1
|
|
|
""" |
2
|
|
|
The central module containing all code dealing with H2 stores in Germany |
3
|
|
|
|
4
|
|
|
This module contains the functions used to insert the two types of H2 |
5
|
|
|
store potentials in Germany: |
6
|
|
|
* H2 overground stores (carrier: 'H2_overground'): steel tanks at |
7
|
|
|
every H2_grid bus |
8
|
|
|
* H2 underground stores (carrier: 'H2_underground'): saltcavern store |
9
|
|
|
at every H2_saltcavern bus. |
10
|
|
|
NB: the saltcavern locations define the H2_saltcavern buses locations. |
11
|
|
|
All these stores are modelled as extendable PyPSA stores. |
12
|
|
|
|
13
|
|
|
""" |
14
|
|
|
from geoalchemy2 import Geometry |
15
|
|
|
import geopandas as gpd |
16
|
|
|
import pandas as pd |
17
|
|
|
|
18
|
|
|
from egon.data import config, db |
19
|
|
|
from egon.data.datasets.etrago_helpers import copy_and_modify_stores |
20
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def insert_H2_overground_storage(scn_name="eGon2035"): |
24
|
|
|
""" |
25
|
|
|
Insert H2_overground stores into the database. |
26
|
|
|
|
27
|
|
|
Insert extendable H2_overground stores (steel tanks) at each H2_grid |
28
|
|
|
bus. This function inserts data into the database and has no return. |
29
|
|
|
|
30
|
|
|
""" |
31
|
|
|
# The targets of etrago_hydrogen also serve as source here ಠ_ಠ |
32
|
|
|
sources = config.datasets()["etrago_hydrogen"]["sources"] |
33
|
|
|
targets = config.datasets()["etrago_hydrogen"]["targets"] |
34
|
|
|
|
35
|
|
|
# Place storage at every H2 bus |
36
|
|
|
storages = db.select_geodataframe( |
37
|
|
|
f""" |
38
|
|
|
SELECT bus_id, scn_name, geom |
39
|
|
|
FROM {sources['buses']['schema']}. |
40
|
|
|
{sources['buses']['table']} WHERE carrier = 'H2_grid' |
41
|
|
|
AND scn_name = '{scn_name}' AND country = 'DE'""", |
42
|
|
|
index_col="bus_id", |
43
|
|
|
) |
44
|
|
|
|
45
|
|
|
carrier = "H2_overground" |
46
|
|
|
# Add missing column |
47
|
|
|
storages["bus"] = storages.index |
48
|
|
|
storages["carrier"] = carrier |
49
|
|
|
|
50
|
|
|
# Does e_nom_extenable = True render e_nom useless? |
51
|
|
|
storages["e_nom"] = 0 |
52
|
|
|
storages["e_nom_extendable"] = True |
53
|
|
|
|
54
|
|
|
# read carrier information from scnario parameter data |
55
|
|
|
scn_params = get_sector_parameters("gas", scn_name) |
56
|
|
|
storages["capital_cost"] = scn_params["capital_cost"][carrier] |
57
|
|
|
storages["lifetime"] = scn_params["lifetime"][carrier] |
58
|
|
|
|
59
|
|
|
# Remove useless columns |
60
|
|
|
storages.drop(columns=["geom"], inplace=True) |
61
|
|
|
|
62
|
|
|
# Clean table |
63
|
|
|
db.execute_sql( |
64
|
|
|
f""" |
65
|
|
|
DELETE FROM grid.egon_etrago_store WHERE carrier = '{carrier}' AND |
66
|
|
|
scn_name = '{scn_name}' AND bus not IN ( |
67
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
68
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE' |
69
|
|
|
); |
70
|
|
|
""" |
71
|
|
|
) |
72
|
|
|
|
73
|
|
|
# Select next id value |
74
|
|
|
new_id = db.next_etrago_id("store") |
75
|
|
|
storages["store_id"] = range(new_id, new_id + len(storages)) |
76
|
|
|
storages = storages.reset_index(drop=True) |
77
|
|
|
|
78
|
|
|
