|
1
|
|
|
from datetime import date, datetime |
|
2
|
|
|
from pathlib import Path |
|
3
|
|
|
import json |
|
4
|
|
|
import os |
|
5
|
|
|
import time |
|
6
|
|
|
import warnings |
|
7
|
|
|
|
|
8
|
|
|
from sqlalchemy import ARRAY, Column, Float, Integer, String, Text |
|
9
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
|
10
|
|
|
import geopandas as gpd |
|
11
|
|
|
import numpy as np |
|
12
|
|
|
import pandas as pd |
|
13
|
|
|
|
|
14
|
|
|
from egon.data import config, db |
|
15
|
|
|
import egon.data.datasets.era5 as era |
|
16
|
|
|
|
|
17
|
|
|
try: |
|
18
|
|
|
from disaggregator import temporal |
|
19
|
|
|
except ImportError as e: |
|
20
|
|
|
pass |
|
21
|
|
|
|
|
22
|
|
|
from math import ceil |
|
23
|
|
|
|
|
24
|
|
|
from egon.data.datasets import Dataset |
|
25
|
|
|
from egon.data.datasets.heat_demand_timeseries.daily import ( |
|
26
|
|
|
daily_demand_shares_per_climate_zone, |
|
27
|
|
|
map_climate_zones_to_zensus, |
|
28
|
|
|
) |
|
29
|
|
|
from egon.data.datasets.heat_demand_timeseries.idp_pool import create, select |
|
30
|
|
|
from egon.data.datasets.heat_demand_timeseries.service_sector import ( |
|
31
|
|
|
CTS_demand_scale, |
|
32
|
|
|
) |
|
33
|
|
|
from egon.data.metadata import ( |
|
34
|
|
|
context, |
|
35
|
|
|
license_egon_data_odbl, |
|
36
|
|
|
meta_metadata, |
|
37
|
|
|
sources, |
|
38
|
|
|
) |
|
39
|
|
|
|
|
40
|
|
|
Base = declarative_base() |
|
41
|
|
|
|
|
42
|
|
|
|
|
43
|
|
|
class EgonTimeseriesDistrictHeating(Base): |
|
44
|
|
|
__tablename__ = "egon_timeseries_district_heating" |
|
45
|
|
|
__table_args__ = {"schema": "demand"} |
|
46
|
|
|
area_id = Column(Integer, primary_key=True) |
|
47
|
|
|
scenario = Column(Text, primary_key=True) |
|
48
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
|
49
|
|
|
|
|
50
|
|
|
|
|
51
|
|
|
class EgonEtragoTimeseriesIndividualHeating(Base): |
|
52
|
|
|
__tablename__ = "egon_etrago_timeseries_individual_heating" |
|
53
|
|
|
__table_args__ = {"schema": "demand"} |
|
54
|
|
|
bus_id = Column(Integer, primary_key=True) |
|
55
|
|
|
scenario = Column(Text, primary_key=True) |
|
56
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
|
57
|
|
|
|
|
58
|
|
|
|
|
59
|
|
|
class EgonIndividualHeatingPeakLoads(Base): |
|
60
|
|
|
__tablename__ = "egon_individual_heating_peak_loads" |
|
61
|
|
|
__table_args__ = {"schema": "demand"} |
|
62
|
|
|
building_id = Column(Integer, primary_key=True) |
|
63
|
|
|
scenario = Column(Text, primary_key=True) |
|
64
|
|
|
w_th = Column(Float(53)) |
|
65
|
|
|
|
|
66
|
|
|
|
|
67
|
|
|
class EgonEtragoHeatCts(Base): |
|
68
|
|
|
__tablename__ = "egon_etrago_heat_cts" |
|
69
|
|
|
__table_args__ = {"schema": "demand"} |
|
70
|
|
|
|
|
71
|
|
|
bus_id = Column(Integer, primary_key=True) |
|
72
|
|
|
scn_name = Column(String, primary_key=True) |
|
73
|
|
|
p_set = Column(ARRAY(Float)) |
|
74
|
|
|
|
|
75
|
|
|
|
|
76
|
|
|
def create_timeseries_for_building(building_id, scenario): |
|
77
|
|
|
"""Generates final heat demand timeseries for a specific building |
|
78
|
|
|
|
|
79
|
|
|
Parameters |
|
80
|
|
|
---------- |
|
81
|
|
|
building_id : int |
|
82
|
|
|
Index of the selected building |
|
83
|
|
|
scenario : str |
|
84
|
|
|
Name of the selected scenario. |
|
85
|
|
|
|
|
86
|
|
|
Returns |
|
87
|
|
|
------- |
|
88
|
|
|
pandas.DataFrame |
|
89
|
|
|
Hourly heat demand timeseries in MW for the selected building |
|
90
|
|
|
|
|
91
|
|
|
""" |
|
92
|
|
|
|
|
93
|
|
|
return db.select_dataframe( |
|
94
|
|
|
f""" |
|
95
|
|
|
SELECT building_demand * UNNEST(idp) as demand |
|
96
|
|
|
FROM |
|
97
|
|
|
( |
|
98
|
|
|
SELECT |
|
99
|
|
|
demand.demand |
|
100
|
|
|
/ building.count |
|
101
|
|
|
* daily_demand.daily_demand_share as building_demand, |
|
102
|
|
|
daily_demand.day_of_year |
|
103
|
|
|
FROM |
|
104
|
|
|
|
|
105
|
|
|
(SELECT demand FROM |
|
106
|
|
|
demand.egon_peta_heat |
|
107
|
|
|
WHERE scenario = '{scenario}' |
|
108
|
|
|
AND sector = 'residential' |
|
109
|
|
|
AND zensus_population_id IN( |
|
110
|
|
|
SELECT zensus_population_id FROM |
|
111
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
112
|
|
|
WHERE building_id = {building_id})) as demand, |
|
113
|
|
|
|
|
114
|
|
|
(SELECT COUNT(building_id) |
|
115
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
116
|
|
|
WHERE zensus_population_id IN( |
|
117
|
|
|
SELECT zensus_population_id FROM |
|
118
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
119
|
|
|
WHERE building_id = {building_id})) as building, |
|
120
|
|
|
|
|
121
|
|
|
(SELECT daily_demand_share, day_of_year FROM |
|
122
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
|
123
|
|
|
WHERE climate_zone = ( |
|
124
|
|
|
SELECT climate_zone FROM boundaries.egon_map_zensus_climate_zones |
|
125
|
|
|
WHERE zensus_population_id = |
|
126
|
|
|
( |
|
127
|
|
|
SELECT zensus_population_id |
|
128
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
129
|
|
|
WHERE building_id = {building_id} |
|
130
|
|
|
) |
|
131
|
|
|
)) as daily_demand) as daily_demand |
|
132
|
|
|
|
|
133
|
|
|
JOIN (SELECT b.idp, ordinality as day |
|
134
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a, |
|
135
|
|
|
UNNEST (a.selected_idp_profiles) WITH ORDINALITY as selected_idp |
|
136
|
|
|
JOIN demand.egon_heat_idp_pool b |
|
137
|
|
|
ON selected_idp = b.index |
|
138
|
|
|
WHERE a.building_id = {building_id}) as demand_profile |
|
139
|
|
|
ON demand_profile.day = daily_demand.day_of_year |
|
140
|
|
|
""" |
|
141
|
|
|
) |
|
142
|
|
|
|
|
143
|
|
|
|
|
144
|
|
|
def create_district_heating_profile(scenario, area_id): |
|
145
|
|
|
"""Create a heat demand profile for a district heating grid. |
|
146
|
|
|
|
|
147
|
|
|
The created heat demand profile includes the demands of households |
|
148
|
|
|
and the service sector. |
|
149
|
|
|
|
|
150
|
|
|
Parameters |
|
151
|
|
|
---------- |
|
152
|
|
|
scenario : str |
