1
|
|
|
# -*- coding: utf-8 -*-
|
2
|
|
|
"""
|
3
|
|
|
The central module containing code dealing with gas industrial demand
|
4
|
|
|
|
5
|
|
|
In this this module, the functions to import the industrial hydrogen and
|
6
|
|
|
methane demands from the opendata.ffe database and to insert them in
|
7
|
|
|
the database after modification are to be found.
|
8
|
|
|
|
9
|
|
|
"""
|
10
|
|
|
|
11
|
|
|
from pathlib import Path
|
12
|
|
|
import os
|
13
|
|
|
|
14
|
|
|
from geoalchemy2.types import Geometry
|
15
|
|
|
from shapely import wkt
|
16
|
|
|
import numpy as np
|
17
|
|
|
import pandas as pd
|
18
|
|
|
import requests
|
19
|
|
|
|
20
|
|
|
from egon.data import db
|
21
|
|
|
from egon.data.config import settings
|
22
|
|
|
from egon.data.datasets import Dataset
|
23
|
|
|
from egon.data.datasets.etrago_helpers import (
|
24
|
|
|
finalize_bus_insertion,
|
25
|
|
|
initialise_bus_insertion,
|
26
|
|
|
)
|
27
|
|
|
from egon.data.datasets.etrago_setup import link_geom_from_buses
|
28
|
|
|
from egon.data.datasets.pypsaeursec import read_network
|
29
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters
|
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class IndustrialGasDemand(Dataset):
|
33
|
|
|
"""
|
34
|
|
|
Download the industrial gas demands from the opendata.ffe database
|
35
|
|
|
|
36
|
|
|
Data are downloaded in the folder ./datasets/gas_data/demand using
|
37
|
|
|
the function :py:func:`download_industrial_gas_demand` and no dataset is resulting.
|
38
|
|
|
|
39
|
|
|
*Dependencies*
|
40
|
|
|
* :py:class:`ScenarioParameters <egon.data.datasets.scenario_parameters.ScenarioParameters>`
|
41
|
|
|
|
42
|
|
|
"""
|
43
|
|
|
|
44
|
|
|
#:
|
45
|
|
|
name: str = "IndustrialGasDemand"
|
46
|
|
|
#:
|
47
|
|
|
version: str = "0.0.4"
|
48
|
|
|
|
49
|
|
|
def __init__(self, dependencies):
|
50
|
|
|
super().__init__(
|
51
|
|
|
name=self.name,
|
52
|
|
|
version=self.version,
|
53
|
|
|
dependencies=dependencies,
|
54
|
|
|
tasks=(download_industrial_gas_demand),
|
55
|
|
|
)
|
56
|
|
|
|
57
|
|
|
|
58
|
|
|
class IndustrialGasDemandeGon2035(Dataset):
|
59
|
|
|
"""Insert the hourly resolved industrial gas demands into the database for eGon2035
|
60
|
|
|
|
61
|
|
|
Insert the industrial methane and hydrogen demands and their
|
62
|
|
|
associated time series for the scenario eGon2035 by executing the
|
63
|
|
|
function :py:func:`insert_industrial_gas_demand_egon2035`.
|
64
|
|
|
|
65
|
|
|
*Dependencies*
|
66
|
|
|
* :py:class:`GasAreaseGon2035 <egon.data.datasets.gas_areas.GasAreaseGon2035>`
|
67
|
|
|
* :py:class:`GasNodesAndPipes <egon.data.datasets.gas_grid.GasNodesAndPipes>`
|
68
|
|
|
* :py:class:`HydrogenBusEtrago <egon.data.datasets.hydrogen_etrago.HydrogenBusEtrago>`
|
69
|
|
|
* :py:class:`IndustrialGasDemand <IndustrialGasDemand>`
|
70
|
|
|
|
71
|
|
|
*Resulting tables*
|
72
|
|
|
* :py:class:`grid.egon_etrago_load <egon.data.datasets.etrago_setup.EgonPfHvLoad>` is extended
|
73
|
|
|
* :py:class:`grid.egon_etrago_load_timeseries <egon.data.datasets.etrago_setup.EgonPfHvLoadTimeseries>` is extended
|
74
|
|
|
|
75
|
|
|
"""
|
76
|
|
|
|
77
|
|
|
#:
|
78
|
|
|
name: str = "IndustrialGasDemandeGon2035"
|
79
|
|
|
#:
|
80
|
|
|
version: str = "0.0.3"
|
81
|
|
|
|
82
|
|
|
def __init__(self, dependencies):
|
83
|
|
|
super().__init__(
|
84
|
|
|
name=self.name,
|
85
|
|
|
version=self.version,
|
86
|
|
|
dependencies=dependencies,
|
87
|
|
|
tasks=(insert_industrial_gas_demand_egon2035),
|
88
|
|
|
)
|
89
|
|
|
|
90
|
|
|
|
91
|
|
|
class IndustrialGasDemandeGon100RE(Dataset):
|
92
|
|
|
"""Insert the hourly resolved industrial gas demands into the database for eGon100RE
|
93
|
|
|
|
94
|
|
|
Insert the industrial methane and hydrogen demands and their
|
95
|
|
|
associated time series for the scenario eGon100RE by executing the
|
96
|
|
|
function :py:func:`insert_industrial_gas_demand_egon100RE`.
