1
|
|
|
from geoalchemy2 import Geometry |
2
|
|
|
from geoalchemy2.shape import to_shape |
3
|
|
|
from sqlalchemy import Column, Float, Integer, String, func |
4
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
5
|
|
|
import geopandas as gpd |
6
|
|
|
import pandas as pd |
7
|
|
|
import saio |
8
|
|
|
|
9
|
|
|
from egon.data import db |
10
|
|
|
from egon.data.datasets import Dataset |
11
|
|
|
from egon.data.datasets.electricity_demand import ( |
12
|
|
|
EgonDemandRegioZensusElectricity, |
13
|
|
|
) |
14
|
|
|
from egon.data.datasets.electricity_demand.temporal import ( |
15
|
|
|
EgonEtragoElectricityCts, |
16
|
|
|
calc_load_curves_cts, |
17
|
|
|
) |
18
|
|
|
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
19
|
|
|
BuildingPeakLoads, |
20
|
|
|
OsmBuildingsSynthetic, |
21
|
|
|
) |
22
|
|
|
from egon.data.datasets.electricity_demand_timeseries.tools import ( |
23
|
|
|
random_ints_until_sum, |
24
|
|
|
random_point_in_square, |
25
|
|
|
specific_int_until_sum, |
26
|
|
|
write_table_to_postgis, |
27
|
|
|
write_table_to_postgres, |
28
|
|
|
) |
29
|
|
|
from egon.data.datasets.heat_demand import EgonPetaHeat |
30
|
|
|
from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
31
|
|
|
from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
32
|
|
|
|
33
|
|
|
engine = db.engine() |
34
|
|
|
Base = declarative_base() |
35
|
|
|
|
36
|
|
|
# import db tables |
37
|
|
|
saio.register_schema("openstreetmap", engine=engine) |
38
|
|
|
saio.register_schema("society", engine=engine) |
39
|
|
|
saio.register_schema("demand", engine=engine) |
40
|
|
|
saio.register_schema("boundaries", engine=engine) |
41
|
|
|
|
42
|
|
|
|
43
|
|
View Code Duplication |
class EgonCtsElectricityDemandBuildingShare(Base): |
|
|
|
|
44
|
|
|
__tablename__ = "egon_cts_electricity_demand_building_share" |
45
|
|
|
__table_args__ = {"schema": "demand"} |
46
|
|
|
|
47
|
|
|
serial = Column(Integer, primary_key=True) |
48
|
|
|
id = Column(Integer, index=True) |
49
|
|
|
scenario = Column(String, index=True) |
50
|
|
|
# id = Column(Integer, primary_key=True) |
51
|
|
|
# scenario = Column(String, primary_key=True) |
52
|
|
|
bus_id = Column(Integer, index=True) |
53
|
|
|
profile_share = Column(Float) |
54
|
|
|
|
55
|
|
|
|
56
|
|
View Code Duplication |
class EgonCtsHeatDemandBuildingShare(Base): |
|
|
|
|
57
|
|
|
__tablename__ = "egon_cts_heat_demand_building_share" |
58
|
|
|
__table_args__ = {"schema": "demand"} |
59
|
|
|
|
60
|
|
|
serial = Column(Integer, primary_key=True) |
61
|
|
|
id = Column(Integer, index=True) |
62
|
|
|
scenario = Column(String, index=True) |
63
|
|
|
# id = Column(Integer, primary_key=True) |
64
|
|
|
# scenario = Column(String, primary_key=True) |
65
|
|
|
bus_id = Column(Integer, index=True) |
66
|
|
|
profile_share = Column(Float) |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
class CtsBuildings(Base): |
70
|
|
|
__tablename__ = "egon_cts_buildings" |
71
|
|
|
__table_args__ = {"schema": "openstreetmap"} |
72
|
|
|
|
73
|
|
|
serial = Column(Integer, primary_key=True) |
74
|
|
|
id = Column(Integer, index=True) |
75
|
|
|
zensus_population_id = Column(Integer, index=True) |
76
|
|
|
geom_building = Column(Geometry("Polygon", 3035)) |
77
|
|
|
n_amenities_inside = Column(Integer) |
78
|
|
|
source = Column(String) |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
def amenities_without_buildings(): |
82
|
|
|
""" |
83
|
|
|
Amenities which have no buildings assigned and are in |
84
|
|
|
a cell with cts demand are determined. |
85
|
|
|
|
86
|
|
|
Returns |
87
|
|
|
------- |
88
|
|
|
pd.DataFrame |
89
|
|
|
Table of amenities without buildings |
90
|
|
|
""" |
91
|
|
|
from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
92
|
|
|
|
93
|
|
|
with db.session_scope() as session: |
94
|
|
|
cells_query = ( |
95
|
|
|
session.query( |
96
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
97
|
|
|
# TODO can be used for square around amenity |
98
|
|
|
# (1 geom_amenity: 1 geom_building) |
99
|
|
|
# not unique amenity_ids yet |
100
|
|
|
osm_amenities_not_in_buildings_filtered.geom_amenity, |
101
|
|
|
osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
102
|
|
|
# EgonDemandRegioZensusElectricity.demand, |
103
|
|
|
# # TODO can be used to generate n random buildings |
104
|
|
|
# # (n amenities : 1 randombuilding) |
105
|
|
|
# func.count( |
106
|
|
|
# osm_amenities_not_in_buildings_filtered.egon_amenity_id |
107
|
|
|
# ).label("n_amenities_inside"), |
108
|
|
|
# DestatisZensusPopulationPerHa.geom, |
109
|
|
|
) |
110
|
|
|
.filter( |
111
|
|
|
func.st_within( |
112
|
|
|
osm_amenities_not_in_buildings_filtered.geom_amenity, |
113
|
|
|
DestatisZensusPopulationPerHa.geom, |
114
|
|
|
) |
115
|
|
|
) |
116
|
|
|
.filter( |
117
|
|
|
DestatisZensusPopulationPerHa.id |
118
|
|
|
== EgonDemandRegioZensusElectricity.zensus_population_id |
119
|
|
|
) |
120
|
|
|
.filter( |
121
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
122
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035" |
123
|
|
|
# ).group_by( |
124
|
|
|
# EgonDemandRegioZensusElectricity.zensus_population_id, |
125
|
|
|
# DestatisZensusPopulationPerHa.geom, |
126
|
|
|
) |
127
|
|
|
) |
128
|
|
|
# # TODO can be used to generate n random buildings |
129
|
|
|
# df_cells_with_amenities_not_in_buildings = gpd.read_postgis( |
130
|
|
|
# cells_query.statement, cells_query.session.bind, geom_col="geom" |
131
|
|
|
# ) |
132
|
|
|
# |
133
|
|
|
|
134
|
|
|
# # TODO can be used for square around amenity |
135
|
|
|
df_amenities_without_buildings = gpd.read_postgis( |
136
|
|
|
cells_query.statement, |
137
|
|
|
cells_query.session.bind, |
138
|
|
|