|
153
|
|
|
The name of the selected scenario. |
|
154
|
|
|
area_id : int |
|
155
|
|
|
The index of the selected district heating grid. |
|
156
|
|
|
|
|
157
|
|
|
Returns |
|
158
|
|
|
------- |
|
159
|
|
|
pd.DataFrame |
|
160
|
|
|
An hourly heat demand timeseries in MW for the selected district |
|
161
|
|
|
heating grid. |
|
162
|
|
|
|
|
163
|
|
|
""" |
|
164
|
|
|
|
|
165
|
|
|
start_time = datetime.now() |
|
166
|
|
|
|
|
167
|
|
|
df = db.select_dataframe( |
|
168
|
|
|
f""" |
|
169
|
|
|
|
|
170
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
|
171
|
|
|
FROM |
|
172
|
|
|
|
|
173
|
|
|
( |
|
174
|
|
|
SELECT demand.demand * |
|
175
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
|
176
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
|
177
|
|
|
demand_profile.building_id, |
|
178
|
|
|
c.day_of_year, |
|
179
|
|
|
ordinality |
|
180
|
|
|
|
|
181
|
|
|
FROM |
|
182
|
|
|
|
|
183
|
|
|
(SELECT zensus_population_id, demand FROM |
|
184
|
|
|
demand.egon_peta_heat |
|
185
|
|
|
WHERE scenario = '{scenario}' |
|
186
|
|
|
AND sector = 'residential' |
|
187
|
|
|
AND zensus_population_id IN( |
|
188
|
|
|
SELECT zensus_population_id FROM |
|
189
|
|
|
demand.egon_map_zensus_district_heating_areas |
|
190
|
|
|
WHERE scenario = '{scenario}' |
|
191
|
|
|
AND area_id = {area_id} |
|
192
|
|
|
)) as demand |
|
193
|
|
|
|
|
194
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
|
195
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
|
196
|
|
|
|
|
197
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
|
198
|
|
|
ON c.climate_zone = b.climate_zone |
|
199
|
|
|
|
|
200
|
|
|
JOIN ( |
|
201
|
|
|
SELECT e.idp, ordinality as day, zensus_population_id, building_id |
|
202
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
|
203
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
|
204
|
|
|
JOIN demand.egon_heat_idp_pool e |
|
205
|
|
|
ON selected_idp = e.index |
|
206
|
|
|
WHERE zensus_population_id IN ( |
|
207
|
|
|
SELECT zensus_population_id FROM |
|
208
|
|
|
demand.egon_map_zensus_district_heating_areas |
|
209
|
|
|
WHERE scenario = '{scenario}' |
|
210
|
|
|
AND area_id = {area_id} |
|
211
|
|
|
)) demand_profile |
|
212
|
|
|
ON (demand_profile.day = c.day_of_year AND |
|
213
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
|
214
|
|
|
|
|
215
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
|
216
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
217
|
|
|
WHERE zensus_population_id IN( |
|
218
|
|
|
SELECT zensus_population_id FROM |
|
219
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
220
|
|
|
WHERE zensus_population_id IN ( |
|
221
|
|
|
SELECT zensus_population_id FROM |
|
222
|
|
|
demand.egon_map_zensus_district_heating_areas |
|
223
|
|
|
WHERE scenario = '{scenario}' |
|
224
|
|
|
AND area_id = {area_id} |
|
225
|
|
|
)) |
|
226
|
|
|
GROUP BY zensus_population_id) building |
|
227
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
|
228
|
|
|
|
|
229
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
|
230
|
|
|
) result |
|
231
|
|
|
|
|
232
|
|
|
|
|
233
|
|
|
GROUP BY hour_of_year |
|
234
|
|
|
|
|
235
|
|
|
""" |
|
236
|
|
|
) |
|
237
|
|
|
|
|
238
|
|
|
print( |
|
239
|
|
|
f"Time to create time series for district heating grid {scenario}" |
|
240
|
|
|
f" {area_id}:\n{datetime.now() - start_time}" |
|
241
|
|
|
) |
|
242
|
|
|
|
|
243
|
|
|
return df |
|
244
|
|
|
|
|
245
|
|
|
|
|
246
|
|
|
def create_district_heating_profile_python_like(scenario="eGon2035"): |
|
247
|
|
|
"""Creates profiles for all district heating grids in one scenario. |
|
248
|
|
|
Similar to create_district_heating_profile but faster and needs more RAM. |
|
249
|
|
|
The results are directly written into the database. |
|
250
|
|
|
|
|
251
|
|
|
Parameters |
|
252
|
|
|
---------- |
|
253
|
|
|
scenario : str |
|
254
|
|
|
Name of the selected scenario. |
|
255
|
|
|
|
|
256
|
|
|
Returns |
|
257
|
|
|
------- |
|
258
|
|
|
None. |
|
259
|
|
|
|
|
260
|
|
|
""" |
|
261
|
|
|
|
|
262
|
|
|
start_time = datetime.now() |
|
263
|
|
|
|
|
264
|
|
|
idp_df = db.select_dataframe( |
|
265
|
|
|
""" |
|
266
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
|
267
|
|
|
""", |
|
268
|
|
|
index_col="index", |
|
269
|
|
|
) |
|
270
|
|
|
|
|
271
|
|
|
district_heating_grids = db.select_dataframe( |
|
272
|
|
|
f""" |
|
273
|
|
|
SELECT area_id |
|
274
|
|
|
FROM demand.egon_district_heating_areas |
|
275
|
|
|
WHERE scenario = '{scenario}' |
|
276
|
|
|
""" |
|
277
|
|
|
) |
|
278
|
|
|
|
|
279
|
|
|
annual_demand = db.select_dataframe( |
|
280
|
|
|
f""" |
|
281
|
|
|
SELECT |
|
282
|
|
|
a.zensus_population_id, |
|
283
|
|
|
demand / c.count as per_building, |
|
284
|
|
|
area_id, |
|
285
|
|
|
demand as demand_total |
|
286
|
|
|
FROM |
|
287
|
|
|
demand.egon_peta_heat a |
|
288
|
|
|
INNER JOIN ( |
|
289
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
|
290
|
|
|
WHERE scenario = '{scenario}' |
|
291
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id |
|
292
|
|
|
|
|
293
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
|
294
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
295
|
|
|
WHERE zensus_population_id IN( |
|
296
|
|
|
SELECT zensus_population_id FROM |
|
297
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
298
|
|
|
WHERE zensus_population_id IN ( |
|
299
|
|
|
SELECT zensus_population_id FROM |
|
300
|
|
|
boundaries.egon_map_zensus_grid_districts |
|
301
|
|
|
)) |
|
302
|
|
|
GROUP BY zensus_population_id)c |
|
303
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
|
304
|
|
|
|
|
305
|
|
|
WHERE a.scenario = '{scenario}' |
|
306
|
|
|
AND a.sector = 'residential' |
|
307
|
|
|
|
|
308
|
|
|
""", |
|
309
|
|
|
index_col="zensus_population_id", |
|
310
|
|
|
) |
|
311
|
|
|
|
|
312
|
|
|
annual_demand = annual_demand[ |
|
313
|
|
|
~annual_demand.index.duplicated(keep="first") |
|