|
97
|
|
|
|
98
|
|
|
*Dependencies*
|
99
|
|
|
* :py:class:`GasAreaseGon100RE <egon.data.datasets.gas_areas.GasAreaseGon100RE>`
|
100
|
|
|
* :py:class:`GasNodesAndPipes <egon.data.datasets.gas_grid.GasNodesAndPipes>`
|
101
|
|
|
* :py:class:`HydrogenBusEtrago <egon.data.datasets.hydrogen_etrago.HydrogenBusEtrago>`
|
102
|
|
|
* :py:class:`IndustrialGasDemand <IndustrialGasDemand>`
|
103
|
|
|
|
104
|
|
|
*Resulting tables*
|
105
|
|
|
* :py:class:`grid.egon_etrago_load <egon.data.datasets.etrago_setup.EgonPfHvLoad>` is extended
|
106
|
|
|
* :py:class:`grid.egon_etrago_load_timeseries <egon.data.datasets.etrago_setup.EgonPfHvLoadTimeseries>` is extended
|
107
|
|
|
|
108
|
|
|
"""
|
109
|
|
|
|
110
|
|
|
#:
|
111
|
|
|
name: str = "IndustrialGasDemandeGon100RE"
|
112
|
|
|
#:
|
113
|
|
|
version: str = "0.0.3"
|
114
|
|
|
|
115
|
|
|
def __init__(self, dependencies):
|
116
|
|
|
super().__init__(
|
117
|
|
|
name=self.name,
|
118
|
|
|
version=self.version,
|
119
|
|
|
dependencies=dependencies,
|
120
|
|
|
tasks=(insert_industrial_gas_demand_egon100RE),
|
121
|
|
|
)
|
122
|
|
|
|
123
|
|
|
|
124
|
|
|
def read_industrial_demand(scn_name, carrier):
|
125
|
|
|
"""Read the industrial gas demand data in Germany
|
126
|
|
|
|
127
|
|
|
This function reads the methane or hydrogen industrial demand time
|
128
|
|
|
series previously downloaded in :py:func:`download_industrial_gas_demand` for
|
129
|
|
|
the scenarios eGon2035 or eGon100RE.
|
130
|
|
|
|
131
|
|
|
Parameters
|
132
|
|
|
----------
|
133
|
|
|
scn_name : str
|
134
|
|
|
Name of the scenario
|
135
|
|
|
carrier : str
|
136
|
|
|
Name of the gas carrier
|
137
|
|
|
|
138
|
|
|
Returns
|
139
|
|
|
-------
|
140
|
|
|
df : pandas.DataFrame
|
141
|
|
|
Dataframe containing the industrial gas demand time series
|
142
|
|
|
|
143
|
|
|
"""
|
144
|
|
|
target_file = Path(".") / "datasets/gas_data/demand/region_corr.json"
|
145
|
|
|
df_corr = pd.read_json(target_file)
|
146
|
|
|
df_corr = df_corr.loc[:, ["id_region", "name_short"]]
|
147
|
|
|
df_corr.set_index("id_region", inplace=True)
|
148
|
|
|
|
149
|
|
|
target_file = (
|
150
|
|
|
Path(".")