geom_col="geom_amenity", |
139
|
|
|
) |
140
|
|
|
return df_amenities_without_buildings |
141
|
|
|
|
142
|
|
|
|
143
|
|
|
def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
144
|
|
|
""" |
145
|
|
|
Building centroids are placed randomly within census cells. |
146
|
|
|
The Number of buildings is derived from n_amenity_inside, the selected |
147
|
|
|
method and number of amenities per building. |
148
|
|
|
|
149
|
|
|
Returns |
150
|
|
|
------- |
151
|
|
|
df: gpd.GeoDataFrame |
152
|
|
|
Table of buildings centroids |
153
|
|
|
""" |
154
|
|
|
if isinstance(max_amenities, int): |
155
|
|
|
# amount of amenities is randomly generated within bounds |
156
|
|
|
# (max_amenities, amenities per cell) |
157
|
|
|
df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
158
|
|
|
random_ints_until_sum, args=[max_amenities] |
159
|
|
|
) |
160
|
|
|
if isinstance(amenities, int): |
161
|
|
|
# Specific amount of amenities per building |
162
|
|
|
df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
163
|
|
|
specific_int_until_sum, args=[amenities] |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
# Unnest each building |
167
|
|
|
df = df.explode(column="n_amenities_inside") |
168
|
|
|
|
169
|
|
|
# building count per cell |
170
|
|
|
df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
171
|
|
|
|
172
|
|
|
# generate random synthetic buildings |
173
|
|
|
edge_length = 5 |
174
|
|
|
# create random points within census cells |
175
|
|
|
points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
176
|
|
|
|
177
|
|
|
df.reset_index(drop=True, inplace=True) |
178
|
|
|
# Store center of polygon |
179
|
|
|
df["geom_point"] = points |
180
|
|
|
# Drop geometry of census cell |
181
|
|
|
df = df.drop(columns=["geom"]) |
182
|
|
|
|
183
|
|
|
return df |
184
|
|
|
|
185
|
|
|
|
186
|
|
|
def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
187
|
|
|
""" |
188
|
|
|
Synthetic buildings are generated around points. |
189
|
|
|
|
190
|
|
|
Parameters |
191
|
|
|
---------- |
192
|
|
|
df: pd.DataFrame |
193
|
|
|
Table of census cells |
194
|
|
|
points: gpd.GeoSeries or str |
195
|
|
|
List of points to place buildings around or column name of df |
196
|
|
|
crs: str |
197
|
|
|
CRS of result table |
198
|
|
|
|
199
|
|
|
Returns |
200
|
|
|
------- |
201
|
|
|
df: gpd.GeoDataFrame |
202
|
|
|
Synthetic buildings |
203
|
|
|
""" |
204
|
|
|
|
205
|
|
|
if isinstance(points, str) and points in df.columns: |
206
|
|
|
points = df[points] |
207
|
|
|
elif isinstance(points, gpd.GeoSeries): |
208
|
|
|
pass |
209
|
|
|
else: |
210
|
|
|
raise ValueError("Points are of the wrong type") |
211
|
|
|
|
212
|
|
|
# Create building using a square around point |
213
|
|
|
edge_length = 5 |
214
|
|
|
df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
215
|
|
|
|
216
|
|
|
if "geom_point" not in df.columns: |
217
|
|
|
df["geom_point"] = df["geom_building"].centroid |
218
|
|
|
|
219
|
|
|
# TODO Check CRS |
220
|
|
|
df = gpd.GeoDataFrame( |
221
|
|
|
df, |
222
|
|
|
crs=crs, |
223
|
|
|
geometry="geom_building", |
224
|
|
|
) |
225
|
|
|
|
226
|
|
|
# TODO remove after implementation of egon_building_id |
227
|
|
|
df.rename(columns={"id": "egon_building_id"}, inplace=True) |
228
|
|
|
|
229
|
|
|
# get max number of building ids from synthetic residential table |
230
|
|
|
with db.session_scope() as session: |
231
|
|
|
max_synth_residential_id = session.execute( |
232
|
|
|
func.max(OsmBuildingsSynthetic.id) |
233
|
|
|
).scalar() |
234
|
|
|
max_synth_residential_id = int(max_synth_residential_id) |
235
|
|
|
|
236
|
|
|
# create sequential ids |
237
|
|
|
df["egon_building_id"] = range( |
238
|
|
|
max_synth_residential_id + 1, |
239
|
|
|
max_synth_residential_id + df.shape[0] + 1, |
240
|
|
|
) |
241
|
|
|
|
242
|
|
|
df["area"] = df["geom_building"].area |
243
|
|
|
# set building type of synthetic building |
244
|
|
|
df["building"] = "cts" |
245
|
|
|
# TODO remove in #772 |
246
|
|
|
df = df.rename( |
247
|
|
|
columns={ |
248
|
|
|
# "zensus_population_id": "cell_id", |
249
|
|
|
"egon_building_id": "id", |
250
|
|
|
} |
251
|
|
|
) |
252
|
|
|
return df |
253
|
|
|
|
254
|
|
|
|
255
|
|
|
def buildings_with_amenities(): |
256
|
|
|
""" |
257
|
|
|
Amenities which are assigned to buildings are determined |
258
|
|
|
and grouped per building and zensus cell. Buildings |
259
|
|
|
covering multiple cells therefore exists multiple times |
260
|
|
|
but in different zensus cells. This is necessary to cover |
261
|
|
|
all cells with a cts demand. If buildings exist in multiple |
262
|
|
|
substations, their amenities are summed and assigned and kept in |
263
|
|
|
one substation only. If as a result, a census cell is uncovered, |
264
|
|
|
a synthetic amenity is placed. The buildings are aggregated |
265
|
|
|
afterwards during the calculation of the profile_share. |
266
|
|
|
|
267
|
|
|
Returns |
268
|
|
|
------- |
269
|
|
|
df_buildings_with_amenities: gpd.GeoDataFrame |
270
|
|
|
Contains all buildings with amenities per zensus cell. |
271
|
|
|
df_lost_cells: gpd.GeoDataFrame |
272
|
|
|
Contains synthetic amenities in lost cells. Might be empty |
273
|
|
|
""" |
274
|
|
|
|
275
|
|
|
from saio.openstreetmap import osm_amenities_in_buildings_filtered |
276
|
|
|
|
277
|
|
|
with db.session_scope() as session: |
278
|
|
|
cells_query = ( |
279
|
|
|
session.query( |
280
|
|
|
osm_amenities_in_buildings_filtered, |
281
|
|
|
MapZensusGridDistricts.bus_id, |
282
|
|
|
) |
283
|
|
|
.filter( |
284
|
|
|
MapZensusGridDistricts.zensus_population_id |
285
|
|
|
== osm_amenities_in_buildings_filtered.zensus_population_id |
286
|
|
|
) |
287
|
|
|
.filter( |