314
|
|
|
] |
|
315
|
|
|
|
|
316
|
|
|
daily_demand_shares = db.select_dataframe( |
|
317
|
|
|
""" |
|
318
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
|
319
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
|
320
|
|
|
""" |
|
321
|
|
|
) |
|
322
|
|
|
|
|
323
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
|
324
|
|
|
aggregation_level="district" |
|
325
|
|
|
) |
|
326
|
|
|
|
|
327
|
|
|
print(datetime.now() - start_time) |
|
328
|
|
|
|
|
329
|
|
|
start_time = datetime.now() |
|
330
|
|
|
for area in district_heating_grids.area_id.unique(): |
|
331
|
|
|
with db.session_scope() as session: |
|
332
|
|
|
selected_profiles = db.select_dataframe( |
|
333
|
|
|
f""" |
|
334
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
|
335
|
|
|
selected_idp, ordinality as day, b.area_id |
|
336
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
|
337
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
|
338
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
|
339
|
|
|
INNER JOIN ( |
|
340
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
|
341
|
|
|
WHERE scenario = '{scenario}' |
|
342
|
|
|
AND area_id = '{area}' |
|
343
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id , |
|
344
|
|
|
|
|
345
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
|
346
|
|
|
|
|
347
|
|
|
""" |
|
348
|
|
|
) |
|
349
|
|
|
|
|
350
|
|
|
if not selected_profiles.empty: |
|
351
|
|
|
df = pd.merge( |
|
352
|
|
|
selected_profiles, |
|
353
|
|
|
daily_demand_shares, |
|
354
|
|
|
on=["day", "climate_zone"], |
|
355
|
|
|
) |
|
356
|
|
|
|
|
357
|
|
|
slice_df = pd.merge( |
|
358
|
|
|
df[df.area_id == area], |
|
359
|
|
|
idp_df, |
|
360
|
|
|
left_on="selected_idp", |
|
361
|
|
|
right_on="index", |
|
362
|
|
|
) |
|
363
|
|
|
|
|
364
|
|
|
# Drop cells without a demand or outside of MVGD |
|
365
|
|
|
slice_df = slice_df[ |
|
366
|
|
|
slice_df.zensus_population_id.isin(annual_demand.index) |
|
367
|
|
|
] |
|
368
|
|
|
|
|
369
|
|
|
for hour in range(24): |
|
370
|
|
|
slice_df[hour] = ( |
|
371
|
|
|
slice_df.idp.str[hour] |
|
372
|
|
|
.mul(slice_df.daily_demand_share) |
|
373
|
|
|
.mul( |
|
374
|
|
|
annual_demand.loc[ |
|
375
|
|
|
slice_df.zensus_population_id.values, |
|
376
|
|
|
"per_building", |
|
377
|
|
|
].values |
|
378
|
|
|
) |
|
379
|
|
|
) |
|
380
|
|
|
|
|
381
|
|
|
diff = ( |
|
382
|
|
|
slice_df[range(24)].sum().sum() |
|
383
|
|
|
- annual_demand[ |
|
384
|
|
|
annual_demand.area_id == area |
|
385
|
|
|
].demand_total.sum() |
|
386
|
|
|
) / ( |
|
387
|
|
|
annual_demand[annual_demand.area_id == area].demand_total.sum() |
|
388
|
|
|
) |
|
389
|
|
|
|
|
390
|
|
|
assert ( |
|
391
|
|
|
abs(diff) < 0.04 |
|
392
|
|
|
), f"""Deviation of residential heat demand time |
|
393
|
|
|
series for district heating grid {str(area)} is {diff}""" |
|
394
|
|
|
|
|
395
|
|
|
if abs(diff) > 0.03: |
|
396
|
|
|
warnings.warn( |
|
397
|
|
|
f"""Deviation of residential heat demand time |
|
398
|
|
|
series for district heating grid {str(area)} is {diff}""" |
|
399
|
|
|
) |
|
400
|
|
|
|
|
401
|
|
|
hh = np.concatenate( |
|
402
|
|
|
slice_df.drop( |
|
403
|
|
|
[ |
|
404
|
|
|
"zensus_population_id", |
|
405
|
|
|
"building_id", |
|
406
|
|
|
"climate_zone", |
|
407
|
|
|
"selected_idp", |
|
408
|
|
|
"area_id", |
|
409
|
|
|
"daily_demand_share", |
|
410
|
|
|
"idp", |
|
411
|
|
|
], |
|
412
|
|
|
axis="columns", |
|
413
|
|
|
) |
|
414
|
|
|
.groupby("day") |
|
415
|
|
|
.sum()[range(24)] |
|
416
|
|
|
.values |
|
417
|
|
|
).ravel() |
|
418
|
|
|
|
|
419
|
|
|
cts = CTS_demand_dist[ |
|
420
|
|
|
(CTS_demand_dist.scenario == scenario) |
|
421
|
|
|
& (CTS_demand_dist.index == area) |
|
422
|
|
|
].drop("scenario", axis="columns") |
|
423
|
|
|
|
|
424
|
|
|
if (not selected_profiles.empty) and not cts.empty: |
|
425
|
|
|
entry = EgonTimeseriesDistrictHeating( |
|
426
|
|
|
area_id=int(area), |
|
427
|
|
|
scenario=scenario, |
|
428
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
|
|
|
|
|
|
429
|
|
|
) |
|
430
|
|
|
elif (not selected_profiles.empty) and cts.empty: |
|
431
|
|
|
entry = EgonTimeseriesDistrictHeating( |
|
432
|
|
|
area_id=int(area), |
|
433
|
|
|
scenario=scenario, |
|
434
|
|
|
dist_aggregated_mw=(hh).tolist(), |
|
435
|
|
|
) |
|
436
|
|
|
elif not cts.empty: |
|
437
|
|
|
entry = EgonTimeseriesDistrictHeating( |
|
438
|
|
|
area_id=int(area), |
|
439
|
|
|
scenario=scenario, |
|
440
|
|
|
dist_aggregated_mw=(cts.values[0]).tolist(), |
|
441
|
|
|
) |
|
442
|
|
|
else: |
|
443
|
|
|
entry = EgonTimeseriesDistrictHeating( |
|
444
|
|
|
area_id=int(area), |
|
445
|
|
|
scenario=scenario, |
|
446
|
|
|
dist_aggregated_mw=np.repeat(0, 8760).tolist(), |
|
447
|
|
|
) |
|
448
|
|
|
|
|
449
|
|
|
session.add(entry) |
|
450
|
|
|
session.commit() |
|
451
|
|
|
|
|
452
|
|
|
print( |
|
453
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
|
454
|
|
|
) |
|
455
|
|
|
print(datetime.now() - start_time) |
|
456
|
|
|
|
|
457
|
|
|
|
|
458
|
|
|
def create_individual_heat_per_mv_grid(scenario="eGon2035", mv_grid_id=1564): |
|
459
|
|
|
start_time = datetime.now() |
|
460
|
|
|
df = db.select_dataframe( |
|
461
|
|
|
f""" |
|
462
|
|
|
|
|
463
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
|
464
|
|
|
FROM |
|
465
|
|
|
|
|
466
|
|
|
( |
|
467
|
|
|
SELECT demand.demand * |
|
468
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
|
469
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
|
470
|
|
|
demand_profile.building_id, |
|
471
|
|
|
c.day_of_year, |
|
472
|
|
|
ordinality |
|
473
|
|
|
|
|
474
|
|
|
FROM |
|
475
|
|
|
|
|
476
|
|
|
(SELECT zensus_population_id, demand FROM |
|
477
|
|
|
demand.egon_peta_heat |
|
478
|
|
|
WHERE scenario = '{scenario}' |
|
479
|
|
|
AND sector = 'residential' |
|
480
|
|
|
AND zensus_population_id IN ( |
|
481
|
|
|
SELECT zensus_population_id FROM |
|
482
|
|
|
boundaries.egon_map_zensus_grid_districts |