|
151
|
|
|
/ "datasets/gas_data/demand"
|
152
|
|
|
/ (carrier + "_" + scn_name + ".json")
|
153
|
|
|
)
|
154
|
|
|
industrial_loads = pd.read_json(target_file)
|
155
|
|
|
industrial_loads = industrial_loads.loc[:, ["id_region", "values"]]
|
156
|
|
|
industrial_loads.set_index("id_region", inplace=True)
|
157
|
|
|
|
158
|
|
|
# Match the id_region to obtain the NUT3 region names
|
159
|
|
|
industrial_loads_list = pd.concat(
|
160
|
|
|
[industrial_loads, df_corr], axis=1, join="inner"
|
161
|
|
|
)
|
162
|
|
|
industrial_loads_list["NUTS0"] = (industrial_loads_list["name_short"].str)[
|
163
|
|
|
0:2
|
164
|
|
|
]
|
165
|
|
|
industrial_loads_list["NUTS1"] = (industrial_loads_list["name_short"].str)[
|
166
|
|
|
0:3
|
167
|
|
|
]
|
168
|
|
|
industrial_loads_list = industrial_loads_list[
|
169
|
|
|
industrial_loads_list["NUTS0"].str.match("DE")
|
170
|
|
|
]
|
171
|
|
|
|
172
|
|
|
# Cut data to federal state if in testmode
|
173
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"]
|
174
|
|
|
if boundary != "Everything":
|
175
|
|
|
map_states = {
|
176
|
|
|
"Baden-Württemberg": "DE1",
|
177
|
|
|
"Nordrhein-Westfalen": "DEA",
|
178
|
|
|
"Hessen": "DE7",
|
179
|
|
|
"Brandenburg": "DE4",
|
180
|
|
|
"Bremen": "DE5",
|
181
|
|
|
"Rheinland-Pfalz": "DEB",
|
182
|
|
|
"Sachsen-Anhalt": "DEE",
|
183
|
|
|
"Schleswig-Holstein": "DEF",
|
184
|
|
|
"Mecklenburg-Vorpommern": "DE8",
|
185
|
|
|
"Thüringen": "DEG",
|
186
|
|
|
"Niedersachsen": "DE9",
|
187
|
|
|
"Sachsen": "DED",
|
188
|
|
|
"Hamburg": "DE6",
|
189
|
|
|
"Saarland": "DEC",
|
190
|
|
|
"Berlin": "DE3",
|
191
|
|
|
"Bayern": "DE2",
|
192
|
|
|
}
|
193
|
|
|
|
194
|
|
|
industrial_loads_list = industrial_loads_list[
|
195
|
|
|
industrial_loads_list["NUTS1"].isin([map_states[boundary], np.nan])
|
196
|
|
|
]
|
197
|
|
|
|
198
|
|
|
industrial_loads_list = industrial_loads_list.rename(
|
199
|
|
|
columns={"name_short": "nuts3", "values": "p_set"}
|
200
|
|
|
)
|
201
|
|
|
industrial_loads_list = industrial_loads_list.set_index("nuts3")
|
202
|
|
|
|
203
|
|
|
# Add the centroid point to each NUTS3 area
|
204
|
|
|
sql_vg250 = """SELECT nuts as nuts3, geometry as geom
|
205
|
|
|
FROM boundaries.vg250_krs
|
206
|
|
|
WHERE gf = 4 ;"""
|
207
|
|
|
gdf_vg250 = db.select_geodataframe(sql_vg250, epsg=4326)
|
208
|
|
|
|
209
|
|
|
point = []
|
210
|
|
|
for index, row in gdf_vg250.iterrows():
|
211
|
|
|
point.append(wkt.loads(str(row["geom"])).centroid)
|
212
|
|
|
gdf_vg250["point"] = point
|
213
|
|
|
gdf_vg250 = gdf_vg250.set_index("nuts3")
|
214
|
|
|
gdf_vg250 = gdf_vg250.drop(columns=["geom"])
|
215
|
|
|
|
216
|
|
|
# Match the load to the NUTS3 points
|
217
|
|
|
industrial_loads_list = pd.concat(
|
218
|
|
|
[industrial_loads_list, gdf_vg250], axis=1, join="inner"
|
219
|
|
|
)
|
220
|
|
|
return industrial_loads_list.rename(
|
221
|
|
|
columns={"point": "geom"}
|
222
|
|
|
).set_geometry("geom", crs=4326)
|
223
|
|
|
|
224
|
|
|
|
225
|
|
|
def read_and_process_demand(
|
226
|
|
|
scn_name="eGon2035", carrier=None, grid_carrier=None
|
227
|
|
|
):
|
228
|
|
|
"""Assign the industrial gas demand in Germany to buses
|
229
|
|
|
|
230
|
|
|
This function prepares and returns the industrial gas demand time
|
231
|
|
|
series for CH4 or H2 and for a specific scenario by executing the
|
232
|
|
|
following steps:
|
233
|
|
|
|
234
|
|
|
* Read the industrial demand time series in Germany with the
|
235
|
|
|
fonction :py:func:`read_industrial_demand`
|
236
|
|
|
* Attribute the bus_id to which each load and it associated time
|
237
|
|
|
serie is associated by calling the function :py:func:`assign_gas_bus_id <egon.data.db.assign_gas_bus_id>`
|
238
|
|
|
from :py:mod:`egon.data.db <egon.data.db>`
|
239
|
|
|
* Adjust the columns: add "carrier" and remove useless ones
|
240
|
|
|
|
241
|
|
|
Parameters
|
242
|
|
|
----------
|
243
|
|
|
scn_name : str
|
244
|
|
|
Name of the scenario
|
245
|
|
|
carrier : str