288
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
289
|
|
|
== osm_amenities_in_buildings_filtered.zensus_population_id |
290
|
|
|
) |
291
|
|
|
.filter( |
292
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
293
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
294
|
|
|
) |
295
|
|
|
) |
296
|
|
|
df_amenities_in_buildings = pd.read_sql( |
297
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
298
|
|
|
) |
299
|
|
|
|
300
|
|
|
df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
301
|
|
|
"geom_building" |
302
|
|
|
].apply(to_shape) |
303
|
|
|
df_amenities_in_buildings["geom_amenity"] = df_amenities_in_buildings[ |
304
|
|
|
"geom_amenity" |
305
|
|
|
].apply(to_shape) |
306
|
|
|
|
307
|
|
|
df_amenities_in_buildings["n_amenities_inside"] = 1 |
308
|
|
|
|
309
|
|
|
# add identifier column for buildings in multiple substations |
310
|
|
|
df_amenities_in_buildings[ |
311
|
|
|
"duplicate_identifier" |
312
|
|
|
] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
313
|
|
|
"n_amenities_inside" |
314
|
|
|
].transform( |
315
|
|
|
"cumsum" |
316
|
|
|
) |
317
|
|
|
df_amenities_in_buildings = df_amenities_in_buildings.sort_values( |
318
|
|
|
["id", "duplicate_identifier"] |
319
|
|
|
) |
320
|
|
|
# sum amenities of buildings with multiple substations |
321
|
|
|
df_amenities_in_buildings[ |
322
|
|
|
"n_amenities_inside" |
323
|
|
|
] = df_amenities_in_buildings.groupby(["id", "duplicate_identifier"])[ |
324
|
|
|
"n_amenities_inside" |
325
|
|
|
].transform( |
326
|
|
|
"sum" |
327
|
|
|
) |
328
|
|
|
|
329
|
|
|
# create column to always go for bus_id with max amenities |
330
|
|
|
df_amenities_in_buildings[ |
331
|
|
|
"max_amenities" |
332
|
|
|
] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
333
|
|
|
"n_amenities_inside" |
334
|
|
|
].transform( |
335
|
|
|
"sum" |
336
|
|
|
) |
337
|
|
|
# sort to go for |
338
|
|
|
df_amenities_in_buildings.sort_values( |
339
|
|
|
["id", "max_amenities"], ascending=False, inplace=True |
340
|
|
|
) |
341
|
|
|
|
342
|
|
|
# identify lost zensus cells |
343
|
|
|
df_lost_cells = df_amenities_in_buildings.loc[ |
344
|
|
|
df_amenities_in_buildings.duplicated( |
345
|
|
|
subset=["id", "duplicate_identifier"], keep="first" |
346
|
|
|
) |
347
|
|
|
] |
348
|
|
|
df_lost_cells.drop_duplicates( |
349
|
|
|
subset=["zensus_population_id"], inplace=True |
350
|
|
|
) |
351
|
|
|
|
352
|
|
|
# drop buildings with multiple substation and lower max amenity |
353
|
|
|
df_amenities_in_buildings.drop_duplicates( |
354
|
|
|
subset=["id", "duplicate_identifier"], keep="first", inplace=True |
355
|
|
|
) |
356
|
|
|
|
357
|
|
|
# check if lost zensus cells are already covered |
358
|
|
|
if not df_lost_cells.empty: |
359
|
|
|
if not ( |
360
|
|
|
df_amenities_in_buildings["zensus_population_id"] |
361
|
|
|
.isin(df_lost_cells["zensus_population_id"]) |
362
|
|
|
.empty |
363
|
|
|
): |
364
|
|
|
# query geom data for cell if not |
365
|
|
|
with db.session_scope() as session: |
366
|
|
|
cells_query = session.query( |
367
|
|
|
DestatisZensusPopulationPerHa.id, |
368
|
|
|
DestatisZensusPopulationPerHa.geom, |
369
|
|
|
).filter( |
370
|
|
|
DestatisZensusPopulationPerHa.id.in_( |
371
|
|
|
df_lost_cells["zensus_population_id"] |
372
|
|
|
) |
373
|
|
|
) |
374
|
|
|
|
375
|
|
|
df_lost_cells = gpd.read_postgis( |
376
|
|
|
cells_query.statement, |
377
|
|
|
cells_query.session.bind, |
378
|
|
|
geom_col="geom", |
379
|
|
|
) |
380
|
|
|
# TODO maybe adapt method |
381
|
|
|
# place random amenity in cell |
382
|
|
|
df_lost_cells["n_amenities_inside"] = 1 |
383
|
|
|
df_lost_cells.rename( |
384
|
|
|
columns={ |
385
|
|
|
"id": "zensus_population_id", |
386
|
|
|
}, |
387
|
|
|
inplace=True, |
388
|
|
|
) |
389
|
|
|
df_lost_cells = place_buildings_with_amenities( |
390
|
|
|
df_lost_cells, amenities=1 |
391
|
|
|
) |
392
|
|
|
df_lost_cells.rename( |
393
|
|
|
columns={ |
394
|
|
|
# "id": "zensus_population_id", |
395
|
|
|
"geom_point": "geom_amenity", |
396
|
|
|
}, |
397
|
|
|
inplace=True, |
398
|
|
|
) |
399
|
|
|
df_lost_cells.drop( |
400
|
|
|
columns=["building_count", "n_amenities_inside"], inplace=True |
401
|
|
|
) |
402
|
|
|
else: |
403
|
|
|
df_lost_cells = None |
404
|
|
|
else: |
405
|
|
|
df_lost_cells = None |
406
|
|
|
|
407
|
|
|
# drop helper columns |
408
|
|
|
df_amenities_in_buildings.drop( |
409
|
|
|
columns=["duplicate_identifier"], inplace=True |
410
|
|
|
) |
411
|
|
|
|
412
|
|
|
# sum amenities per building and cell |
413
|
|
|
df_amenities_in_buildings[ |
414
|
|
|
"n_amenities_inside" |
415
|
|
|
] = df_amenities_in_buildings.groupby(["zensus_population_id", "id"])[ |
416
|
|
|
"n_amenities_inside" |
417
|
|
|
].transform( |
418
|
|
|
"sum" |
419
|
|
|
) |
420
|
|
|
# drop duplicated buildings |
421
|
|
|
df_buildings_with_amenities = df_amenities_in_buildings.drop_duplicates( |
422
|
|
|
["id", "zensus_population_id"] |
423
|
|
|
) |
424
|
|
|
df_buildings_with_amenities.reset_index(inplace=True, drop=True) |
425
|
|
|
|
426
|
|
|
df_buildings_with_amenities = df_buildings_with_amenities[ |
427
|
|
|
["id", "zensus_population_id", "geom_building", "n_amenities_inside"] |
428
|
|
|
] |
429
|
|
|
df_buildings_with_amenities.rename( |
430
|
|
|
columns={ |
431
|
|
|
# "zensus_population_id": "cell_id", |
432
|
|
|
"egon_building_id": "id" |
433
|
|
|
}, |
434
|
|
|
inplace=True, |
435
|
|
|
) |
436
|
|
|
|
437
|
|
|
return df_buildings_with_amenities, df_lost_cells |
438
|
|
|
|
439
|
|
|
|
440
|
|
|
def buildings_without_amenities(): |
441
|
|
|
""" |
442
|
|
|
Buildings (filtered and synthetic) in cells with |
443
|
|
|
cts demand but no amenities are determined. |