|
483
|
|
|
WHERE bus_id = {mv_grid_id} |
|
484
|
|
|
)) as demand |
|
485
|
|
|
|
|
486
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
|
487
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
|
488
|
|
|
|
|
489
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
|
490
|
|
|
ON c.climate_zone = b.climate_zone |
|
491
|
|
|
|
|
492
|
|
|
JOIN ( |
|
493
|
|
|
SELECT |
|
494
|
|
|
e.idp, ordinality as day, zensus_population_id, building_id |
|
495
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
|
496
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
|
497
|
|
|
JOIN demand.egon_heat_idp_pool e |
|
498
|
|
|
ON selected_idp = e.index |
|
499
|
|
|
WHERE zensus_population_id IN ( |
|
500
|
|
|
SELECT zensus_population_id FROM |
|
501
|
|
|
boundaries.egon_map_zensus_grid_districts |
|
502
|
|
|
WHERE bus_id = {mv_grid_id} |
|
503
|
|
|
)) demand_profile |
|
504
|
|
|
ON (demand_profile.day = c.day_of_year AND |
|
505
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
|
506
|
|
|
|
|
507
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
|
508
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
509
|
|
|
WHERE zensus_population_id IN( |
|
510
|
|
|
SELECT zensus_population_id FROM |
|
511
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
512
|
|
|
WHERE zensus_population_id IN ( |
|
513
|
|
|
SELECT zensus_population_id FROM |
|
514
|
|
|
boundaries.egon_map_zensus_grid_districts |
|
515
|
|
|
WHERE bus_id = {mv_grid_id} |
|
516
|
|
|
)) |
|
517
|
|
|
GROUP BY zensus_population_id) building |
|
518
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
|
519
|
|
|
|
|
520
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
|
521
|
|
|
) result |
|
522
|
|
|
|
|
523
|
|
|
|
|
524
|
|
|
GROUP BY hour_of_year |
|
525
|
|
|
|
|
526
|
|
|
""" |
|
527
|
|
|
) |
|
528
|
|
|
|
|
529
|
|
|
print(f"Time to create time series for mv grid {scenario} {mv_grid_id}:") |
|
530
|
|
|
print(datetime.now() - start_time) |
|
531
|
|
|
|
|
532
|
|
|
return df |
|
533
|
|
|
|
|
534
|
|
|
|
|
535
|
|
|
def calulate_peak_load(df, scenario): |
|
536
|
|
|
# peat load in W_th |
|
537
|
|
|
data = ( |
|
538
|
|
|
df.groupby("building_id") |
|
539
|
|
|
.max()[range(24)] |
|
540
|
|
|
.max(axis=1) |
|
541
|
|
|
.mul(1000000) |
|
542
|
|
|
.astype(int) |
|
543
|
|
|
.reset_index() |
|
544
|
|
|
) |
|
545
|
|
|
|
|
546
|
|
|
data["scenario"] = scenario |
|
547
|
|
|
|
|
548
|
|
|
data.rename({0: "w_th"}, axis="columns", inplace=True) |
|
549
|
|
|
|
|
550
|
|
|
data.to_sql( |
|
551
|
|
|
EgonIndividualHeatingPeakLoads.__table__.name, |
|
552
|
|
|
schema=EgonIndividualHeatingPeakLoads.__table__.schema, |
|
553
|
|
|
con=db.engine(), |
|
554
|
|
|
if_exists="append", |
|
555
|
|
|
index=False, |
|
556
|
|
|
) |
|
557
|
|
|
|
|
558
|
|
|
|
|
559
|
|
|
def create_individual_heating_peak_loads(scenario="eGon2035"): |
|
560
|
|
|
engine = db.engine() |
|
561
|
|
|
|
|
562
|
|
|
EgonIndividualHeatingPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
|
563
|
|
|
|
|
564
|
|
|
EgonIndividualHeatingPeakLoads.__table__.create( |
|
565
|
|
|
bind=engine, checkfirst=True |
|
566
|
|
|
) |
|
567
|
|
|
|
|
568
|
|
|
start_time = datetime.now() |
|
569
|
|
|
|
|
570
|
|
|
idp_df = db.select_dataframe( |
|
571
|
|
|
""" |
|
572
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
|
573
|
|
|
""", |
|
574
|
|
|
index_col="index", |
|
575
|
|
|
) |
|
576
|
|
|
|
|
577
|
|
|
annual_demand = db.select_dataframe( |
|
578
|
|
|
f""" |
|
579
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building, bus_id |
|
580
|
|
|
FROM demand.egon_peta_heat a |
|
581
|
|
|
|
|
582
|
|
|
|
|
583
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
|
584
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
585
|
|
|
WHERE zensus_population_id IN( |
|
586
|
|
|
SELECT zensus_population_id FROM |
|
587
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
588
|
|
|
WHERE zensus_population_id IN ( |
|
589
|
|
|
SELECT zensus_population_id FROM |
|
590
|
|
|
boundaries.egon_map_zensus_grid_districts |
|
591
|
|
|
)) |
|
592
|
|
|
GROUP BY zensus_population_id)c |
|
593
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
|
594
|
|
|
|
|
595
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
|
596
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
|
597
|
|
|
|
|
598
|
|
|
WHERE a.scenario = '{scenario}' |
|
599
|
|
|
AND a.sector = 'residential' |
|
600
|
|
|
AND a.zensus_population_id NOT IN ( |
|
601
|
|
|
SELECT zensus_population_id |
|
602
|
|
|
FROM demand.egon_map_zensus_district_heating_areas |
|
603
|
|
|
WHERE scenario = '{scenario}' |
|
604
|
|
|
) |
|
605
|
|
|
|
|
606
|
|
|
""", |
|
607
|
|
|
index_col="zensus_population_id", |
|
608
|
|
|
) |
|
609
|
|
|
|
|
610
|
|
|
daily_demand_shares = db.select_dataframe( |
|
611
|
|
|
""" |
|
612
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
|
613
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
|
614
|
|
|
""" |
|
615
|
|
|
) |
|
616
|
|
|
|
|
617
|
|
|
start_time = datetime.now() |
|
618
|
|
|
for grid in annual_demand.bus_id.unique(): |
|
619
|
|
|
selected_profiles = db.select_dataframe( |
|
620
|
|
|
f""" |
|
621
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
|
622
|
|
|
selected_idp, ordinality as day |
|
623
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
|
624
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
|
625
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
|
626
|
|
|
, |
|
627
|
|
|
|
|
628
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
|
629
|
|
|
|
|
630
|
|
|
WHERE a.zensus_population_id NOT IN ( |
|
631
|
|
|
SELECT zensus_population_id |
|
632
|
|
|
FROM demand.egon_map_zensus_district_heating_areas |
|
633
|
|
|
WHERE scenario = '{scenario}' |
|
634
|
|
|
) |
|
635
|
|
|
AND a.zensus_population_id IN ( |
|
636
|
|
|
SELECT zensus_population_id |
|
637
