
2206 | SELECT bus_id, carrier, country |
||
2207 | FROM grid.egon_etrago_bus |
||
2208 | WHERE scn_name = '{scn}' |
||
2209 | AND carrier = '{key}' |
||
2210 | AND country != 'DE' |
||
2211 | AND bus_id NOT IN |
||
2212 | (SELECT bus0 |
||
2213 | FROM grid.egon_etrago_link |
||
2214 | WHERE scn_name = '{scn}' |
||
2215 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
2216 | AND bus_id NOT IN |
||
2217 | (SELECT bus1 |
||
2218 | FROM grid.egon_etrago_link |
||
2219 | WHERE scn_name = '{scn}' |
||
2220 | AND carrier = '{corresponding_carriers[scn][key]}') |
||
2221 | ; |
||
2222 | """, |
||
2223 | warning=False, |
||
2224 | ) |
||
2225 | if not isolated_gas_buses_abroad.empty: |
||
2226 | logger.info(f"Isolated {key} buses abroad:") |
||
2227 | logger.info(isolated_gas_buses_abroad) |
||
2228 | |||
2229 | # Loads |
||
2230 | logger.info("LOADS") |
||
2231 | |||
2232 | ( |
||
2233 | Norway_global_demand_1y, |
||
2234 | normalized_ch4_demandTS, |
||
2235 | ) = import_ch4_demandTS() |
||
2236 | input_CH4_demand_abroad = calc_global_ch4_demand( |
||
2237 | Norway_global_demand_1y |
||
2238 | ) |
||
2239 | input_CH4_demand = input_CH4_demand_abroad["GlobD_2035"].sum() |
||
2240 | |||
2241 | ## CH4 |
||
2242 | output_CH4_demand = db.select_dataframe( |
||
2243 | f"""SELECT (SUM( |
||
2244 | (SELECT SUM(p) |
||
2245 | FROM UNNEST(b.p_set) p)))::numeric as load_mwh |
||
2246 | FROM grid.egon_etrago_load a |
||
2247 | JOIN grid.egon_etrago_load_timeseries b |
||
2248 | ON (a.load_id = b.load_id) |
||
2249 | JOIN grid.egon_etrago_bus c |
||
2250 | ON (a.bus=c.bus_id) |
||
2251 | AND b.scn_name = '{scn}' |
||
2252 | AND a.scn_name = '{scn}' |
||
2253 | AND c.scn_name = '{scn}' |
||
2254 | AND c.country != 'DE' |
||
2255 | AND a.carrier = 'CH4'; |
||
2256 | """, |
||
2257 | warning=False, |
||
2258 | )["load_mwh"].values[0] |
||
2259 | |||
2260 | e_demand_CH4 = ( |
||
2261 | round( |
||
2262 | (output_CH4_demand - input_CH4_demand) / input_CH4_demand, |
||
2263 | 2, |
||
2264 | ) |
||
2265 | * 100 |
||
2266 | ) |
||
2267 | logger.info(f"Deviation CH4 load: {e_demand_CH4} %") |
||
2268 | |||
2269 | ## H2_for_industry |
||
2270 | input_power_to_h2_demand_abroad = calc_global_power_to_h2_demand() |
||
2271 | input_H2_demand = input_power_to_h2_demand_abroad["GlobD_2035"].sum() |
||
2272 | |||
2273 | output_H2_demand = db.select_dataframe( |
||
2274 | f"""SELECT SUM(p_set::numeric) as p_set_abroad |
||
2275 | FROM grid.egon_etrago_load |
||
2276 | WHERE scn_name = '{scn}' |
||
2277 | AND carrier = 'H2_for_industry' |
||
2278 | AND bus IN |
||
2279 | (SELECT bus_id |
||
2280 | FROM grid.egon_etrago_bus |
||
2281 | WHERE scn_name = '{scn}' |
||
2282 | AND country != 'DE' |
||
2283 | AND carrier = 'AC'); |
||
2284 | """, |
||
2285 | warning=False, |
||
2286 | )["p_set_abroad"].values[0] |
||
2287 | |||
2288 | e_demand_H2 = ( |
||
2289 | round( |
||
2290 | (output_H2_demand - input_H2_demand) / input_H2_demand, |
||
2291 | 2, |
||
2292 | ) |
||
2293 | * 100 |