444
|
|
|
|
445
|
|
|
Returns |
446
|
|
|
------- |
447
|
|
|
df_buildings_without_amenities: gpd.GeoDataFrame |
448
|
|
|
Table of buildings without amenities in zensus cells |
449
|
|
|
with cts demand. |
450
|
|
|
""" |
451
|
|
|
from saio.boundaries import egon_map_zensus_buildings_filtered_all |
452
|
|
|
from saio.openstreetmap import ( |
453
|
|
|
osm_amenities_shops_filtered, |
454
|
|
|
osm_buildings_filtered, |
455
|
|
|
osm_buildings_synthetic, |
456
|
|
|
) |
457
|
|
|
|
458
|
|
|
# buildings_filtered in cts-demand-cells without amenities |
459
|
|
|
with db.session_scope() as session: |
460
|
|
|
|
461
|
|
|
# Synthetic Buildings |
462
|
|
|
q_synth_buildings = session.query( |
463
|
|
|
osm_buildings_synthetic.cell_id.cast(Integer).label( |
464
|
|
|
"zensus_population_id" |
465
|
|
|
), |
466
|
|
|
osm_buildings_synthetic.id.cast(Integer).label("id"), |
467
|
|
|
osm_buildings_synthetic.area.label("area"), |
468
|
|
|
osm_buildings_synthetic.geom_building.label("geom_building"), |
469
|
|
|
osm_buildings_synthetic.geom_point.label("geom_point"), |
470
|
|
|
) |
471
|
|
|
|
472
|
|
|
# Buildings filtered |
473
|
|
|
q_buildings_filtered = session.query( |
474
|
|
|
egon_map_zensus_buildings_filtered_all.zensus_population_id, |
475
|
|
|
osm_buildings_filtered.id, |
476
|
|
|
osm_buildings_filtered.area, |
477
|
|
|
osm_buildings_filtered.geom_building, |
478
|
|
|
osm_buildings_filtered.geom_point, |
479
|
|
|
).filter( |
480
|
|
|
osm_buildings_filtered.id |
481
|
|
|
== egon_map_zensus_buildings_filtered_all.id |
482
|
|
|
) |
483
|
|
|
|
484
|
|
|
# Amenities + zensus_population_id |
485
|
|
|
q_amenities = ( |
486
|
|
|
session.query( |
487
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
488
|
|
|
) |
489
|
|
|
.filter( |
490
|
|
|
func.st_within( |
491
|
|
|
osm_amenities_shops_filtered.geom_amenity, |
492
|
|
|
DestatisZensusPopulationPerHa.geom, |
493
|
|
|
) |
494
|
|
|
) |
495
|
|
|
.distinct(DestatisZensusPopulationPerHa.id) |
496
|
|
|
) |
497
|
|
|
|
498
|
|
|
# Cells with CTS demand but without amenities |
499
|
|
|
q_cts_without_amenities = ( |
500
|
|
|
session.query( |
501
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id, |
502
|
|
|
) |
503
|
|
|
.filter( |
504
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
505
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
506
|
|
|
) |
507
|
|
|
.filter( |
508
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
509
|
|
|
q_amenities |
510
|
|
|
) |
511
|
|
|
) |
512
|
|
|
.distinct() |
513
|
|
|
) |
514
|
|
|
|
515
|
|
|
# Buildings filtered + synthetic buildings residential in |
516
|
|
|
# cells with CTS demand but without amenities |
517
|
|
|
cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
518
|
|
|
egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
519
|
|
|
q_cts_without_amenities |
520
|
|
|
) |
521
|
|
|
) |
522
|
|
|
|
523
|
|
|
# df_buildings_without_amenities = pd.read_sql( |
524
|
|
|
# cells_query.statement, cells_query.session.bind, index_col=None) |
525
|
|
|
df_buildings_without_amenities = gpd.read_postgis( |
526
|
|
|
cells_query.statement, |
527
|
|
|
cells_query.session.bind, |
528
|
|
|
geom_col="geom_building", |
529
|
|
|
) |
530
|
|
|
|
531
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.rename( |
532
|
|
|
columns={ |
533
|
|
|
# "zensus_population_id": "cell_id", |
534
|
|
|
"egon_building_id": "id", |
535
|
|
|
} |
536
|
|
|
) |
537
|
|
|
|
538
|
|
|
return df_buildings_without_amenities |
539
|
|
|
|
540
|
|
|
|
541
|
|
|
def select_cts_buildings(df_buildings_wo_amenities, max_n): |
542
|
|
|
""" |
543
|
|
|
N Buildings (filtered and synthetic) in each cell with |
544
|
|
|
cts demand are selected. Only the first n buildings |
545
|
|
|
are taken for each cell. The buildings are sorted by surface |
546
|
|
|
area. |
547
|
|
|
|
548
|
|
|
Returns |
549
|
|
|
------- |
550
|
|
|
df_buildings_with_cts_demand: gpd.GeoDataFrame |
551
|
|
|
Table of buildings |
552
|
|
|
""" |
553
|
|
|
|
554
|
|
|
df_buildings_wo_amenities.sort_values( |
555
|
|
|
"area", ascending=False, inplace=True |
556
|
|
|
) |
557
|
|
|
# select first n ids each census cell if available |
558
|
|
|
df_buildings_with_cts_demand = ( |
559
|
|
|
df_buildings_wo_amenities.groupby("zensus_population_id") |
560
|
|
|
.nth(list(range(max_n))) |
561
|
|
|
.reset_index() |
562
|
|
|
) |
563
|
|
|
df_buildings_with_cts_demand.reset_index(drop=True, inplace=True) |
564
|
|
|
|
565
|
|
|
return df_buildings_with_cts_demand |
566
|
|
|
|
567
|
|
|
|
568
|
|
|
def cells_with_cts_demand_only(df_buildings_without_amenities): |
569
|
|
|
""" |
570
|
|
|
Cells with cts demand but no amenities or buildilngs |
571
|
|
|
are determined. |
572
|
|
|
|
573
|
|
|
Returns |
574
|
|
|
------- |
575
|
|
|
df_cells_only_cts_demand: gpd.GeoDataFrame |
576
|
|
|
Table of cells with cts demand but no amenities or buildings |
577
|
|
|
""" |
578
|
|
|
from saio.openstreetmap import osm_amenities_shops_filtered |
579
|
|
|
|
580
|
|
|
# cells mit amenities |
581
|
|
|
with db.session_scope() as session: |
582
|
|
|
sub_query = ( |
583
|
|
|
session.query( |
584
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
585
|
|
|
) |
586
|
|
|
.filter( |
587
|
|
|
func.st_within( |
588
|
|
|
osm_amenities_shops_filtered.geom_amenity, |
589
|
|
|
DestatisZensusPopulationPerHa.geom, |
590
|
|
|
) |
591
|
|
|
) |
592
|
|
|
.distinct(DestatisZensusPopulationPerHa.id) |
593
|
|
|
) |
594
|
|
|
|
595
|
|
|
cells_query = ( |
596
|
|
|
session.query( |
597
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id, |
598
|
|
|
EgonDemandRegioZensusElectricity.scenario, |
599
|
|
|
EgonDemandRegioZensusElectricity.sector, |