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
|
638
|
|
|
WHERE bus_id = '{grid}' |
|
639
|
|
|
) |
|
640
|
|
|
|
|
641
|
|
|
""" |
|
642
|
|
|
) |
|
643
|
|
|
|
|
644
|
|
|
df = pd.merge( |
|
645
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
|
646
|
|
|
) |
|
647
|
|
|
|
|
648
|
|
|
slice_df = pd.merge( |
|
649
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
|
650
|
|
|
) |
|
651
|
|
|
|
|
652
|
|
|
for hour in range(24): |
|
653
|
|
|
slice_df[hour] = ( |
|
654
|
|
|
slice_df.idp.str[hour] |
|
655
|
|
|
.mul(slice_df.daily_demand_share) |
|
656
|
|
|
.mul( |
|
657
|
|
|
annual_demand.loc[ |
|
658
|
|
|
slice_df.zensus_population_id.values, "per_building" |
|
659
|
|
|
].values |
|
660
|
|
|
) |
|
661
|
|
|
) |
|
662
|
|
|
|
|
663
|
|
|
calulate_peak_load(slice_df, scenario) |
|
664
|
|
|
|
|
665
|
|
|
print(f"Time to create peak loads per building for {scenario}") |
|
666
|
|
|
print(datetime.now() - start_time) |
|
667
|
|
|
|
|
668
|
|
|
|
|
669
|
|
|
def create_individual_heating_profile_python_like(scenario="eGon2035"): |
|
670
|
|
|
start_time = datetime.now() |
|
671
|
|
|
|
|
672
|
|
|
idp_df = db.select_dataframe( |
|
673
|
|
|
f""" |
|
674
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
|
675
|
|
|
""", |
|
676
|
|
|
index_col="index", |
|
677
|
|
|
) |
|
678
|
|
|
|
|
679
|
|
|
annual_demand = db.select_dataframe( |
|
680
|
|
|
f""" |
|
681
|
|
|
SELECT |
|
682
|
|
|
a.zensus_population_id, |
|
683
|
|
|
demand / c.count as per_building, |
|
684
|
|
|
demand as demand_total, |
|
685
|
|
|
bus_id |
|
686
|
|
|
FROM demand.egon_peta_heat a |
|
687
|
|
|
|
|
688
|
|
|
|
|
689
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
|
690
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
691
|
|
|
WHERE zensus_population_id IN( |
|
692
|
|
|
SELECT zensus_population_id FROM |
|
693
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
694
|
|
|
WHERE zensus_population_id IN ( |
|
695
|
|
|
SELECT zensus_population_id FROM |
|
696
|
|
|
boundaries.egon_map_zensus_grid_districts |
|
697
|
|
|
)) |
|
698
|
|
|
GROUP BY zensus_population_id)c |
|
699
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
|
700
|
|
|
|
|
701
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
|
702
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
|
703
|
|
|
|
|
704
|
|
|
WHERE a.scenario = '{scenario}' |
|
705
|
|
|
AND a.sector = 'residential' |
|
706
|
|
|
AND a.zensus_population_id NOT IN ( |
|
707
|
|
|
SELECT zensus_population_id |
|
708
|
|
|
FROM demand.egon_map_zensus_district_heating_areas |
|
709
|
|
|
WHERE scenario = '{scenario}' |
|
710
|
|
|
) |
|
711
|
|
|
|
|
712
|
|
|
""", |
|
713
|
|
|
index_col="zensus_population_id", |
|
714
|
|
|
) |
|
715
|
|
|
|
|
716
|
|
|
daily_demand_shares = db.select_dataframe( |
|
717
|
|
|
""" |
|
718
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
|
719
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
|
720
|
|
|
""" |
|
721
|
|
|
) |
|
722
|
|
|
|
|
723
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
|
724
|
|
|
aggregation_level="district" |
|
725
|
|
|
) |
|
726
|
|
|
|
|
727
|
|
|
# TODO: use session_scope! |
|
728
|
|
|
from sqlalchemy.orm import sessionmaker |
|
729
|
|
|
|
|
730
|
|
|
session = sessionmaker(bind=db.engine())() |
|
731
|
|
|
|
|
732
|
|
|
print( |
|
733
|
|
|
f"Time to create overhead for time series for district heating scenario {scenario}" |
|
734
|
|
|
) |
|
735
|
|
|
print(datetime.now() - start_time) |
|
736
|
|
|
|
|
737
|
|
|
start_time = datetime.now() |
|
738
|
|
|
for grid in annual_demand.bus_id.unique(): |
|
739
|
|
|
selected_profiles = db.select_dataframe( |
|
740
|
|
|
f""" |
|
741
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
|
742
|
|
|
selected_idp, ordinality as day |
|
743
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
|
744
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
|
745
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
|
746
|
|
|
, |
|
747
|
|
|
|
|
748
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
|
749
|
|
|
|
|
750
|
|
|
WHERE a.zensus_population_id NOT IN ( |
|
751
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
|
752
|
|
|
WHERE scenario = '{scenario}' |
|
753
|
|
|
) |
|
754
|
|
|
AND a.zensus_population_id IN ( |
|
755
|
|
|
SELECT zensus_population_id |
|
756
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
|
757
|
|
|
WHERE bus_id = '{grid}' |
|
758
|
|
|
) |
|
759
|
|
|
|
|
760
|
|
|
""" |
|
761
|
|
|
) |
|
762
|
|
|
|
|
763
|
|
|
df = pd.merge( |
|
764
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
|
765
|
|
|
) |
|
766
|
|
|
|
|
767
|
|
|
slice_df = pd.merge( |
|
768
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
|
769
|
|
|
) |
|
770
|
|
|
|
|
771
|
|
|
for hour in range(24): |
|
772
|
|
|
slice_df[hour] = ( |
|
773
|
|
|
slice_df.idp.str[hour] |
|
774
|
|
|
.mul(slice_df.daily_demand_share) |
|
775
|
|
|
.mul( |
|
776
|
|
|
annual_demand.loc[ |
|
777
|
|
|
slice_df.zensus_population_id.values, "per_building" |
|
778
|
|
|
].values |
|
779
|
|
|
) |
|
780
|
|
|
) |
|
781
|
|
|
|
|
782
|
|
|
cts = CTS_demand_grid[ |
|
783
|
|
|
(CTS_demand_grid.scenario == scenario) |
|
784
|
|
|
& (CTS_demand_grid.index == grid) |
|
785
|
|
|
].drop("scenario", axis="columns") |
|
786
|
|
|
|
|
787
|
|
|
hh = np.concatenate( |
|
788
|
|
|
slice_df.groupby("day").sum()[range(24)].values |
|
789
|
|
|
).ravel() |
|
790
|
|
|
|
|
791
|
|
|
diff = ( |
|
792
|
|
|
slice_df.groupby("day").sum()[range(24)].sum().sum() |
|
793
|
|
|
- annual_demand[annual_demand.bus_id == grid].demand_total.sum() |
|
794
|
|
|
) / (annual_demand[annual_demand.bus_id == grid].demand_total.sum()) |
|
795
|
|
|
|
|
796
|
|
|
assert abs(diff) < 0.03, ( |
|
797
|
|
|
"Deviation of residential heat demand time series for mv" |
|
798
|
|
|
f" grid {grid} is {diff}" |
|
799
|
|
|
) |
|
800
|
|
|
|
|
801
|
|
|
if not (slice_df[hour].empty or cts.empty): |