||
2294 | ) |
||
2295 | logger.info(f"Deviation H2_for_industry load: {e_demand_H2} %") |
||
2296 | |||
2297 | # Generators |
||
2298 | logger.info("GENERATORS ") |
||
2299 | CH4_gen = calc_capacities() |
||
2300 | input_CH4_gen = CH4_gen["cap_2035"].sum() |
||
2301 | |||
2302 | output_CH4_gen = db.select_dataframe( |
||
2303 | f"""SELECT SUM(p_nom::numeric) as p_nom_abroad |
||
2304 | FROM grid.egon_etrago_generator |
||
2305 | WHERE scn_name = '{scn}' |
||
2306 | AND carrier = 'CH4' |
||
2307 | AND bus IN |
||
2308 | (SELECT bus_id |
||
2309 | FROM grid.egon_etrago_bus |
||
2310 | WHERE scn_name = '{scn}' |
||
2311 | AND country != 'DE' |
||
2312 | AND carrier = 'CH4'); |
||
2313 | """, |
||
2314 | warning=False, |
||
2315 | )["p_nom_abroad"].values[0] |
||
2316 | |||
2317 | e_gen = ( |
||
2318 | round( |
||
2319 | (output_CH4_gen - input_CH4_gen) / input_CH4_gen, |
||
2320 | 2, |
||
2321 | ) |
||
2322 | * 100 |
||
2323 | ) |
||
2324 | logger.info(f"Deviation CH4 generators: {e_gen} %") |
||
2325 | |||
2326 | # Stores |
||
2327 | logger.info("STORES") |
||
2328 | ch4_input_capacities = calc_ch4_storage_capacities() |
||
2329 | input_CH4_stores = ch4_input_capacities["e_nom"].sum() |
||
2330 | |||
2331 | output_CH4_stores = db.select_dataframe( |
||
2332 | f"""SELECT SUM(e_nom::numeric) as e_nom_abroad |
||
2333 | FROM grid.egon_etrago_store |
||
2334 | WHERE scn_name = '{scn}' |
||
2335 | AND carrier = 'CH4' |
||
2336 | AND bus IN |
||
2337 | (SELECT bus_id |
||
2338 | FROM grid.egon_etrago_bus |
||
2339 | WHERE scn_name = '{scn}' |
||
2340 | AND country != 'DE' |
||
2341 | AND carrier = 'CH4'); |
||
2342 | """, |
||
2343 | warning=False, |
||
2344 | )["e_nom_abroad"].values[0] |
||
2345 | |||
2346 | e_stores = ( |
||
2347 | round( |
||
2348 | (output_CH4_stores - input_CH4_stores) / input_CH4_stores, |
||
2349 | 2, |
||
2350 | ) |
||
2351 | * 100 |
||
2352 | ) |
||
2353 | logger.info(f"Deviation CH4 stores: {e_stores} %") |
||
2354 | |||
2355 | # Links |
||
2356 | logger.info("LINKS") |
||
2357 | ch4_grid_input_capacities = calculate_ch4_grid_capacities() |
||
2358 | input_CH4_grid = ch4_grid_input_capacities["p_nom"].sum() |
||
2359 | |||
2360 | grid_carrier = "CH4" |
||
2361 | output_gas_grid = db.select_dataframe( |
||
2362 | f"""SELECT SUM(p_nom::numeric) as p_nom |
||
2363 | FROM grid.egon_etrago_link |
||
2364 | WHERE scn_name = '{scn}' |
||
2365 | AND carrier = '{grid_carrier}' |
||
2366 | AND (bus0 IN |
||
2367 | (SELECT bus_id |
||
2368 | FROM grid.egon_etrago_bus |
||
2369 | WHERE scn_name = '{scn}' |
||
2370 | AND country != 'DE' |
||
2371 | AND carrier = '{grid_carrier}') |
||
2372 | OR bus1 IN |
||
2373 | (SELECT bus_id |
||
2374 | FROM grid.egon_etrago_bus |
||
2375 | WHERE scn_name = '{scn}' |
||
2376 | AND country != 'DE' |
||
2377 | AND carrier = '{grid_carrier}')) |
||
2378 | ; |
||
2379 | """, |
||
2380 | warning=False, |
||
2381 | )["p_nom"].values[0] |
||
2382 | |||
2383 | e_gas_grid = ( |
||
2384 | round( |
||