# Insert data to db |
79
|
|
|
storages.to_sql( |
80
|
|
|
targets["hydrogen_stores"]["table"], |
81
|
|
|
db.engine(), |
82
|
|
|
schema=targets["hydrogen_stores"]["schema"], |
83
|
|
|
index=False, |
84
|
|
|
if_exists="append", |
85
|
|
|
) |
86
|
|
|
|
87
|
|
|
|
88
|
|
|
def insert_H2_saltcavern_storage(scn_name="eGon2035"): |
89
|
|
|
""" |
90
|
|
|
Insert H2_underground stores into the database. |
91
|
|
|
|
92
|
|
|
Insert extendable H2_underground stores (saltcavern potentials) at |
93
|
|
|
every H2_saltcavern bus.This function inserts data into the database |
94
|
|
|
and has no return. |
95
|
|
|
|
96
|
|
|
""" |
97
|
|
|
|
98
|
|
|
# Datatables sources and targets |
99
|
|
|
sources = config.datasets()["etrago_hydrogen"]["sources"] |
100
|
|
|
targets = config.datasets()["etrago_hydrogen"]["targets"] |
101
|
|
|
|
102
|
|
|
storage_potentials = db.select_geodataframe( |
103
|
|
|
f""" |
104
|
|
|
SELECT * |
105
|
|
|
FROM {sources['saltcavern_data']['schema']}. |
106
|
|
|
{sources['saltcavern_data']['table']}""", |
107
|
|
|
geom_col="geometry", |
108
|
|
|
) |
109
|
|
|
|
110
|
|
|
# Place storage at every H2 bus from the H2 AC saltcavern map |
111
|
|
|
H2_AC_bus_map = db.select_dataframe( |
112
|
|
|
f""" |
113
|
|
|
SELECT * |
114
|
|
|
FROM {sources['H2_AC_map']['schema']}. |
115
|
|
|
{sources['H2_AC_map']['table']}""", |
116
|
|
|
) |
117
|
|
|
|
118
|
|
|
storage_potentials["storage_potential"] = ( |
119
|
|
|
storage_potentials["area_fraction"] * storage_potentials["potential"] |
120
|
|
|
) |
121
|
|
|
|
122
|
|
|
storage_potentials[ |
123
|
|
|
"summed_potential_per_bus" |
124
|
|
|
] = storage_potentials.groupby("bus_id")["storage_potential"].transform( |
125
|
|
|
"sum" |
126
|
|
|
) |
127
|
|
|
|
128
|
|
|
storages = storage_potentials[ |
129
|
|
|
["summed_potential_per_bus", "bus_id"] |
130
|
|
|
].copy() |
131
|
|
|
storages.drop_duplicates("bus_id", keep="last", inplace=True) |
132
|
|
|
|
133
|
|
|
# map AC buses in potetial data to respective H2 buses |
134
|
|
|
storages = storages.merge( |
135
|
|
|
H2_AC_bus_map, left_on="bus_id", right_on="bus_AC" |
136
|
|
|
).reindex(columns=["bus_H2", "summed_potential_per_bus", "scn_name"]) |
137
|
|
|
|
138
|
|
|
# rename columns |
139
|
|
|
storages.rename( |
140
|
|
|
columns={"bus_H2": "bus", "summed_potential_per_bus": "e_nom_max"}, |
141
|
|
|
inplace=True, |
142
|
|
|
) |
143
|
|
|
|
144
|
|
|
# add missing columns |
145
|
|
|
carrier = "H2_underground" |
146
|
|
|
storages["carrier"] = carrier |
147
|
|
|
storages["e_nom"] = 0 |
148
|
|
|
storages["e_nom_extendable"] = True |
149
|
|
|
|
150
|
|
|
# read carrier information from scnario parameter data |
151
|
|
|
scn_params = get_sector_parameters("gas", scn_name) |
152
|
|
|
storages["capital_cost"] = scn_params["capital_cost"][carrier] |
153
|
|
|
storages["lifetime"] = scn_params["lifetime"][carrier] |
154
|
|
|
|
155
|
|
|
# Clean table |
156
|
|
|
db.execute_sql( |
157
|
|
|
f""" |
158
|
|
|
DELETE FROM grid.egon_etrago_store WHERE carrier = '{carrier}' AND |
159
|
|
|
scn_name = '{scn_name}' AND bus not IN ( |
160
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
161