|
|
|
|
|
|
802
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
|
803
|
|
|
bus_id=int(grid), |
|
804
|
|
|
scenario=scenario, |
|
805
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
|
806
|
|
|
) |
|
807
|
|
|
elif not slice_df[hour].empty: |
|
808
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
|
809
|
|
|
bus_id=int(grid), |
|
810
|
|
|
scenario=scenario, |
|
811
|
|
|
dist_aggregated_mw=(hh).tolist(), |
|
812
|
|
|
) |
|
813
|
|
|
elif not cts.empty: |
|
814
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
|
815
|
|
|
bus_id=int(grid), |
|
816
|
|
|
scenario=scenario, |
|
817
|
|
|
dist_aggregated_mw=(cts).tolist(), |
|
818
|
|
|
) |
|
819
|
|
|
|
|
820
|
|
|
session.add(entry) |
|
|
|
|
|
|
821
|
|
|
|
|
822
|
|
|
session.commit() |
|
823
|
|
|
|
|
824
|
|
|
print( |
|
825
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
|
826
|
|
|
) |
|
827
|
|
|
print(datetime.now() - start_time) |
|
828
|
|
|
|
|
829
|
|
|
|
|
830
|
|
|
def district_heating(method="python"): |
|
831
|
|
|
engine = db.engine() |
|
832
|
|
|
EgonTimeseriesDistrictHeating.__table__.drop(bind=engine, checkfirst=True) |
|
833
|
|
|
EgonTimeseriesDistrictHeating.__table__.create( |
|
834
|
|
|
bind=engine, checkfirst=True |
|
835
|
|
|
) |
|
836
|
|
|
|
|
837
|
|
|
if method == "python": |
|
838
|
|
|
for scenario in config.settings()["egon-data"]["--scenarios"]: |
|
839
|
|
|
create_district_heating_profile_python_like(scenario) |
|
840
|
|
|
|
|
841
|
|
|
else: |
|
842
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
|
843
|
|
|
aggregation_level="district" |
|
844
|
|
|
) |
|
845
|
|
|
|
|
846
|
|
|
ids = db.select_dataframe( |
|
847
|
|
|
""" |
|
848
|
|
|
SELECT area_id, scenario |
|
849
|
|
|
FROM demand.egon_district_heating_areas |
|
850
|
|
|
""" |
|
851
|
|
|
) |
|
852
|
|
|
|
|
853
|
|
|
df = pd.DataFrame( |
|
854
|
|
|
columns=["area_id", "scenario", "dist_aggregated_mw"] |
|
855
|
|
|
) |
|
856
|
|
|
|
|
857
|
|
|
for index, row in ids.iterrows(): |
|
858
|
|
|
series = create_district_heating_profile( |
|
859
|
|
|
scenario=row.scenario, area_id=row.area_id |
|
860
|
|
|
) |
|
861
|
|
|
|
|
862
|
|
|
cts = ( |
|
863
|
|
|
CTS_demand_dist[ |
|
864
|
|
|
(CTS_demand_dist.scenario == row.scenario) |
|
865
|
|
|
& (CTS_demand_dist.index == row.area_id) |
|
866
|
|
|
] |
|
867
|
|
|
.drop("scenario", axis="columns") |
|
868
|
|
|
.transpose() |
|
869
|
|
|
) |
|
870
|
|
|
|
|
871
|
|
|
if not cts.empty: |
|
872
|
|
|
data = ( |
|
873
|
|
|
cts[row.area_id] + series.demand_profile |
|
874
|
|
|
).values.tolist() |
|
875
|
|
|
else: |
|
876
|
|
|
data = series.demand_profile.values.tolist() |
|
877
|
|
|
|
|
878
|
|
|
df = df.append( |
|
879
|
|
|
pd.Series( |
|
880
|
|
|
data={ |
|
881
|
|
|
"area_id": row.area_id, |
|
882
|
|
|
"scenario": row.scenario, |
|
883
|
|
|
"dist_aggregated_mw": data, |
|
884
|
|
|
}, |
|
885
|
|
|
), |
|
886
|
|
|
ignore_index=True, |
|
887
|
|
|
) |
|
888
|
|
|
|
|
889
|
|
|
df.to_sql( |
|
890
|
|
|
"egon_timeseries_district_heating", |
|
891
|
|
|
schema="demand", |
|
892
|
|
|
con=db.engine(), |
|
893
|
|
|
if_exists="append", |
|
894
|
|
|
index=False, |
|
895
|
|
|
) |
|
896
|
|
|
|
|
897
|
|
|
|
|
898
|
|
|
def individual_heating_per_mv_grid_tables(method="python"): |
|
899
|
|
|
engine = db.engine() |
|
900
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
|
901
|
|
|
bind=engine, checkfirst=True |
|
902
|
|
|
) |
|
903
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
|
904
|
|
|
bind=engine, checkfirst=True |
|
905
|
|
|
) |
|
906
|
|
|
|
|
907
|
|
|
|
|
908
|
|
|
def individual_heating_per_mv_grid_2035(method="python"): |
|
909
|
|
|
create_individual_heating_profile_python_like("eGon2035") |
|
910
|
|
|
|
|
911
|
|
|
|
|
912
|
|
|
def individual_heating_per_mv_grid_100(method="python"): |
|
913
|
|
|
create_individual_heating_profile_python_like("eGon100RE") |
|
914
|
|
|
|
|
915
|
|
|
|
|
916
|
|
|
def individual_heating_per_mv_grid(method="python"): |
|
917
|
|
|
if method == "python": |
|
918
|
|
|
engine = db.engine() |
|
919
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
|
920
|
|
|
bind=engine, checkfirst=True |
|
921
|
|
|
) |
|
922
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
|
923
|
|
|
bind=engine, checkfirst=True |
|
924
|
|
|
) |
|
925
|
|
|
|
|
926
|
|
|
create_individual_heating_profile_python_like("eGon2035") |
|
927
|
|
|
create_individual_heating_profile_python_like("eGon100RE") |
|
928
|
|
|
|
|
929
|
|
|
else: |
|
930
|
|
|
engine = db.engine() |
|
931
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
|
932
|
|
|
bind=engine, checkfirst=True |
|
933
|
|
|
) |
|
934
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
|
935
|
|
|
bind=engine, checkfirst=True |
|
936
|
|
|
) |
|
937
|
|
|
|
|
938
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
|
939
|
|
|
aggregation_level="district" |
|
940
|
|
|
) |
|
941
|
|
|
df = pd.DataFrame(columns=["bus_id", "scenario", "dist_aggregated_mw"]) |
|
942
|
|
|
|
|
943
|
|
|
ids = db.select_dataframe( |
|
944
|
|
|
""" |
|
945
|
|
|
SELECT bus_id |
|
946
|
|
|
FROM grid.egon_mv_grid_district |
|
947
|
|
|
""" |
|
948
|
|
|
) |
|
949
|
|
|
|
|
950
|
|
|
for index, row in ids.iterrows(): |
|
951
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
|
952
|
|
|
series = create_individual_heat_per_mv_grid( |
|
953
|
|
|
scenario, row.bus_id |
|
954
|
|
|
) |
|
955
|
|
|
cts = ( |
|
956
|
|
|
CTS_demand_grid[ |
|
957
|
|
|
(CTS_demand_grid.scenario == scenario) |
|
958
|
|
|
& (CTS_demand_grid.index == row.bus_id) |
|
959
|
|
|
] |
|
960
|
|
|
.drop("scenario", axis="columns") |
|
961
|
|
|
.transpose() |
|
962
|
|
|
) |
|
963
|
|
|
if not cts.empty: |
|
964
|
|
|
data = ( |
|
965
|
|
|
cts[row.bus_id] + series.demand_profile |
|
966
|
|
|
).values.tolist() |
|
967
|
|
|
else: |
|
968
|
|
|
data = series.demand_profile.values.tolist() |
|