2385 | (output_gas_grid - input_CH4_grid) / input_CH4_grid, |
||
2386 | 2, |
||
2387 | ) |
||
2388 | * 100 |
||
2389 | ) |
||
2390 | logger.info( |
||
2391 | f"Deviation of the capacity of the crossbordering CH4 grid: {e_gas_grid} %" |
||
2392 | ) |
||
2393 | |||
2394 | else: |
||
2395 | print("Testmode is on, skipping sanity check.") |
||
2396 | |||
2397 | |||
2398 | def etrago_eGon100RE_gas_DE(): |
||
2399 | """Execute basic sanity checks for the gas sector in eGon100RE |
||
2400 | |||
2401 | Returns print statements as sanity checks for the gas sector in |
||
2402 | the eGon100RE scenario for the following components in Germany: |
||
2403 | * Buses: with the function :py:func:`sanity_check_gas_buses` |
||
2404 | * Loads: for the carriers 'CH4_for_industry' and 'H2_for_industry' |
||
2405 | the deviation is calculated between the sum of the loads in the |
||
2406 | database and the loads calcultaed by p-e-s |
||
2407 | * Generators: with the function :py:func:`sanity_check_gas_generators_DE` |
||
2408 | * Stores: deviations for stores with following carriers are |
||
2409 | calculated: |
||
2410 | * 'CH4': with the function :py:func:`sanity_check_CH4_stores` |
||
2411 | * 'H2_underground': with the function :py:func:`sanity_check_H2_saltcavern_stores` |
||
2412 | * 'H2': the deviation is calculated between the sum of the |
||
2413 | capacities of the stores with carrier 'H2' in the database |
||
2414 | and the sum of the capacity the gas grid allocated to H2 |
||
2415 | * One-port components (loads, generators, stores): verification |
||
2416 | that they are all connected to a bus present in the database |
||
2417 | with the function :py:func:`sanity_check_gas_one_port` |
||
2418 | * Links: verification: |
||
2419 | * that the gas links are all connected to buses present in |
||
2420 | the data base with the function :py:func:`sanity_check_gas_links` |
||
2421 | * of the capacity of the gas grid with the function |
||
2422 | :py:func:`sanity_check_CH4_grid` |
||
2423 | |||
2424 | """ |
||
2425 | scn = "eGon100RE" |
||
2426 | |||
2427 | if TESTMODE_OFF: |
||
2428 | logger.info(f"Gas sanity checks for scenario {scn}") |
||
2429 | |||
2430 | # Buses |
||
2431 | sanity_check_gas_buses(scn) |
||
2432 | |||
2433 | # Loads |
||
2434 | logger.info("LOADS") |
||
2435 | |||
2436 | H2_d, CH4_d = calculate_total_demand_100RE() |
||
2437 | |||
2438 | for carrier, total_ind_gas_d in zip( |
||
2439 | ["H2_for_industry", "CH4_for_industry"], [H2_d, CH4_d] |
||
2440 | ): |
||
2441 | |||
2442 | output_gas_demand = db.select_dataframe( |
||
2443 | f"""SELECT (SUM( |
||
2444 | (SELECT SUM(p) |
||
2445 | FROM UNNEST(b.p_set) p)))::numeric as load |
||
2446 | FROM grid.egon_etrago_load a |
||
2447 | JOIN grid.egon_etrago_load_timeseries b |
||
2448 | ON (a.load_id = b.load_id) |
||
2449 | JOIN grid.egon_etrago_bus c |
||
2450 | ON (a.bus=c.bus_id) |
||
2451 | AND b.scn_name = '{scn}' |
||
2452 | AND a.scn_name = '{scn}' |
||
2453 | AND c.scn_name = '{scn}' |