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE' |
162
|
|
|
); |
163
|
|
|
""" |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
# Select next id value |
167
|
|
|
new_id = db.next_etrago_id("store") |
168
|
|
|
storages["store_id"] = range(new_id, new_id + len(storages)) |
169
|
|
|
storages = storages.reset_index(drop=True) |
170
|
|
|
|
171
|
|
|
# # Insert data to db |
172
|
|
|
storages.to_sql( |
173
|
|
|
targets["hydrogen_stores"]["table"], |
174
|
|
|
db.engine(), |
175
|
|
|
schema=targets["hydrogen_stores"]["schema"], |
176
|
|
|
index=False, |
177
|
|
|
if_exists="append", |
178
|
|
|
) |
179
|
|
|
|
180
|
|
|
|
181
|
|
|
def calculate_and_map_saltcavern_storage_potential(): |
182
|
|
|
""" |
183
|
|
|
Calculate site specific storage potential based on InSpEE-DS report. |
184
|
|
|
|
185
|
|
|
This function inserts data into the database and has no return. |
186
|
|
|
|
187
|
|
|
""" |
188
|
|
|
|
189
|
|
|
# select onshore vg250 data |
190
|
|
|
sources = config.datasets()["bgr"]["sources"] |
191
|
|
|
vg250_data = db.select_geodataframe( |
192
|
|
|
f"""SELECT * FROM |
193
|
|
|
{sources['vg250_federal_states']['schema']}. |
194
|
|
|
{sources['vg250_federal_states']['table']} |
195
|
|
|
WHERE gf = '4'""", |
196
|
|
|
index_col="id", |
197
|
|
|
geom_col="geometry", |
198
|
|
|
) |
199
|
|
|
|
200
|
|
|
# get saltcavern shapes |
201
|
|
|
saltcavern_data = db.select_geodataframe( |
202
|
|
|
f"""SELECT * FROM |
203
|
|
|
{sources['saltcaverns']['schema']}. |
204
|
|
|
{sources['saltcaverns']['table']} |
205
|
|
|
""", |
206
|
|
|
geom_col="geometry", |
207
|
|
|
) |
208
|
|
|
|
209
|
|
|
# hydrogen storage potential data from InSpEE-DS report |
210
|
|
|
hydrogen_storage_potential = pd.DataFrame(columns=["INSPEEDS", "INSPEE"]) |
211
|
|
|
|
212
|
|
|
# values in MWh, modified to fit the saltstructure data |
213
|
|
|
hydrogen_storage_potential.loc["Brandenburg"] = [353e6, 159e6] |
214
|
|
|
hydrogen_storage_potential.loc["Mecklenburg-Vorpommern"] = [25e6, 193e6] |
215
|
|
|
hydrogen_storage_potential.loc["Nordrhein-Westfalen"] = [168e6, 0] |
216
|
|
|
hydrogen_storage_potential.loc["Sachsen-Anhalt"] = [318e6, 147e6] |
217
|
|
|
hydrogen_storage_potential.loc["Thüringen"] = [595e6, 0] |
218
|
|
|
|
219
|
|
|
# distribute SH/HH and NDS/HB potentials by area |
220
|
|
|
# overlay saltstructures with federal state, calculate respective area |
221
|
|
|
# map storage potential per federal state to area fraction of summed area |
222
|
|
|
# potential_i = area_i / area_tot * potential_tot |
223
|
|
|
|
224
|
|
|
potential_data_dict = { |
225
|
|
|
0: { |
226
|
|
|
"federal_states": ["Schleswig-Holstein", "Hamburg"], |
227
|
|
|
"INSPEEDS": 0, |
228
|
|
|
"INSPEE": 413e6, |
229
|
|
|
}, |
230
|
|
|
1: { |
231
|
|
|
"federal_states": ["Niedersachsen", "Bremen"], |
232
|
|
|
"INSPEEDS": 253e6, |
233
|
|
|
"INSPEE": 702e6, |
234
|
|
|
}, |
235
|
|
|
} |
236
|
|
|
|
237
|
|
|
# iterate over aggregated state data for SH/HH and NDS/HB |
238
|
|
|
for data in potential_data_dict.values(): |
239
|
|
|
individual_areas = {} |
240
|
|
|
# individual state areas |
241
|
|
|
for federal_state in data["federal_states"]: |