|
246
|
|
|
Name of the carrier, the demand should hold
|
247
|
|
|
grid_carrier : str
|
248
|
|
|
Carrier name of the buses, the demand should be assigned to
|
249
|
|
|
|
250
|
|
|
Returns
|
251
|
|
|
-------
|
252
|
|
|
industrial_demand : pandas.DataFrame
|
253
|
|
|
Dataframe containing the industrial demand in Germany
|
254
|
|
|
|
255
|
|
|
"""
|
256
|
|
|
if grid_carrier is None:
|
257
|
|
|
grid_carrier = carrier
|
258
|
|
|
industrial_loads_list = read_industrial_demand(scn_name, carrier)
|
259
|
|
|
number_loads = len(industrial_loads_list)
|
260
|
|
|
|
261
|
|
|
# Match to associated gas bus
|
262
|
|
|
industrial_loads_list = db.assign_gas_bus_id(
|
263
|
|
|
industrial_loads_list, scn_name, grid_carrier
|
264
|
|
|
)
|
265
|
|
|
|
266
|
|
|
# Add carrier
|
267
|
|
|
industrial_loads_list["carrier"] = carrier
|
268
|
|
|
|
269
|
|
|
# Remove useless columns
|
270
|
|
|
industrial_loads_list = industrial_loads_list.drop(
|
271
|
|
|
columns=["geom", "NUTS0", "NUTS1", "bus_id"], errors="ignore"
|
272
|
|
|
)
|
273
|
|
|
|
274
|
|
|
msg = (
|
275
|
|
|
"The number of load changed when assigning to the respective buses."
|
276
|
|
|
f"It should be {number_loads} loads, but only"
|
277
|
|
|
f"{len(industrial_loads_list)} got assigned to buses."
|
278
|
|
|
f"scn_name: {scn_name}, load carrier: {carrier}, carrier of buses to"
|
279
|
|
|
f"connect loads to: {grid_carrier}"
|
280
|
|
|
)
|
281
|
|
|
assert len(industrial_loads_list) == number_loads, msg
|
282
|
|
|
|
283
|
|
|
return industrial_loads_list
|
284
|
|
|
|
285
|
|
|
|
286
|
|
|
def delete_old_entries(scn_name):
|
287
|
|
|
"""
|
288
|
|
|
Delete CH4 and H2 loads and load time series for the specified scenario
|
289
|
|
|
|
290
|
|
|
This function cleans the database and has no return.
|
291
|
|
|
|
292
|
|
|
Parameters
|
293
|
|
|
----------
|
294
|
|
|
scn_name : str
|
295
|
|
|
Name of the scenario.
|
296
|
|
|
|
297
|
|
|
"""
|
298
|
|
|
# Clean tables
|
299
|
|
|
db.execute_sql(
|
300
|
|
|
f"""
|
301
|
|
|
DELETE FROM grid.egon_etrago_load_timeseries
|
302
|
|
|
WHERE "load_id" IN (
|
303
|
|
|
SELECT load_id FROM grid.egon_etrago_load
|
304
|
|
|
WHERE "carrier" IN ('CH4_for_industry', 'H2_for_industry') AND
|
305
|
|
|
scn_name = '{scn_name}' AND bus not IN (
|
306
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus
|
307
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE'
|
308
|
|
|
)
|
309
|
|
|
);
|
310
|
|
|
"""
|
311
|
|
|
)
|
312
|
|
|
|
313
|
|
|
db.execute_sql(
|
314
|
|
|
f"""
|
315
|
|
|
DELETE FROM grid.egon_etrago_load
|
316
|
|
|
WHERE "load_id" IN (
|
317
|
|
|
SELECT load_id FROM grid.egon_etrago_load
|
318
|
|
|
WHERE "carrier" IN ('CH4_for_industry', 'H2_for_industry') AND
|
319
|
|
|
scn_name = '{scn_name}' AND bus not IN (
|
320
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus
|
321
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE'
|
322
|
|
|
)
|
323
|
|
|
);
|
324
|
|
|
"""
|
325
|
|
|
)
|
326
|
|
|
|
327
|
|
|
|
328
|
|
|
def insert_new_entries(industrial_gas_demand, scn_name):
|
329
|
|
|
"""
|
330
|
|
|
Insert industrial gas loads into the database
|
331
|
|
|
|
332
|
|
|
This function prepares and imports the industrial gas loads, by
|
333
|
|
|
executing the following steps:
|
334
|
|
|
|
335
|
|
|
* Attribution of an id to each load in the list received as paramater
|
336
|
|
|
* Deletion of the column containing the time series (they will be
|
337
|
|
|
inserted in another table (grid.egon_etrago_load_timeseries) in
|
338
|
|
|
the :py:func:`insert_industrial_gas_demand_time_series`)
|
339
|
|
|
* Insertion of the loads into the database
|
340
|
|
|
* Return of the dataframe still containing the time series columns
|
341
|
|
|
|
342
|
|
|
Parameters
|
343
|
|
|
----------
|
344
|
|
|
industrial_gas_demand : pandas.DataFrame
|
345
|
|
|
Load data to insert (containing the time series)
|
346
|
|
|
scn_name : str
|
347
|
|
|
Name of the scenario.