600
|
|
|
EgonDemandRegioZensusElectricity.demand, |
601
|
|
|
DestatisZensusPopulationPerHa.geom, |
602
|
|
|
) |
603
|
|
|
.filter( |
604
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
605
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
606
|
|
|
) |
607
|
|
|
.filter( |
608
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
609
|
|
|
sub_query |
610
|
|
|
) |
611
|
|
|
) |
612
|
|
|
.filter( |
613
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
614
|
|
|
== DestatisZensusPopulationPerHa.id |
615
|
|
|
) |
616
|
|
|
) |
617
|
|
|
|
618
|
|
|
df_cts_cell_without_amenities = gpd.read_postgis( |
619
|
|
|
cells_query.statement, |
620
|
|
|
cells_query.session.bind, |
621
|
|
|
geom_col="geom", |
622
|
|
|
index_col=None, |
623
|
|
|
) |
624
|
|
|
|
625
|
|
|
# TODO maybe remove |
626
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.rename( |
627
|
|
|
columns={"cell_id": "zensus_population_id"} |
628
|
|
|
) |
629
|
|
|
|
630
|
|
|
# Census cells with only cts demand |
631
|
|
|
df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
632
|
|
|
~df_cts_cell_without_amenities["zensus_population_id"].isin( |
633
|
|
|
df_buildings_without_amenities["zensus_population_id"].unique() |
634
|
|
|
) |
635
|
|
|
] |
636
|
|
|
|
637
|
|
|
df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
638
|
|
|
|
639
|
|
|
return df_cells_only_cts_demand |
640
|
|
|
|
641
|
|
|
|
642
|
|
|
def calc_census_cell_share(scenario="eGon2035", sector="electricity"): |
643
|
|
|
""" |
644
|
|
|
The profile share for each census cell is calculated by it's |
645
|
|
|
share of annual demand per substation bus. The annual demand |
646
|
|
|
per cell is defined by DemandRegio/Peta5. The share is for both |
647
|
|
|
scenarios identical as the annual demand is linearly scaled. |
648
|
|
|
|
649
|
|
|
Parameters |
650
|
|
|
---------- |
651
|
|
|
scenario: str |
652
|
|
|
Scenario for which the share is calculated. |
653
|
|
|
sector: str |
654
|
|
|
Scenario for which the share is calculated. |
655
|
|
|
|
656
|
|
|
Returns |
657
|
|
|
------- |
658
|
|
|
df_census_share: pd.DataFrame |
659
|
|
|
""" |
660
|
|
|
if sector == "electricity": |
661
|
|
|
demand_table = EgonDemandRegioZensusElectricity |
662
|
|
|
elif sector == "heat": |
663
|
|
|
demand_table = EgonPetaHeat |
664
|
|
|
|
665
|
|
|
with db.session_scope() as session: |
666
|
|
|
cells_query = ( |
667
|
|
|
session.query(demand_table, MapZensusGridDistricts.bus_id) |
|
|
|
|
668
|
|
|
.filter(demand_table.sector == "service") |
669
|
|
|
.filter(demand_table.scenario == scenario) |
670
|
|
|
.filter( |
671
|
|
|
demand_table.zensus_population_id |
672
|
|
|
== MapZensusGridDistricts.zensus_population_id |
673
|
|
|
) |
674
|
|
|
) |
675
|
|
|
|
676
|
|
|
df_demand = pd.read_sql( |
677
|
|
|
cells_query.statement, |
678
|
|
|
cells_query.session.bind, |
679
|
|
|
index_col="zensus_population_id", |
680
|
|
|
) |
681
|
|
|
|
682
|
|
|
# get demand share of cell per bus |
683
|
|
|
df_census_share = df_demand["demand"] / df_demand.groupby("bus_id")[ |
684
|
|
|
"demand" |
685
|
|
|
].transform("sum") |
686
|
|
|
df_census_share = df_census_share.rename("cell_share") |
687
|
|
|
|
688
|
|
|
df_census_share = pd.concat( |
689
|
|
|
[ |
690
|
|
|
df_census_share, |
691
|
|
|
df_demand[["bus_id", "scenario"]], |
692
|
|
|
], |
693
|
|
|
axis=1, |
694
|
|
|
) |
695
|
|
|
|
696
|
|
|
df_census_share.reset_index(inplace=True) |
697
|
|
|
return df_census_share |
698
|
|
|
|
699
|
|
|
|
700
|
|
|
def calc_building_demand_profile_share( |
701
|
|
|
df_cts_buildings, scenario="eGon2035", sector="electricity" |
702
|
|
|
): |
703
|
|
|
""" |
704
|
|
|
Share of cts electricity demand profile per bus for every selected building |
705
|
|
|
is calculated. Building-amenity share is multiplied with census cell share |
706
|
|
|
to get the substation bus profile share for each building. The share is |
707
|
|
|
grouped and aggregated per building as some cover multiple cells. |
708
|
|
|
|
709
|
|
|
Parameters |
710
|
|
|
---------- |
711
|
|
|
df_cts_buildings: gpd.GeoDataFrame |
712
|
|
|
Table of all buildings with cts demand assigned |
713
|
|
|
scenario: str |
714
|
|
|
Scenario for which the share is calculated. |
715
|
|
|
sector: str |
716
|
|
|
Sector for which the share is calculated. |
717
|
|
|
|
718
|
|
|
Returns |
719
|
|
|
------- |
720
|
|
|
df_building_share: pd.DataFrame |
721
|
|
|
Table of bus profile share per building |
722
|
|
|
|
723
|
|
|
""" |
724
|
|
|
|
725
|
|
|
def calc_building_amenity_share(df_cts_buildings): |
726
|
|
|
""" |
727
|
|
|
Calculate the building share by the number amenities per building |
728
|
|
|
within a census cell. |
729
|
|
|
""" |
730
|
|
|
df_building_amenity_share = df_cts_buildings[ |
731
|
|
|
"n_amenities_inside" |
732
|
|
|
] / df_cts_buildings.groupby("zensus_population_id")[ |
733
|
|
|
"n_amenities_inside" |
734
|
|
|
].transform( |
735
|
|
|
"sum" |
736
|
|
|
) |
737
|
|
|
df_building_amenity_share = pd.concat( |
738
|
|
|
[ |
739
|
|
|
df_building_amenity_share.rename("building_amenity_share"), |
740
|
|
|
df_cts_buildings[["zensus_population_id", "id"]], |
741
|
|
|
], |
742
|
|
|
axis=1, |
743
|
|
|
) |
744
|
|
|
return df_building_amenity_share |
745
|
|
|
|
746
|
|
|
df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
747
|
|
|
|
748
|
|
|
df_census_cell_share = calc_census_cell_share( |
749
|
|
|
scenario=scenario, sector=sector |
750
|
|
|
) |
751
|
|
|
|
752
|
|
|
df_demand_share = pd.merge( |
753
|
|
|
left=df_building_amenity_share, |
754
|
|
|
right=df_census_cell_share, |
755
|
|
|
left_on="zensus_population_id", |
756
|
|
|