969
|
|
|
|
|
970
|
|
|
df = df.append( |
|
971
|
|
|
pd.Series( |
|
972
|
|
|
data={ |
|
973
|
|
|
"bus_id": row.bus_id, |
|
974
|
|
|
"scenario": scenario, |
|
975
|
|
|
"dist_aggregated_mw": data, |
|
976
|
|
|
}, |
|
977
|
|
|
), |
|
978
|
|
|
ignore_index=True, |
|
979
|
|
|
) |
|
980
|
|
|
|
|
981
|
|
|
df.to_sql( |
|
982
|
|
|
"egon_etrago_timeseries_individual_heating", |
|
983
|
|
|
schema="demand", |
|
984
|
|
|
con=db.engine(), |
|
985
|
|
|
if_exists="append", |
|
986
|
|
|
index=False, |
|
987
|
|
|
) |
|
988
|
|
|
|
|
989
|
|
|
|
|
990
|
|
|
def store_national_profiles(): |
|
991
|
|
|
scenario = "eGon100RE" |
|
992
|
|
|
|
|
993
|
|
|
df = db.select_dataframe( |
|
994
|
|
|
f""" |
|
995
|
|
|
|
|
996
|
|
|
SELECT SUM(building_demand_per_hour) as "residential rural" |
|
997
|
|
|
FROM |
|
998
|
|
|
|
|
999
|
|
|
( |
|
1000
|
|
|
SELECT demand.demand / building.count * |
|
1001
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
|
1002
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
|
1003
|
|
|
demand_profile.building_id, |
|
1004
|
|
|
c.day_of_year, |
|
1005
|
|
|
ordinality |
|
1006
|
|
|
|
|
1007
|
|
|
FROM |
|
1008
|
|
|
|
|
1009
|
|
|
(SELECT zensus_population_id, demand FROM |
|
1010
|
|
|
demand.egon_peta_heat |
|
1011
|
|
|
WHERE scenario = '{scenario}' |
|
1012
|
|
|
AND sector = 'residential' |
|
1013
|
|
|
) as demand |
|
1014
|
|
|
|
|
1015
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
|
1016
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
|
1017
|
|
|
|
|
1018
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
|
1019
|
|
|
ON c.climate_zone = b.climate_zone |
|
1020
|
|
|
|
|
1021
|
|
|
JOIN ( |
|
1022
|
|
|
SELECT e.idp, ordinality as day, zensus_population_id, building_id |
|
1023
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
|
1024
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
|
1025
|
|
|
JOIN demand.egon_heat_idp_pool e |
|
1026
|
|
|
ON selected_idp = e.index |
|
1027
|
|
|
) demand_profile |
|
1028
|
|
|
ON (demand_profile.day = c.day_of_year AND |
|
1029
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
|
1030
|
|
|
|
|
1031
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
|
1032
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
|
1033
|
|
|
WHERE zensus_population_id IN( |
|
1034
|
|
|
SELECT zensus_population_id FROM |
|
1035
|
|
|
demand.egon_heat_timeseries_selected_profiles |
|
1036
|
|
|
) |
|
1037
|
|
|
GROUP BY zensus_population_id) building |
|
1038
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
|
1039
|
|
|
|
|
1040
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
|
1041
|
|
|
) result |
|
1042
|
|
|
|
|
1043
|
|
|
|
|
1044
|
|
|
GROUP BY hour_of_year |
|
1045
|
|
|
|
|
1046
|
|
|
""" |
|
1047
|
|
|
) |
|
1048
|
|
|
|
|
1049
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
|
1050
|
|
|
aggregation_level="district" |
|
1051
|
|
|
) |
|
1052
|
|
|
|
|
1053
|
|
|
df["service rural"] = ( |
|
1054
|
|
|
CTS_demand_dist.loc[CTS_demand_dist.scenario == scenario] |
|
1055
|
|
|
.drop("scenario", axis=1) |
|
1056
|
|
|
.sum() |
|
1057
|
|
|
) |
|
1058
|
|
|
|
|
1059
|
|
|
df["urban central"] = db.select_dataframe( |
|
1060
|
|
|
f""" |
|
1061
|
|
|
SELECT sum(nullif(demand, 'NaN')) as "urban central" |
|
1062
|
|
|
|
|
1063
|
|
|
FROM demand.egon_timeseries_district_heating, |
|
1064
|
|
|
UNNEST (dist_aggregated_mw) WITH ORDINALITY as demand |
|
1065
|
|
|
|
|
1066
|
|
|
WHERE scenario = '{scenario}' |
|
1067
|
|
|
|
|
1068
|
|
|
GROUP BY ordinality |
|
1069
|
|
|
|
|
1070
|
|
|
""" |
|
1071
|
|
|
) |
|
1072
|
|
|
|
|
1073
|
|
|
folder = Path(".") / "input-pypsa-eur-sec" |
|
1074
|
|
|
# Create the folder, if it does not exists already |
|
1075
|
|
|
if not os.path.exists(folder): |
|
1076
|
|
|
os.mkdir(folder) |
|
1077
|
|
|
|
|
1078
|
|
|
df.to_csv(folder / f"heat_demand_timeseries_DE_{scenario}.csv") |
|
1079
|
|
|
|
|
1080
|
|
|
|
|
1081
|
|
|
def export_etrago_cts_heat_profiles(): |
|
1082
|
|
|
"""Export heat cts load profiles at mv substation level |
|
1083
|
|
|
to etrago-table in the database |
|
1084
|
|
|
|
|
1085
|
|
|
Returns |
|
1086
|
|
|
------- |
|
1087
|
|
|
None. |
|
1088
|
|
|
|
|
1089
|
|
|
""" |
|
1090
|
|
|
|
|
1091
|
|
|
# Calculate cts heat profiles at substation |
|
1092
|
|
|
_, CTS_grid, _ = CTS_demand_scale("district") |
|
1093
|
|
|
|
|
1094
|
|
|
# Change format |
|
1095
|
|
|
data = CTS_grid.drop(columns="scenario") |
|
1096
|
|
|
df_etrago_cts_heat_profiles = pd.DataFrame( |
|
1097
|
|
|
index=data.index, columns=["scn_name", "p_set"] |
|
1098
|
|
|
) |
|
1099
|
|
|
df_etrago_cts_heat_profiles.p_set = data.values.tolist() |
|
1100
|
|
|
df_etrago_cts_heat_profiles.scn_name = CTS_grid["scenario"] |
|
1101
|
|
|
df_etrago_cts_heat_profiles.reset_index(inplace=True) |
|
1102
|
|
|
|
|
1103
|
|
|
# Drop and recreate Table if exists |
|
1104
|
|
|
EgonEtragoHeatCts.__table__.drop(bind=db.engine(), checkfirst=True) |
|
1105
|
|
|
EgonEtragoHeatCts.__table__.create(bind=db.engine(), checkfirst=True) |
|
1106
|
|
|
|
|
1107
|
|
|
# Write heat ts into db |
|
1108
|
|
|
with db.session_scope() as session: |
|
1109
|
|
|
session.bulk_insert_mappings( |
|
1110
|
|
|
EgonEtragoHeatCts, |
|
1111
|
|
|
df_etrago_cts_heat_profiles.to_dict(orient="records"), |
|
1112
|
|
|
) |
|
1113
|
|
|
|
|
1114
|
|
|
|
|
1115
|
|
|
def metadata(): |
|
1116
|
|
|
fields = [ |
|
1117
|
|
|
{ |
|
1118
|
|
|
"description": "Index of corresponding district heating area", |
|
1119
|
|
|
"name": "area_id", |
|
1120
|
|
|
"type": "integer", |
|
1121
|
|
|
"unit": "none", |
|
1122
|
|
|
}, |
|
1123
|
|
|
{ |
|
1124
|
|
|
"description": "Name of scenario", |
|
1125
|
|
|
"name": "scenario", |
|
1126
|
|
|
"type": "str", |
|
1127
|
|
|
"unit": "none", |
|
1128
|
|
|
}, |
|
1129
|
|
|
{ |
|
1130
|
|
|
"description": "Heat demand time series", |
|
1131
|
|
|
"name": "dist_aggregated_mw", |