|
348
|
|
|
|
349
|
|
|
Returns
|
350
|
|
|
-------
|
351
|
|
|
industrial_gas_demand : pandas.DataFrame
|
352
|
|
|
Dataframe containing the loads that have been inserted in
|
353
|
|
|
the database with their time series
|
354
|
|
|
|
355
|
|
|
"""
|
356
|
|
|
|
357
|
|
|
new_id = db.next_etrago_id("load")
|
358
|
|
|
industrial_gas_demand["load_id"] = range(
|
359
|
|
|
new_id, new_id + len(industrial_gas_demand)
|
360
|
|
|
)
|
361
|
|
|
|
362
|
|
|
# Add missing columns
|
363
|
|
|
c = {"scn_name": scn_name, "sign": -1}
|
364
|
|
|
industrial_gas_demand = industrial_gas_demand.assign(**c)
|
365
|
|
|
|
366
|
|
|
industrial_gas_demand = industrial_gas_demand.reset_index(drop=True)
|
367
|
|
|
|
368
|
|
|
# Remove useless columns
|
369
|
|
|
egon_etrago_load_gas = industrial_gas_demand.drop(columns=["p_set"])
|
370
|
|
|
|
371
|
|
|
engine = db.engine()
|
372
|
|
|
# Insert data to db
|
373
|
|
|
egon_etrago_load_gas.to_sql(
|
374
|
|
|
"egon_etrago_load",
|
375
|
|
|
engine,
|
376
|
|
|
schema="grid",
|
377
|
|
|
index=False,
|
378
|
|
|
if_exists="append",
|
379
|
|
|
)
|
380
|
|
|
|
381
|
|
|
return industrial_gas_demand
|
382
|
|
|
|
383
|
|
|
|
384
|
|
|
def insert_industrial_gas_demand_egon2035():
|
385
|
|
|
"""Insert industrial gas demands into the database for eGon2035
|
386
|
|
|
|
387
|
|
|
Insert the industrial CH4 and H2 demands and their associated time
|
388
|
|
|
series into the database for the eGon2035 scenario. The data,
|
389
|
|
|
previously downloaded in :py:func:`download_industrial_gas_demand`
|
390
|
|
|
are adjusted by executing the following steps:
|
391
|
|
|
|
392
|
|
|
* Clean the database with the fonction :py:func:`delete_old_entries`
|
393
|
|
|
* Read and prepare the CH4 and the H2 industrial demands and their
|
394
|
|
|
associated time series in Germany with the fonction :py:func:`read_and_process_demand`
|
395
|
|
|
* Aggregate the demands with the same properties at the same gas bus
|
396
|
|
|
* Insert the loads into the database by executing :py:func:`insert_new_entries`
|
397
|
|
|
* Insert the time series associated to the loads into the database
|
398
|
|
|
by executing :py:func:`insert_industrial_gas_demand_time_series`
|
399
|
|
|
|
400
|
|
|
Returns
|
401
|
|
|
-------
|
402
|
|
|
None
|
403
|
|
|
|
404
|
|
|
"""
|
405
|
|
|
scn_name = "eGon2035"
|
406
|
|
|
delete_old_entries(scn_name)
|
407
|
|
|
|
408
|
|
|
industrial_gas_demand = pd.concat(
|
409
|
|
|
[
|
410
|
|
|
read_and_process_demand(
|
411
|
|
|
scn_name=scn_name,
|
412
|
|
|
carrier="CH4_for_industry",
|
413
|
|
|
grid_carrier="CH4",
|
414
|
|
|
),
|
415
|
|
|
read_and_process_demand(
|
416
|
|
|
scn_name=scn_name,
|
417
|
|
|
carrier="H2_for_industry",
|
418
|
|
|
grid_carrier="H2_grid",
|
419
|
|
|
),
|
420
|
|
|
]
|
421
|
|
|
)
|
422
|
|
|
|
423
|
|
|
industrial_gas_demand = (
|
424
|
|
|
industrial_gas_demand.groupby(["bus", "carrier"])["p_set"]
|
425
|
|
|
.apply(lambda x: [sum(y) for y in zip(*x)])
|
426
|
|
|
.reset_index(drop=False)
|
427
|
|
|
)
|
428
|
|
|
|
429
|
|
|
industrial_gas_demand = insert_new_entries(industrial_gas_demand, scn_name)
|
430
|
|
|
insert_industrial_gas_demand_time_series(industrial_gas_demand)
|
431
|
|
|
|
432
|
|
|
|
433
|
|
|
def calculate_total_demand_100RE():
|
434
|
|
|
"""
|
435
|
|
|
Calculate total industrial gas demands in Germany in eGon100RE
|
436
|
|
|
|
437
|
|
|
These global values are red from the p-e-s run.