right_on="zensus_population_id", |
757
|
|
|
) |
758
|
|
|
df_demand_share["profile_share"] = df_demand_share[ |
759
|
|
|
"building_amenity_share" |
760
|
|
|
].multiply(df_demand_share["cell_share"]) |
761
|
|
|
|
762
|
|
|
df_demand_share = df_demand_share[ |
763
|
|
|
["id", "bus_id", "scenario", "profile_share"] |
764
|
|
|
] |
765
|
|
|
# TODO adapt groupby? |
766
|
|
|
# Group and aggregate per building for multi cell buildings |
767
|
|
|
df_demand_share = ( |
768
|
|
|
df_demand_share.groupby(["scenario", "id", "bus_id"]) |
769
|
|
|
.sum() |
770
|
|
|
.reset_index() |
771
|
|
|
) |
772
|
|
|
if df_demand_share.duplicated("id", keep=False).any(): |
773
|
|
|
print( |
774
|
|
|
df_demand_share.loc[df_demand_share.duplicated("id", keep=False)] |
775
|
|
|
) |
776
|
|
|
return df_demand_share |
777
|
|
|
|
778
|
|
|
|
779
|
|
|
def calc_building_profiles( |
780
|
|
|
df_demand_share=None, |
781
|
|
|
egon_building_id=None, |
782
|
|
|
bus_id=None, |
783
|
|
|
scenario="eGon2035", |
784
|
|
|
sector="electricity", |
785
|
|
|
): |
786
|
|
|
""" |
787
|
|
|
Calculate the demand profile for each building. The profile is |
788
|
|
|
calculated by the demand share of the building per substation bus. |
789
|
|
|
|
790
|
|
|
Parameters |
791
|
|
|
---------- |
792
|
|
|
df_demand_share: pd.DataFrame |
793
|
|
|
Table of demand share per building. |
794
|
|
|
egon_building_id: int |
795
|
|
|
Id of the building for which the profile is calculated. If not |
796
|
|
|
given, the profiles are calculated for all buildings. |
797
|
|
|
scenario: str |
798
|
|
|
Scenario for which the share is calculated. |
799
|
|
|
sector: str |
800
|
|
|
Sector for which the share is calculated. |
801
|
|
|
|
802
|
|
|
Returns |
803
|
|
|
------- |
804
|
|
|
df_building_profiles: pd.DataFrame |
805
|
|
|
Table of demand profile per building |
806
|
|
|
""" |
807
|
|
|
if sector == "electricity": |
808
|
|
|
with db.session_scope() as session: |
809
|
|
|
cells_query = session.query( |
810
|
|
|
EgonCtsElectricityDemandBuildingShare, |
811
|
|
|
).filter( |
812
|
|
|
EgonCtsElectricityDemandBuildingShare.scenario == scenario |
813
|
|
|
) |
814
|
|
|
|
815
|
|
|
df_demand_share = pd.read_sql( |
816
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
817
|
|
|
) |
818
|
|
|
elif sector == "heat": |
819
|
|
|
with db.session_scope() as session: |
820
|
|
|
cells_query = session.query( |
821
|
|
|
EgonCtsHeatDemandBuildingShare, |
822
|
|
|
).filter(EgonCtsHeatDemandBuildingShare.scenario == scenario) |
823
|
|
|
|
824
|
|
|
df_demand_share = pd.read_sql( |
825
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
826
|
|
|
) |
827
|
|
|
|
828
|
|
|
# TODO workaround |
829
|
|
|
df_demand_share = df_demand_share.drop(columns="serial") |
830
|
|
|
|
831
|
|
|
# TODO maybe use demand.egon_etrago_electricity_cts |
832
|
|
|
# with db.session_scope() as session: |
833
|
|
|
# cells_query = ( |
834
|
|
|
# session.query( |
835
|
|
|
# EgonEtragoElectricityCts |
836
|
|
|
# ).filter( |
837
|
|
|
# EgonEtragoElectricityCts.scn_name == scenario) |
838
|
|
|
# ) |
839
|
|
|
# |
840
|
|
|
# df_cts_profiles = pd.read_sql( |
841
|
|
|
# cells_query.statement, |
842
|
|
|
# cells_query.session.bind, |
843
|
|
|
# ) |
844
|
|
|
# df_cts_profiles = pd.DataFrame.from_dict( |
845
|
|
|
# df_cts_profiles.set_index('bus_id')['p_set'].to_dict(), |
846
|
|
|
# orient="index") |
847
|
|
|
df_cts_profiles = calc_load_curves_cts(scenario) |
848
|
|
|
|
849
|
|
|
# get demand share of selected building id |
850
|
|
|
if isinstance(egon_building_id, int): |
851
|
|
|
if egon_building_id in df_demand_share["id"]: |
852
|
|
|
df_demand_share = df_demand_share.loc[ |
853
|
|
|
df_demand_share["id"] == egon_building_id |
854
|
|
|
] |
855
|
|
|
else: |
856
|
|
|
raise KeyError(f"Building with id {egon_building_id} not found") |
857
|
|
|
|
858
|
|
|
# get demand share of all buildings for selected bus id |
859
|
|
|
if isinstance(bus_id, int): |
860
|
|
|
if bus_id in df_demand_share["bus_id"]: |
861
|
|
|
df_demand_share = df_demand_share.loc[ |
862
|
|
|
df_demand_share["bus_id"] == bus_id |
863
|
|
|
] |
864
|
|
|
else: |
865
|
|
|
raise KeyError(f"Bus with id {bus_id} not found") |
866
|
|
|
|
867
|
|
|
# get demand profile for all buildings for selected demand share |
868
|
|
|
df_building_profiles = pd.DataFrame() |
869
|
|
|
for bus_id, df in df_demand_share.groupby("bus_id"): |
870
|
|
|
shares = df.set_index("id", drop=True)["profile_share"] |
871
|
|
|
profile = df_cts_profiles.loc[:, bus_id] |
872
|
|
|
building_profiles = profile.apply(lambda x: x * shares) |
|
|
|
|
873
|
|
|
df_building_profiles = pd.concat( |
874
|
|
|
[df_building_profiles, building_profiles], axis=1 |
875
|
|
|
) |
876
|
|
|
|
877
|
|
|
return df_building_profiles |
878
|
|
|
|
879
|
|
|
|
880
|
|
|
def delete_synthetic_cts_buildings(): |
881
|
|
|
""" |
882
|
|
|
All synthetic cts buildings are deleted from the DB. This is necessary if |
883
|
|
|
the task is run multiple times as the existing synthetic buildings |
884
|
|
|
influence the results. |
885
|
|
|
""" |
886
|
|
|
# import db tables |
887
|
|
|
from saio.openstreetmap import osm_buildings_synthetic |
888
|
|
|
|
889
|
|
|
# cells mit amenities |
890
|
|
|
with db.session_scope() as session: |
891
|
|
|
session.query(osm_buildings_synthetic).filter( |
892
|
|
|
osm_buildings_synthetic.building == "cts" |
893
|
|
|
).delete() |
894
|
|
|
|
895
|
|
|
|
896
|
|
|
def cts_buildings(): |
897
|
|
|
""" |
898
|
|
|
Assigns CTS demand to buildings and calculates the respective demand |
899
|
|
|
profiles. The demand profile per substation are disaggregated per |
900
|
|
|