||
2454 | AND c.country = 'DE' |
||
2455 | AND a.carrier = '{carrier}'; |
||
2456 | """, |
||
2457 | warning=False, |
||
2458 | )["load"].values[0] |
||
2459 | |||
2460 | input_gas_demand = total_ind_gas_d |
||
2461 | |||
2462 | e_demand = ( |
||
2463 | round( |
||
2464 | (output_gas_demand - input_gas_demand) / input_gas_demand, |
||
2465 | 2, |
||
2466 | ) |
||
2467 | * 100 |
||
2468 | ) |
||
2469 | logger.info(f"Deviation {carrier}: {e_demand} %") |
||
2470 | |||
2471 | # Generators |
||
2472 | sanity_check_gas_generators_DE(scn) |
||
2473 | |||
2474 | # Stores |
||
2475 | logger.info("STORES") |
||
2476 | sanity_check_CH4_stores(scn) |
||
2477 | sanity_check_H2_saltcavern_stores(scn) |
||
2478 | # Check for H2 should be implemented when H2 stores are in dev |
||
2479 | |||
2480 | # One-port components |
||
2481 | sanity_check_gas_one_port(scn) |
||
2482 | |||
2483 | # Links |
||
2484 | logger.info("LINKS") |
||
2485 | sanity_check_CH4_grid(scn) |
||
2486 | sanity_check_gas_links(scn) |
||
2487 | |||
2488 | |||
2489 | def sanitycheck_dsm(): |
||
2490 | def df_from_series(s: pd.Series): |
||
2491 | return pd.DataFrame.from_dict(dict(zip(s.index, s.values))) |
||
2492 | |||
2493 | for scenario in ["eGon2035", "eGon100RE"]: |
||
2494 | # p_min and p_max |
||
2495 | sql = f""" |
||
2496 | SELECT link_id, bus0 as bus, p_nom FROM grid.egon_etrago_link |
||
2497 | WHERE carrier = 'dsm' |
||
2498 | AND scn_name = '{scenario}' |
||
2499 | ORDER BY link_id |
||
2500 | """ |
||
2501 | |||
2502 | meta_df = db.select_dataframe(sql, index_col="link_id") |
||
2503 | link_ids = str(meta_df.index.tolist())[1:-1] |
||
2504 | |||
2505 | sql = f""" |
||
2506 | SELECT link_id, p_min_pu, p_max_pu |
||
2507 | FROM grid.egon_etrago_link_timeseries |
||
2508 | WHERE scn_name = '{scenario}' |
||
2509 | AND link_id IN ({link_ids}) |
||
2510 | ORDER BY link_id |
||
2511 | """ |
||
2512 | |||
2513 | ts_df = db.select_dataframe(sql, index_col="link_id") |
||
2514 | |||
2515 | p_max_df = df_from_series(ts_df.p_max_pu).mul(meta_df.p_nom) |
||
2516 | p_min_df = df_from_series(ts_df.p_min_pu).mul(meta_df.p_nom) |
||
2517 | |||
2518 | p_max_df.columns = meta_df.bus.tolist() |
||
2519 | p_min_df.columns = meta_df.bus.tolist() |
||
2520 | |||
2521 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
2522 | |||
2523 | tables = [ |
||
2524 | "cts_loadcurves_dsm", |
||
2525 | "ind_osm_loadcurves_individual_dsm", |
||
2526 | "demandregio_ind_sites_dsm", |
||
2527 | "ind_sites_loadcurves_individual", |
||
2528 | ] |
||
2529 | |||
2530 | df_list = [] |
||
2531 | |||
2532 | for table in tables: |
||
2533 | target = targets[table] |
||
2534 | sql = f""" |
||
2535 | SELECT bus, p_min, p_max, e_max, e_min |
||
2536 | FROM {target["schema"]}.{target["table"]} |
||
2537 | WHERE scn_name = '{scenario}' |
||
2538 | ORDER BY bus |
||
2539 | """ |
||
2540 | |||
2541 | df_list.append(db.select_dataframe(sql)) |
||
2542 | |||
2543 | individual_ts_df = pd.concat(df_list, ignore_index=True) |