|
438
|
|
|
|
439
|
|
|
Returns
|
440
|
|
|
-------
|
441
|
|
|
H2_total_PES, CH4_total_PES : floats
|
442
|
|
|
Total industrial gas demand in Germany in eGon100RE
|
443
|
|
|
|
444
|
|
|
"""
|
445
|
|
|
n = read_network()
|
446
|
|
|
|
447
|
|
|
try:
|
448
|
|
|
H2_total_PES = (
|
449
|
|
|
n.loads[n.loads["carrier"] == "H2 for industry"].loc[
|
450
|
|
|
"DE0 0 H2 for industry", "p_set"
|
451
|
|
|
]
|
452
|
|
|
* 8760
|
453
|
|
|
)
|
454
|
|
|
except KeyError:
|
455
|
|
|
H2_total_PES = 42090000
|
456
|
|
|
print("Could not find data from PES-run, assigning fallback number.")
|
457
|
|
|
|
458
|
|
|
try:
|
459
|
|
|
CH4_total_PES = (
|
460
|
|
|
n.loads[n.loads["carrier"] == "gas for industry"].loc[
|
461
|
|
|
"DE0 0 gas for industry", "p_set"
|
462
|
|
|
]
|
463
|
|
|
* 8760
|
464
|
|
|
)
|
465
|
|
|
except KeyError:
|
466
|
|
|
CH4_total_PES = 105490000
|
467
|
|
|
print("Could not find data from PES-run, assigning fallback number.")
|
468
|
|
|
|
469
|
|
|
return H2_total_PES, CH4_total_PES
|
470
|
|
|
|
471
|
|
|
|
472
|
|
|
def insert_industrial_gas_demand_egon100RE():
|
473
|
|
|
"""
|
474
|
|
|
Insert industrial gas demands into the database for eGon100RE
|
475
|
|
|
|
476
|
|
|
Insert the industrial CH4 and H2 demands and their associated time
|
477
|
|
|
series into the database for the eGon100RE scenario by executing the
|
478
|
|
|
following steps:
|
479
|
|
|
|
480
|
|
|
* Clean the database with the fonction :py:func:`delete_old_entries`
|
481
|
|
|
* Read and prepare the CH4 and the H2 industrial demands and their
|
482
|
|
|
associated time series in Germany with the fonction :py:func:`read_and_process_demand`
|
483
|
|
|
* Calculate total industrial CH4 and H2 demands in Germany in
|
484
|
|
|
eGon100RE with the function :py:func:`calculate_total_demand_100RE`
|
485
|
|
|
* Adjust the total industrial CH4 and H2 loads for Germany
|
486
|
|
|
generated by PyPSA-Eur-Sec
|
487
|
|
|
* For the CH4, the time serie used is the one from H2, because
|
488
|
|
|
the industrial CH4 demand in the opendata.ffe database is 0
|
489
|
|
|
* In test mode, the total values are obtained by
|
490
|
|
|
evaluating the share of H2 demand in the test region
|
491
|
|
|
(NUTS1: DEF, Schleswig-Holstein) with respect to the H2
|
492
|
|
|
demand in full Germany model (NUTS0: DE). This task has been
|
493
|
|
|
outsourced to save processing cost.