annual demand share of each census cell and by the number of amenities |
901
|
|
|
per building within the cell. If no building data is available, |
902
|
|
|
synthetic buildings are generated around the amenities. If no amenities |
903
|
|
|
but cts demand is available, buildings are randomly selected. If no |
904
|
|
|
building nor amenity is available, random synthetic buildings are |
905
|
|
|
generated. The demand share is stored in the database. |
906
|
|
|
|
907
|
|
|
Note: |
908
|
|
|
----- |
909
|
|
|
Cells with CTS demand, amenities and buildings do not change within |
910
|
|
|
the scenarios, only the demand itself. Therefore scenario eGon2035 |
911
|
|
|
can be used universally to determine the cts buildings but not for |
912
|
|
|
he demand share. |
913
|
|
|
""" |
914
|
|
|
|
915
|
|
|
# Buildings with amenities |
916
|
|
|
df_buildings_with_amenities, df_lost_cells = buildings_with_amenities() |
917
|
|
|
|
918
|
|
|
# Median number of amenities per cell |
919
|
|
|
median_n_amenities = int( |
920
|
|
|
df_buildings_with_amenities.groupby("zensus_population_id")[ |
921
|
|
|
"n_amenities_inside" |
922
|
|
|
] |
923
|
|
|
.sum() |
924
|
|
|
.median() |
925
|
|
|
) |
926
|
|
|
|
927
|
|
|
# Remove synthetic CTS buildings if existing |
928
|
|
|
delete_synthetic_cts_buildings() |
929
|
|
|
|
930
|
|
|
# Amenities not assigned to buildings |
931
|
|
|
df_amenities_without_buildings = amenities_without_buildings() |
932
|
|
|
|
933
|
|
|
# Append lost cells due to duplicated ids, to cover all demand cells |
934
|
|
|
if df_lost_cells.empty: |
935
|
|
|
|
936
|
|
|
df_lost_cells["amenities"] = median_n_amenities |
937
|
|
|
# create row for every amenity |
938
|
|
|
df_lost_cells["amenities"] = ( |
939
|
|
|
df_lost_cells["amenities"].astype(int).apply(range) |
940
|
|
|
) |
941
|
|
|
df_lost_cells = df_lost_cells.explode("amenities") |
942
|
|
|
df_lost_cells.drop(columns="amenities", inplace=True) |
943
|
|
|
df_amenities_without_buildings = df_amenities_without_buildings.append( |
944
|
|
|
df_lost_cells, ignore_index=True |
945
|
|
|
) |
946
|
|
|
# One building per amenity |
947
|
|
|
df_amenities_without_buildings["n_amenities_inside"] = 1 |
948
|
|
|
# Create synthetic buildings for amenites without buildings |
949
|
|
|
df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
950
|
|
|
df_amenities_without_buildings, points="geom_amenity" |
951
|
|
|
) |
952
|
|
|
|
953
|
|
|
# TODO write to DB and remove renaming |
954
|
|
|
write_table_to_postgis( |
955
|
|
|
df_synthetic_buildings_with_amenities.rename( |
956
|
|
|
columns={ |
957
|
|
|
"zensus_population_id": "cell_id", |
958
|
|
|
"egon_building_id": "id", |
959
|
|
|
} |
960
|
|
|
), |
961
|
|
|
OsmBuildingsSynthetic, |
962
|
|
|
drop=False, |
963
|
|
|
) |
964
|
|
|
|
965
|
|
|
# Cells without amenities but CTS demand and buildings |
966
|
|
|
df_buildings_without_amenities = buildings_without_amenities() |
967
|
|
|
|
968
|
|
|
# TODO Fix Adhoc Bugfix duplicated buildings |
969
|
|
|
# drop building ids which have already been used |
970
|
|
|
mask = df_buildings_without_amenities.loc[ |
971
|
|
|
df_buildings_without_amenities["id"].isin( |
972
|
|
|
df_buildings_with_amenities["id"] |
973
|
|
|
) |
974
|
|
|
].index |
975
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.drop( |
976
|
|
|
index=mask |
977
|
|
|
).reset_index(drop=True) |
978
|
|
|
|
979
|
|
|
# select median n buildings per cell |
980
|
|
|
df_buildings_without_amenities = select_cts_buildings( |
981
|
|
|
df_buildings_without_amenities, max_n=median_n_amenities |
982
|
|
|
) |
983
|
|
|
df_buildings_without_amenities["n_amenities_inside"] = 1 |
984
|
|
|
|
985
|
|
|
# Create synthetic amenities and buildings in cells with only CTS demand |
986
|
|
|
df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
987
|
|
|
df_buildings_without_amenities |
988
|
|
|
) |
989
|
|
|
# Median n Amenities per cell |
990
|
|
|
df_cells_with_cts_demand_only["amenities"] = median_n_amenities |
991
|
|
|
# create row for every amenity |
992
|
|
|
df_cells_with_cts_demand_only["amenities"] = ( |
993
|
|
|
df_cells_with_cts_demand_only["amenities"].astype(int).apply(range) |
994
|
|
|
) |
995
|
|
|
df_cells_with_cts_demand_only = df_cells_with_cts_demand_only.explode( |
996
|
|
|
"amenities" |
997
|
|
|
) |
998
|
|
|
df_cells_with_cts_demand_only.drop(columns="amenities", inplace=True) |
999
|
|
|
|
1000
|
|
|
# Only 1 Amenity per Building |
1001
|
|
|
df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
1002
|
|
|
df_cells_with_cts_demand_only = place_buildings_with_amenities( |
1003
|
|
|
df_cells_with_cts_demand_only, amenities=1 |
1004
|
|
|
) |
1005
|
|
|
df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
1006
|
|
|
df_cells_with_cts_demand_only, points="geom_point" |
1007
|
|
|
) |
1008
|
|
|
|
1009
|
|
|
# TODO write to DB and remove (backup) renaming |
1010
|
|
|
write_table_to_postgis( |
1011
|
|
|
df_synthetic_buildings_without_amenities.rename( |
1012
|
|
|
columns={ |
1013
|
|
|
"zensus_population_id": "cell_id", |
1014
|
|
|
"egon_building_id": "id", |
1015
|
|
|
} |
1016
|
|
|
), |
1017
|
|
|
OsmBuildingsSynthetic, |
1018
|
|
|
drop=False, |
1019
|
|
|
) |
1020
|
|
|
|
1021
|
|
|
# Concat all buildings |
1022
|
|
|
columns = [ |
1023
|
|
|
"zensus_population_id", |
1024
|
|
|
"id", |
1025
|
|
|
"geom_building", |
1026
|
|
|
"n_amenities_inside", |
1027
|
|
|
"source", |
1028
|
|
|
] |
1029
|
|
|
|
1030
|
|
|
df_buildings_with_amenities["source"] = "bwa" |
1031
|
|
|
df_synthetic_buildings_with_amenities["source"] = "sbwa" |
1032
|
|
|
df_buildings_without_amenities["source"] = "bwoa" |
1033
|
|
|
df_synthetic_buildings_without_amenities["source"] = "sbwoa" |