||
2544 | |||
2545 | groups = individual_ts_df[["bus"]].reset_index().groupby("bus").groups |
||
2546 | |||
2547 | individual_p_max_df = df_from_series(individual_ts_df.p_max) |
||
2548 | |||
2549 | individual_p_max_df = pd.DataFrame( |
||
2550 | [ |
||
2551 | individual_p_max_df[idxs].sum(axis=1) |
||
2552 | for idxs in groups.values() |
||
2553 | ], |
||
2554 | index=groups.keys(), |
||
2555 | ).T |
||
2556 | |||
2557 | individual_p_min_df = df_from_series(individual_ts_df.p_min) |
||
2558 | |||
2559 | individual_p_min_df = pd.DataFrame( |
||
2560 | [ |
||
2561 | individual_p_min_df[idxs].sum(axis=1) |
||
2562 | for idxs in groups.values() |
||
2563 | ], |
||
2564 | index=groups.keys(), |
||
2565 | ).T |
||
2566 | |||
2567 | # due to the fact that time series are clipped at zero (either |
||
2568 | # direction) there is a little difference between the sum of the |
||
2569 | # individual time series and the aggregated time series as the second |
||
2570 | # is generated independent of the others. This makes atol=1e-01 |
||
2571 | # necessary. |
||
2572 | atol = 1e-01 |
||
2573 | assert np.allclose(p_max_df, individual_p_max_df, atol=atol) |
||
2574 | assert np.allclose(p_min_df, individual_p_min_df, atol=atol) |
||
2575 | |||
2576 | # e_min and e_max |
||
2577 | sql = f""" |
||
2578 | SELECT store_id, bus, e_nom FROM grid.egon_etrago_store |
||
2579 | WHERE carrier = 'dsm' |
||
2580 | AND scn_name = '{scenario}' |
||
2581 | ORDER BY store_id |
||
2582 | """ |
||
2583 | |||
2584 | meta_df = db.select_dataframe(sql, index_col="store_id") |
||
2585 | store_ids = str(meta_df.index.tolist())[1:-1] |
||
2586 | |||
2587 | sql = f""" |
||
2588 | SELECT store_id, e_min_pu, e_max_pu |
||
2589 | FROM grid.egon_etrago_store_timeseries |
||
2590 | WHERE scn_name = '{scenario}' |
||
2591 | AND store_id IN ({store_ids}) |
||
2592 | ORDER BY store_id |
||
2593 | """ |
||
2594 | |||
2595 | ts_df = db.select_dataframe(sql, index_col="store_id") |
||
2596 | |||
2597 | e_max_df = df_from_series(ts_df.e_max_pu).mul(meta_df.e_nom) |
||
2598 | e_min_df = df_from_series(ts_df.e_min_pu).mul(meta_df.e_nom) |
||
2599 | |||
2600 | e_max_df.columns = meta_df.bus.tolist() |
||
2601 | e_min_df.columns = meta_df.bus.tolist() |
||
2602 | |||
2603 | individual_e_max_df = df_from_series(individual_ts_df.e_max) |
||
2604 | |||
2605 | individual_e_max_df = pd.DataFrame( |
||
2606 | [ |
||
2607 | individual_e_max_df[idxs].sum(axis=1) |
||
2608 | for idxs in groups.values() |
||
2609 | ], |
||
2610 | index=groups.keys(), |
||
2611 | ).T |
||
2612 | individual_e_min_df = df_from_series(individual_ts_df.e_min) |
||
2613 | |||
2614 | individual_e_min_df = pd.DataFrame( |
||
2615 | [ |
||
2616 | individual_e_min_df[idxs].sum(axis=1) |
||
2617 | for idxs in groups.values() |
||
2618 | ], |
||
2619 | index=groups.keys(), |
||
2620 | ).T |
||
2621 | |||
2622 | assert np.allclose(e_max_df, individual_e_max_df) |
||
2623 | assert np.allclose(e_min_df, individual_e_min_df) |
||
2624 |