|
494
|
|
|
* Aggregate the demands with the same properties at the same gas bus
|
495
|
|
|
* Insert the loads into the database by executing :py:func:`insert_new_entries`
|
496
|
|
|
* Insert the time series associated to the loads into the database
|
497
|
|
|
by executing :py:func:`insert_industrial_gas_demand_time_series`
|
498
|
|
|
|
499
|
|
|
Parameters
|
500
|
|
|
----------
|
501
|
|
|
scn_name : str
|
502
|
|
|
Name of the scenario
|
503
|
|
|
|
504
|
|
|
Returns
|
505
|
|
|
-------
|
506
|
|
|
industrial_gas_demand : Dataframe containing the industrial gas demand
|
507
|
|
|
in Germany
|
508
|
|
|
"""
|
509
|
|
|
scn_name = "eGon100RE"
|
510
|
|
|
delete_old_entries(scn_name)
|
511
|
|
|
|
512
|
|
|
# read demands
|
513
|
|
|
industrial_gas_demand_CH4 = read_and_process_demand(
|
514
|
|
|
scn_name=scn_name, carrier="CH4_for_industry", grid_carrier="CH4"
|
515
|
|
|
)
|
516
|
|
|
industrial_gas_demand_H2 = read_and_process_demand(
|
517
|
|
|
scn_name=scn_name, carrier="H2_for_industry", grid_carrier="H2_grid"
|
518
|
|
|
)
|
519
|
|
|
|
520
|
|
|
# adjust H2 and CH4 total demands (values from PES)
|
521
|
|
|
# CH4 demand = 0 in 100RE, therefore scale H2 ts
|
522
|
|
|
# fallback values see https://github.com/openego/eGon-data/issues/626
|
523
|
|
|
|
524
|
|
|
H2_total_PES, CH4_total_PES = calculate_total_demand_100RE()
|
525
|
|
|
|
526
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"]
|
527
|
|
|
if boundary != "Everything":
|
528
|
|
|
# modify values for test mode
|
529
|
|
|
# the values are obtained by evaluating the share of H2 demand in
|
530
|
|
|
# test region (NUTS1: DEF, Schleswig-Holstein) with respect to the H2
|
531
|
|
|
# demand in full Germany model (NUTS0: DE). The task has been outsourced
|
532
|
|
|
# to save processing cost
|
533
|
|
|
H2_total_PES *= 0.01855683050330346
|
534
|
|
|
CH4_total_PES *= 0.01855683050330346
|
535
|
|
|
|
536
|
|
|
H2_total = industrial_gas_demand_H2["p_set"].apply(sum).astype(float).sum()
|
537
|
|
|
|
538
|
|
|
industrial_gas_demand_CH4["p_set"] = industrial_gas_demand_H2[
|
539
|
|
|
"p_set"
|
540
|
|
|
].apply(lambda x: [val / H2_total * CH4_total_PES for val in x])
|
541
|
|
|
industrial_gas_demand_H2["p_set"] = industrial_gas_demand_H2[
|
542
|
|
|
"p_set"
|
543
|
|
|
].apply(lambda x: [val / H2_total * H2_total_PES for val in x])
|
544
|
|
|
|
545
|
|
|
# consistency check
|
546
|
|
|
total_CH4_distributed = sum(
|
547
|
|
|
[sum(x) for x in industrial_gas_demand_CH4["p_set"].to_list()]
|
548
|
|
|
)
|
549
|
|
|
total_H2_distributed = sum(
|
550
|
|
|
[sum(x) for x in industrial_gas_demand_H2["p_set"].to_list()]
|
551
|
|
|
)
|
552
|
|
|
|
553
|
|
|
print(
|
554
|
|
|
f"Total amount of industrial H2 demand distributed is "
|
555
|
|
|
f"{total_H2_distributed} MWh. Total amount of industrial CH4 demand "
|
556
|
|
|
f"distributed is {total_CH4_distributed} MWh."
|
557
|
|
|
)
|
558
|
|
|
msg = (
|
559
|
|
|
f"Total amount of industrial H2 demand from P-E-S is equal to "
|
560
|
|
|
f"{H2_total_PES}, which should be identical to the distributed amount "
|
561
|
|
|
f"of {total_H2_distributed}, but it is not."
|
562
|
|
|
)
|
563
|
|
|
assert round(H2_total_PES) == round(total_H2_distributed), msg
|
564
|
|
|
|
565
|
|
|
msg = (
|
566
|
|
|
f"Total amount of industrial CH4 demand from P-E-S is equal to "
|
567
|
|
|
f"{CH4_total_PES}, which should be identical to the distributed amount "
|
568
|
|
|
f"of {total_CH4_distributed}, but it is not."
|
569
|
|
|
)
|
570
|
|
|
assert round(CH4_total_PES) == round(total_CH4_distributed), msg
|
571
|
|
|
|
572
|
|
|
industrial_gas_demand = pd.concat(
|
573
|
|
|
[
|
574
|
|
|
industrial_gas_demand_CH4,
|
575
|
|
|
industrial_gas_demand_H2,
|
576
|
|
|
]
|
577
|
|
|
)
|
578
|
|
|
industrial_gas_demand = (
|
579
|
|
|
industrial_gas_demand.groupby(["bus", "carrier"])["p_set"]
|
580
|
|
|
.apply(lambda x: [sum(y) for y in zip(*x)])
|
581
|
|
|
.reset_index(drop=False)
|
582
|
|
|
)
|
583
|
|
|
|
584
|
|
|
industrial_gas_demand = insert_new_entries(industrial_gas_demand, scn_name)
|
585
|
|
|
insert_industrial_gas_demand_time_series(industrial_gas_demand)
|
586
|
|
|
|
587
|
|
|
|
588
|
|
|
def insert_industrial_gas_demand_time_series(egon_etrago_load_gas):
|
589
|
|
|
"""
|
590
|
|
|
Insert list of industrial gas demand time series (one per NUTS3)
|
591
|
|
|
|
592
|
|
|
These loads are hourly and NUTS3-geographic resolved.