242
|
|
|
try: |
243
|
|
|
individual_areas[federal_state] = ( |
244
|
|
|
saltcavern_data.overlay( |
245
|
|
|
vg250_data[vg250_data["gen"] == federal_state], |
246
|
|
|
how="intersection", |
247
|
|
|
) |
248
|
|
|
.to_crs(epsg=25832) |
249
|
|
|
.area.sum() |
250
|
|
|
) |
251
|
|
|
except ValueError: |
252
|
|
|
individual_areas[federal_state] = 0 |
253
|
|
|
|
254
|
|
|
# derives weights from fraction of individual state area to total area |
255
|
|
|
total_area = sum(individual_areas.values()) |
256
|
|
|
weights = { |
257
|
|
|
f: individual_areas[f] / total_area if total_area > 0 else 0 |
258
|
|
|
for f in data["federal_states"] |
259
|
|
|
} |
260
|
|
|
# write data into potential dataframe |
261
|
|
|
for federal_state in data["federal_states"]: |
262
|
|
|
hydrogen_storage_potential.loc[federal_state] = [ |
263
|
|
|
data["INSPEEDS"] * weights[federal_state], |
264
|
|
|
data["INSPEE"] * weights[federal_state], |
265
|
|
|
] |
266
|
|
|
|
267
|
|
|
# calculate total storage potential |
268
|
|
|
hydrogen_storage_potential["total"] = ( |
269
|
|
|
# currently only InSpEE saltstructure shapefiles are available |
270
|
|
|
hydrogen_storage_potential["INSPEEDS"] |
271
|
|
|
+ hydrogen_storage_potential["INSPEE"] |
272
|
|
|
) |
273
|
|
|
|
274
|
|
|
saltcaverns_in_fed_state = gpd.GeoDataFrame() |
275
|
|
|
|
276
|
|
|
# intersection of saltstructures with federal state |
277
|
|
|
for federal_state in hydrogen_storage_potential.index: |
278
|
|
|
federal_state_data = vg250_data[vg250_data["gen"] == federal_state] |
279
|
|
|
|
280
|
|
|
# skip if federal state not available (e.g. local testing) |
281
|
|
|
if federal_state_data.size > 0: |
282
|
|
|
saltcaverns_in_fed_state = saltcaverns_in_fed_state.append( |
283
|
|
|
saltcavern_data.overlay(federal_state_data, how="intersection") |
284
|
|
|
) |
285
|
|
|
# write total potential in column, will be overwritten by actual |
286
|
|
|
# value later |
287
|
|
|
saltcaverns_in_fed_state.loc[ |
288
|
|
|
saltcaverns_in_fed_state["gen"] == federal_state, "potential" |
289
|
|
|
] = hydrogen_storage_potential.loc[federal_state, "total"] |
290
|
|
|
|
291
|
|
|
# drop all federal state data columns except name of the state |
292
|
|
|
saltcaverns_in_fed_state.drop( |
293
|
|
|
columns=[ |
294
|
|
|
col |
295
|
|
|
for col in federal_state_data.columns |
|
|
|
|
296
|
|
|
if col not in ["gen", "geometry"] |
297
|
|
|
], |
298
|
|
|
inplace=True, |
299
|
|
|
) |
300
|
|
|
|
301
|
|
|
# this is required for the first loop as no geometry has been set |
302
|
|
|
# prior to this, also set crs to match original saltcavern_data crs |
303
|
|
|
saltcaverns_in_fed_state.set_geometry("geometry") |
304
|
|
|
saltcaverns_in_fed_state.set_crs(saltcavern_data.crs, inplace=True) |
305
|
|
|
saltcaverns_in_fed_state.to_crs(epsg=4326, inplace=True) |
306
|
|
|
|
307
|
|
|
# recalculate area in case structures have been split at federal |
308
|
|
|
# state borders in original data epsg |
309
|
|
|
# mapping of potential to individual H2 storage is in |
310
|
|
|
# hydrogen_etrago/storage.py |
311
|
|
|
saltcaverns_in_fed_state["shape_star"] = saltcaverns_in_fed_state.to_crs( |