|
1132
|
|
|
"type": "array of floats", |
|
1133
|
|
|
"unit": "MW", |
|
1134
|
|
|
}, |
|
1135
|
|
|
] |
|
1136
|
|
|
|
|
1137
|
|
|
meta_district = { |
|
1138
|
|
|
"name": "demand.egon_timeseries_district_heating", |
|
1139
|
|
|
"title": "eGon heat demand time series for district heating grids", |
|
1140
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
|
1141
|
|
|
"description": "Heat demand time series for district heating grids", |
|
1142
|
|
|
"language": ["EN"], |
|
1143
|
|
|
"publicationDate": date.today().isoformat(), |
|
1144
|
|
|
"context": context(), |
|
1145
|
|
|
"spatial": { |
|
1146
|
|
|
"location": None, |
|
1147
|
|
|
"extent": "Germany", |
|
1148
|
|
|
"resolution": None, |
|
1149
|
|
|
}, |
|
1150
|
|
|
"sources": [ |
|
1151
|
|
|
sources()["era5"], |
|
1152
|
|
|
sources()["vg250"], |
|
1153
|
|
|
sources()["egon-data"], |
|
1154
|
|
|
sources()["egon-data_bundle"], |
|
1155
|
|
|
sources()["peta"], |
|
1156
|
|
|
], |
|
1157
|
|
|
"licenses": [license_egon_data_odbl()], |
|
1158
|
|
|
"contributors": [ |
|
1159
|
|
|
{ |
|
1160
|
|
|
"title": "Clara Büttner", |
|
1161
|
|
|
"email": "http://github.com/ClaraBuettner", |
|
1162
|
|
|
"date": time.strftime("%Y-%m-%d"), |
|
1163
|
|
|
"object": None, |
|
1164
|
|
|
"comment": "Imported data", |
|
1165
|
|
|
}, |
|
1166
|
|
|
], |
|
1167
|
|
|
"resources": [ |
|
1168
|
|
|
{ |
|
1169
|
|
|
"profile": "tabular-data-resource", |
|
1170
|
|
|
"name": "demand.egon_timeseries_district_heating", |
|
1171
|
|
|
"path": None, |
|
1172
|
|
|
"format": "PostgreSQL", |
|
1173
|
|
|
"encoding": "UTF-8", |
|
1174
|
|
|
"schema": { |
|
1175
|
|
|
"fields": fields, |
|
1176
|
|
|
"primaryKey": ["index"], |
|
1177
|
|
|
"foreignKeys": [], |
|
1178
|
|
|
}, |
|
1179
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."}, |
|
1180
|
|
|
} |
|
1181
|
|
|
], |
|
1182
|
|
|
"metaMetadata": meta_metadata(), |
|
1183
|
|
|
} |
|
1184
|
|
|
|
|
1185
|
|
|
# Add metadata as a comment to the table |
|
1186
|
|
|
db.submit_comment( |
|
1187
|
|
|
"'" + json.dumps(meta_district) + "'", |
|
1188
|
|
|
EgonTimeseriesDistrictHeating.__table__.schema, |
|
1189
|
|
|
EgonTimeseriesDistrictHeating.__table__.name, |
|
1190
|
|
|
) |
|
1191
|
|
|
|
|
1192
|
|
|
|
|
1193
|
|
|
class HeatTimeSeries(Dataset): |
|
1194
|
|
|
""" |
|
1195
|
|
|
Chooses heat demand profiles for each residential and CTS building |
|
1196
|
|
|
|
|
1197
|
|
|
This dataset creates heat demand profiles in an hourly resoultion. |
|
1198
|
|
|
Time series for CTS buildings are created using the SLP-gas method implemented |
|
1199
|
|
|
in the demandregio disagregator with the function :py:func:`export_etrago_cts_heat_profiles` |
|
1200
|
|
|
and stored in the database. |
|
1201
|
|
|
Time series for residential buildings are created based on a variety of synthetical created |
|
1202
|
|
|
individual demand profiles that are part of :py:class:`DataBundle <egon.data.datasets.data_bundle.DataBundle>`. |
|
1203
|
|
|
This method is desribed within the functions and in this publication: |
|
1204
|
|
|
|
|
1205
|
|
|
C. Büttner, J. Amme, J. Endres, A. Malla, B. Schachler, I. Cußmann, |
|
1206
|
|
|
Open modeling of electricity and heat demand curves for all |
|
1207
|
|
|
residential buildings in Germany, Energy Informatics 5 (1) (2022) 21. |
|
1208
|
|
|
doi:10.1186/s42162-022-00201-y. |
|
1209
|
|
|
|
|
1210
|
|
|
|
|
1211
|
|
|
*Dependencies* |
|
1212
|
|
|
* :py:class:`DataBundle <egon.data.datasets.data_bundle.DataBundle>` |
|
1213
|
|
|
* :py:class:`DemandRegio <egon.data.datasets.demandregio.DemandRegio>` |
|
1214
|
|
|
* :py:class:`HeatDemandImport <egon.data.datasets.heat_demand.HeatDemandImport>` |
|
1215
|
|
|
* :py:class:`DistrictHeatingAreas <egon.data.datasets.district_heating_areas.DistrictHeatingAreas>` |
|
1216
|
|
|
* :py:class:`Vg250 <egon.data.datasets.vg250.Vg250>` |
|
1217
|
|
|
* :py:class:`ZensusMvGridDistricts <egon.data.datasets.zensus_mv_grid_districts.ZensusMvGridDistricts>` |
|
1218
|
|
|
* :py:func:`hh_demand_buildings_setup <egon.data.datasets.electricity_demand_timeseries.hh_buildings.map_houseprofiles_to_buildings>` |
|
1219
|
|
|
* :py:class:`WeatherData <egon.data.datasets.era5.WeatherData>` |
|
1220
|
|
|
|
|
1221
|
|
|
|
|
1222
|
|
|
*Resulting tables* |
|
1223
|
|
|
* :py:class:`demand.egon_timeseries_district_heating <egon.data.datasets.heat_demand_timeseries.EgonTimeseriesDistrictHeating>` is created and filled |
|
1224
|
|
|
* :py:class:`demand.egon_etrago_heat_cts <egon.data.datasets.heat_demand_timeseries.EgonEtragoHeatCts>` is created and filled |
|
1225
|
|
|
* :py:class:`demand.egon_heat_timeseries_selected_profiles <egon.data.datasets.heat_demand_timeseries.idp_pool.EgonHeatTimeseries>` is created and filled |
|
1226
|
|
|
* :py:class:`demand.egon_daily_heat_demand_per_climate_zone <egon.data.datasets.heat_demand_timeseries.daily.EgonDailyHeatDemandPerClimateZone>` |
|
1227
|
|
|
is created and filled |
|
1228
|
|
|
* :py:class:`boundaries.egon_map_zensus_climate_zones <egon.data.datasets.heat_demand_timeseries.daily.EgonMapZensusClimateZones>` is created and filled |
|
1229
|
|
|
|
|
1230
|
|
|
""" |
|
1231
|
|
|
|
|
1232
|
|
|
#: |
|
1233
|
|
|
name: str = "HeatTimeSeries" |
|
1234
|
|
|
#: |
|
1235
|
|
|
version: str = "0.0.12" |
|
1236
|
|
|
|
|
1237
|
|
|
def __init__(self, dependencies): |
|
1238
|
|
|
super().__init__( |
|
1239
|
|
|
name=self.name, |
|
1240
|
|
|
version=self.version, |
|
1241
|
|
|
dependencies=dependencies, |
|
1242
|
|
|
tasks=( |
|
1243
|
|
|
{ |
|
1244
|
|
|
export_etrago_cts_heat_profiles, |
|
1245
|
|
|
map_climate_zones_to_zensus, |
|
1246
|
|
|
daily_demand_shares_per_climate_zone, |
|
1247
|
|
|
create, |
|
1248
|
|
|
}, |
|
1249
|
|
|
select, |
|
1250
|
|
|
district_heating, |
|
1251
|
|
|
metadata, |
|
1252
|
|
|
store_national_profiles, |
|
1253
|
|
|
), |
|
1254
|
|
|
) |
|
1255
|
|
|
|