|
593
|
|
|
|
594
|
|
|
Parameters
|
595
|
|
|
----------
|
596
|
|
|
industrial_gas_demand : pandas.DataFrame
|
597
|
|
|
Dataframe containing the loads that have been inserted in
|
598
|
|
|
the database and whose time serie will be inserted into the
|
599
|
|
|
database.
|
600
|
|
|
|
601
|
|
|
Returns
|
602
|
|
|
-------
|
603
|
|
|
None
|
604
|
|
|
|
605
|
|
|
"""
|
606
|
|
|
egon_etrago_load_gas_timeseries = egon_etrago_load_gas
|
607
|
|
|
|
608
|
|
|
# Connect to local database
|
609
|
|
|
engine = db.engine()
|
610
|
|
|
|
611
|
|
|
# Adjust columns
|
612
|
|
|
egon_etrago_load_gas_timeseries = egon_etrago_load_gas_timeseries.drop(
|
613
|
|
|
columns=["carrier", "bus", "sign"]
|
614
|
|
|
)
|
615
|
|
|
egon_etrago_load_gas_timeseries["temp_id"] = 1
|
616
|
|
|
|
617
|
|
|
# Insert data to db
|
618
|
|
|
egon_etrago_load_gas_timeseries.to_sql(
|
619
|
|
|
"egon_etrago_load_timeseries",
|
620
|
|
|
engine,
|
621
|
|
|
schema="grid",
|
622
|
|
|
index=False,
|
623
|
|
|
if_exists="append",
|
624
|
|
|
)
|
625
|
|
|
|
626
|
|
|
|
627
|
|
|
def download_industrial_gas_demand():
|
628
|
|
|
"""Download the industrial gas demand data from opendata.ffe database
|
629
|
|
|
|
630
|
|
|
The industrial demands for hydrogen and methane are downloaded in
|
631
|
|
|
the folder ./datasets/gas_data/demand and the function has no
|
632
|
|
|
return.
|
633
|
|
|
These loads are hourly and NUTS3-geographic resolved. For more
|
634
|
|
|
information on these data, refer to the `Extremos project documentation <https://opendata.ffe.de/project/extremos/>`_.
|
635
|
|
|
|
636
|
|
|
"""
|
637
|
|
|
correspondance_url = (
|
638
|
|
|
"http://opendata.ffe.de:3000/region?id_region_type=eq.38"
|
639
|
|
|
)
|
640
|
|
|
|
641
|
|
|
# Read and save data
|
642
|
|
|
result_corr = requests.get(correspondance_url)
|
643
|
|
|
target_file = Path(".") / "datasets/gas_data/demand/region_corr.json"
|
644
|
|
|
os.makedirs(os.path.dirname(target_file), exist_ok=True)
|
645
|
|
|
pd.read_json(result_corr.content).to_json(target_file)
|
646
|
|
|
|
647
|
|
|
carriers = {"H2_for_industry": "2,162", "CH4_for_industry": "2,11"}
|
648
|
|
|
url = "http://opendata.ffe.de:3000/opendata?id_opendata=eq.66&&year=eq."
|
649
|
|
|
|
650
|
|
|
for scn_name in ["eGon2035", "eGon100RE"]:
|
651
|
|
|
year = str(
|
652
|
|
|
get_sector_parameters("global", scn_name)["population_year"]
|
653
|
|
|
)
|
654
|
|
|
|
655
|
|
|
for carrier, internal_id in carriers.items():
|
656
|
|
|
# Download the data
|
657
|
|
|
datafilter = "&&internal_id=eq.{" + internal_id + "}"
|
658
|
|
|
request = url + year + datafilter
|
659
|
|
|
|
660
|
|
|
# Read and save data
|
661
|
|
|
result = requests.get(request)
|
662
|
|
|
target_file = (
|
663
|
|
|
Path(".")
|
664
|
|
|
/ "datasets/gas_data/demand"
|
665
|
|
|
/ (carrier + "_" + scn_name + ".json")
|
666
|
|
|
)
|
667
|
|
|
pd.read_json(result.content).to_json(target_file)
|
668
|
|
|
|