312
|
|
|
epsg=25832 |
313
|
|
|
).area |
314
|
|
|
|
315
|
|
|
# get substation voronois |
316
|
|
|
substation_voronoi = ( |
317
|
|
|
db.select_geodataframe( |
318
|
|
|
f""" |
319
|
|
|
SELECT * FROM grid.egon_hvmv_substation_voronoi |
320
|
|
|
""", |
321
|
|
|
index_col="bus_id", |
322
|
|
|
) |
323
|
|
|
.to_crs(4326) |
324
|
|
|
.sort_index() |
325
|
|
|
) |
326
|
|
|
|
327
|
|
|
# get substations |
328
|
|
|
substations = db.select_geodataframe( |
329
|
|
|
f""" |
330
|
|
|
SELECT * FROM grid.egon_hvmv_substation""", |
331
|
|
|
geom_col="point", |
332
|
|
|
index_col="bus_id", |
333
|
|
|
).to_crs(4326) |
334
|
|
|
|
335
|
|
|
# create 500 m radius around substations as storage potential area |
336
|
|
|
# epsg for buffer in line with original saltstructre data |
337
|
|
|
substations_inflation = gpd.GeoDataFrame( |
338
|
|
|
geometry=substations.to_crs(25832).buffer(500).to_crs(4326) |
339
|
|
|
).sort_index() |
340
|
|
|
|
341
|
|
|
# !!row wise!! intersection between the substations inflation and the |
342
|
|
|
# respective voronoi (overlay only allows for intersection to all |
343
|
|
|
# voronois) |
344
|
|
|
voroni_buffer_intersect = substations_inflation["geometry"].intersection( |
345
|
|
|
substation_voronoi["geom"] |
346
|
|
|
) |
347
|
|
|
|
348
|
|
|
# make intersection a dataframe to kepp bus_id column in potential area |
349
|
|
|
# overlay |
350
|
|
|
voroni_buffer_intersect = gpd.GeoDataFrame( |
351
|
|
|
{ |
352
|
|
|
"bus_id": voroni_buffer_intersect.index.tolist(), |
353
|
|
|
"geometry": voroni_buffer_intersect.geometry.tolist(), |
354
|
|
|
} |
355
|
|
|
).set_crs(epsg=4326) |
356
|
|
|
|
357
|
|
|
# overlay saltstructures with substation buffer |
358
|
|
|
potential_areas = saltcaverns_in_fed_state.overlay( |
359
|
|
|
voroni_buffer_intersect, how="intersection" |
360
|
|
|
).set_crs(epsg=4326) |
361
|
|
|
|
362
|
|
|
# calculate area fraction of individual site over total area within |
363
|
|
|
# the same federal state |
364
|
|
|
potential_areas["area_fraction"] = potential_areas.to_crs( |
365
|
|
|
epsg=25832 |
366
|
|
|
).area / potential_areas.groupby("gen")["shape_star"].transform("sum") |
367
|
|
|
|
368
|
|
|
return potential_areas |
369
|
|
|
|
370
|
|
|
def write_saltcavern_potential(): |
371
|
|
|
"""Write saltcavern potentials in the database""" |
372
|
|
|
potential_areas = calculate_and_map_saltcavern_storage_potential() |
373
|
|
|
|
374
|
|
|
# write information to saltcavern data |
375
|
|
|
targets = config.datasets()["bgr"]["targets"] |
376
|
|
|
potential_areas.to_crs(epsg=4326).to_postgis( |
377
|
|
|
targets["storage_potential"]["table"], |
378
|
|
|
db.engine(), |
379
|
|
|
schema=targets["storage_potential"]["schema"], |
380
|
|
|
index=True, |
381
|
|
|
if_exists="replace", |
382
|
|
|
dtype={"geometry": Geometry()}, |
383
|
|
|
) |
384
|
|
|
|
385
|
|
|
|
386
|
|
|
def insert_H2_storage_eGon100RE(): |
387
|
|
|
"""Copy H2 storage from the eGon2035 to the eGon100RE scenario.""" |
388
|
|
|
copy_and_modify_stores( |
389
|
|
|
"eGon2035", "eGon100RE", ["H2_underground", "H2_overground"], "gas" |
390
|
|
|
) |
391
|
|
|
|