1034
|
|
|
|
1035
|
|
|
df_cts_buildings = pd.concat( |
1036
|
|
|
[ |
1037
|
|
|
df_buildings_with_amenities[columns], |
1038
|
|
|
df_synthetic_buildings_with_amenities[columns], |
1039
|
|
|
df_buildings_without_amenities[columns], |
1040
|
|
|
df_synthetic_buildings_without_amenities[columns], |
1041
|
|
|
], |
1042
|
|
|
axis=0, |
1043
|
|
|
ignore_index=True, |
1044
|
|
|
) |
1045
|
|
|
# TODO maybe remove after #772 |
1046
|
|
|
df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
1047
|
|
|
|
1048
|
|
|
# Write table to db for debugging |
1049
|
|
|
# TODO remove later |
1050
|
|
|
df_cts_buildings = gpd.GeoDataFrame( |
1051
|
|
|
df_cts_buildings, geometry="geom_building", crs=3035 |
1052
|
|
|
) |
1053
|
|
|
df_cts_buildings = df_cts_buildings.reset_index().rename( |
1054
|
|
|
columns={"index": "serial"} |
1055
|
|
|
) |
1056
|
|
|
write_table_to_postgis( |
1057
|
|
|
df_cts_buildings, |
1058
|
|
|
CtsBuildings, |
1059
|
|
|
drop=True, |
1060
|
|
|
) |
1061
|
|
|
|
1062
|
|
|
|
1063
|
|
View Code Duplication |
def cts_electricity(): |
|
|
|
|
1064
|
|
|
""" |
1065
|
|
|
Calculate cts electricity demand share of hvmv substation profile |
1066
|
|
|
for buildings. |
1067
|
|
|
""" |
1068
|
|
|
|
1069
|
|
|
with db.session_scope() as session: |
1070
|
|
|
cells_query = session.query(CtsBuildings) |
1071
|
|
|
|
1072
|
|
|
df_cts_buildings = pd.read_sql( |
1073
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
1074
|
|
|
) |
1075
|
|
|
|
1076
|
|
|
df_demand_share_2035 = calc_building_demand_profile_share( |
1077
|
|
|
df_cts_buildings, scenario="eGon2035", sector="electricity" |
1078
|
|
|
) |
1079
|
|
|
df_demand_share_100RE = calc_building_demand_profile_share( |
1080
|
|
|
df_cts_buildings, scenario="eGon100RE", sector="electricity" |
1081
|
|
|
) |
1082
|
|
|
|
1083
|
|
|
df_demand_share = pd.concat( |
1084
|
|
|
[df_demand_share_2035, df_demand_share_100RE], |
1085
|
|
|
axis=0, |
1086
|
|
|
ignore_index=True, |
1087
|
|
|
) |
1088
|
|
|
# TODO workaround |
1089
|
|
|
df_demand_share = df_demand_share.reset_index().rename( |
1090
|
|
|
columns={"index": "serial"} |
1091
|
|
|
) |
1092
|
|
|
|
1093
|
|
|
write_table_to_postgres( |
1094
|
|
|
df_demand_share, EgonCtsElectricityDemandBuildingShare, drop=True |
1095
|
|
|
) |
1096
|
|
|
|
1097
|
|
|
|
1098
|
|
View Code Duplication |
def cts_heat(): |
|
|
|
|
1099
|
|
|
""" |
1100
|
|
|
Calculate cts electricity demand share of hvmv substation profile |
1101
|
|
|
for buildings. |
1102
|
|
|
""" |
1103
|
|
|
|
1104
|
|
|
with db.session_scope() as session: |
1105
|
|
|
cells_query = session.query(CtsBuildings) |
1106
|
|
|
|
1107
|
|
|
df_cts_buildings = pd.read_sql( |
1108
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
1109
|
|
|
) |
1110
|
|
|
|
1111
|
|
|
df_demand_share_2035 = calc_building_demand_profile_share( |
1112
|
|
|
df_cts_buildings, scenario="eGon2035", sector="heat" |
1113
|
|
|
) |
1114
|
|
|
df_demand_share_100RE = calc_building_demand_profile_share( |
1115
|
|
|
df_cts_buildings, scenario="eGon100RE", sector="heat" |
1116
|
|
|
) |
1117
|
|
|
|
1118
|
|
|
df_demand_share = pd.concat( |
1119
|
|
|
[df_demand_share_2035, df_demand_share_100RE], |
1120
|
|
|
axis=0, |
1121
|
|
|
ignore_index=True, |
1122
|
|
|
) |
1123
|
|
|
# TODO workaround |
1124
|
|
|
df_demand_share = df_demand_share.reset_index().rename( |
1125
|
|
|
columns={"index": "serial"} |
1126
|
|
|
) |
1127
|
|
|
|
1128
|
|
|
write_table_to_postgres( |
1129
|
|
|
df_demand_share, EgonCtsHeatDemandBuildingShare, drop=True |
1130
|
|
|
) |
1131
|
|
|
|
1132
|
|
|
|
1133
|
|
|
def get_cts_electricity_peak_load(): |
1134
|
|
|
""" |
1135
|
|
|
Get peak load of all CTS buildings for both scenarios and store in DB. |
1136
|
|
|
""" |
1137
|
|
|
|
1138
|
|
|
df_building_profiles = calc_building_profiles(scenario="eGon2035") |
1139
|
|
|
df_peak_load_2035 = df_building_profiles.max(axis=0).rename("eGon2035") |
1140
|
|
|
df_building_profiles = calc_building_profiles(scenario="eGon100RE") |
1141
|
|
|
df_peak_load_100RE = df_building_profiles.max(axis=0).rename("eGon100RE") |
1142
|
|
|
df_peak_load = pd.concat( |
1143
|
|
|
[df_peak_load_2035, df_peak_load_100RE], axis=1 |
1144
|
|
|
).reset_index() |
1145
|
|
|
|
1146
|
|
|
# TODO rename table column to egon_building_id |
1147
|
|
|
df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
1148
|
|
|
df_peak_load["type"] = "cts" |
1149
|
|
|
df_peak_load = df_peak_load.melt( |
1150
|
|
|
id_vars=["building_id", "type"], |
1151
|
|
|
var_name="scenario", |
1152
|
|
|
value_name="peak_load_in_w", |
1153
|
|
|
) |
1154
|
|
|
# TODO Check units, maybe MwH? |
1155
|
|
|
# Convert unit to W |
1156
|
|
|
df_peak_load["peak_load_in_w"] = df_peak_load["peak_load_in_w"] * 1e6 |
1157
|
|
|
# Delete rows with cts demand |
1158
|
|
|
with db.session_scope() as session: |
1159
|
|
|
session.query(BuildingPeakLoads).filter( |
1160
|
|
|
BuildingPeakLoads.type == "cts" |
1161
|
|
|
).delete() |
1162
|
|
|
|
1163
|
|
|
# Write peak loads into db |
1164
|
|
|
with db.session_scope() as session: |
1165
|
|
|
session.bulk_insert_mappings( |
1166
|
|
|
BuildingPeakLoads, |
1167
|
|
|
df_peak_load.to_dict(orient="records"), |
1168
|
|
|
) |
1169
|
|
|
|
1170
|
|
|
|
1171
|
|
|
class CtsElectricityBuildings(Dataset): |
1172
|
|
|
def __init__(self, dependencies): |
1173
|
|
|
super().__init__( |
1174
|
|
|
name="CtsElectricityBuildings", |
1175
|
|
|
version="0.0.0", |
1176
|
|
|
dependencies=dependencies, |
1177
|
|
|
tasks=( |
1178
|
|
|
cts_buildings, |
1179
|
|
|
{cts_electricity, cts_heat}, |
1180
|
|
|
get_cts_electricity_peak_load, |
1181
|
|
|
), |
1182
|
|
|
) |
1183
|
|
|
|