|
1
|
|
|
""" |
|
2
|
|
|
Household electricity demand time series for scenarios in 2035 and 2050 |
|
3
|
|
|
assigned to OSM-buildings. |
|
4
|
|
|
|
|
5
|
|
|
""" |
|
6
|
|
|
|
|
7
|
|
|
import random |
|
8
|
|
|
|
|
9
|
|
|
from geoalchemy2 import Geometry |
|
10
|
|
|
from sqlalchemy import REAL, Column, Integer, String, Table, func, inspect |
|
11
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
|
12
|
|
|
import geopandas as gpd |
|
13
|
|
|
import numpy as np |
|
14
|
|
|
import pandas as pd |
|
15
|
|
|
|
|
16
|
|
|
from egon.data import db |
|
17
|
|
|
from egon.data.datasets import Dataset |
|
18
|
|
|
from egon.data.datasets.electricity_demand_timeseries.hh_profiles import ( |
|
19
|
|
|
HouseholdElectricityProfilesInCensusCells, |
|
20
|
|
|
get_iee_hh_demand_profiles_raw, |
|
21
|
|
|
) |
|
22
|
|
|
from egon.data.datasets.electricity_demand_timeseries.tools import ( |
|
23
|
|
|
random_point_in_square, |
|
24
|
|
|
) |
|
25
|
|
|
import egon.data.config |
|
26
|
|
|
|
|
27
|
|
|
engine = db.engine() |
|
28
|
|
|
Base = declarative_base() |
|
29
|
|
|
|
|
30
|
|
|
data_config = egon.data.config.datasets() |
|
31
|
|
|
RANDOM_SEED = egon.data.config.settings()["egon-data"]["--random-seed"] |
|
32
|
|
|
np.random.seed(RANDOM_SEED) |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
|
class HouseholdElectricityProfilesOfBuildings(Base): |
|
36
|
|
|
""" |
|
37
|
|
|
Class definition of table demand.egon_household_electricity_profile_of_buildings. |
|
38
|
|
|
|
|
39
|
|
|
Mapping of demand timeseries and buildings and cell_id. This table is created within |
|
40
|
|
|
:py:func:`hh_buildings.map_houseprofiles_to_buildings()`. |
|
41
|
|
|
|
|
42
|
|
|
""" |
|
43
|
|
|
|
|
44
|
|
|
__tablename__ = "egon_household_electricity_profile_of_buildings" |
|
45
|
|
|
__table_args__ = {"schema": "demand"} |
|
46
|
|
|
|
|
47
|
|
|
id = Column(Integer, primary_key=True) |
|
48
|
|
|
building_id = Column(Integer, index=True) |
|
49
|
|
|
cell_id = Column(Integer, index=True) |
|
50
|
|
|
profile_id = Column(String, index=True) |
|
51
|
|
|
|
|
52
|
|
|
|
|
53
|
|
|
class HouseholdElectricityProfilesOfBuildingsStats(Base): |
|
54
|
|
|
""" |
|
55
|
|
|
Class definition of table `demand.egon_household_electricity_profile_of_buildings_stats`. |
|
56
|
|
|
Contains number of households per building and type from table |
|
57
|
|
|
`demand.egon_household_electricity_profile_of_buildings` |
|
58
|
|
|
|
|
59
|
|
|
Columns |
|
60
|
|
|
------- |
|
61
|
|
|
building_id: Building id as used in tables `openstreetmap.osm_buildings_*`, index col |
|
62
|
|
|
households_total: total count of households |
|
63
|
|
|
SR: count of household type SR single retiree |
|
64
|
|
|
SO: count of household type SA single adults |
|
65
|
|
|
PR: count of household type PR pair retiree |
|
66
|
|
|
PO: count of household type PA pair adults |
|
67
|
|
|
SK: count of household type SK single n children |
|
68
|
|
|
P1: count of household type P1 pair 1 child |
|
69
|
|
|
P2: count of household type P2 pair 2 children |
|
70
|
|
|
P3: count of household type P3 pair 3 children |
|
71
|
|
|
OR: count of household type OR multi retiree n children |
|
72
|
|
|
OO: count of household type OO multi adults n children |
|
73
|
|
|
""" |
|
74
|
|
|
|
|
75
|
|
|
__tablename__ = "egon_household_electricity_profile_of_buildings_stats" |
|
76
|
|
|
__table_args__ = {"schema": "demand"} |
|
77
|
|
|
|
|
78
|
|
|
building_id = Column(Integer, primary_key=True) |
|
79
|
|
|
households_total = Column(Integer, nullable=True) |
|
80
|
|
|
SR = Column(Integer, nullable=True) |
|
81
|
|
|
SO = Column(Integer, nullable=True) |
|
82
|
|
|
PR = Column(Integer, nullable=True) |
|
83
|
|
|
PO = Column(Integer, nullable=True) |
|
84
|
|
|
SK = Column(Integer, nullable=True) |
|
85
|
|
|
P1 = Column(Integer, nullable=True) |
|
86
|
|
|
P2 = Column(Integer, nullable=True) |
|
87
|
|
|
P3 = Column(Integer, nullable=True) |
|
88
|
|
|
OR = Column(Integer, nullable=True) |
|
89
|
|
|
OO = Column(Integer, nullable=True) |
|
90
|
|
|
|
|
91
|
|
|
|
|
92
|
|
|
class OsmBuildingsSynthetic(Base): |
|
93
|
|
|
""" |
|
94
|
|
|
Class definition of table demand.osm_buildings_synthetic. |
|
95
|
|
|
|
|
96
|
|
|
Lists generated synthetic building with id, zensus_population_id and |
|
97
|
|
|
building type. This table is created within |
|
98
|
|
|
:py:func:`hh_buildings.map_houseprofiles_to_buildings()`. |
|
99
|
|
|
""" |
|
100
|
|
|
|
|
101
|
|
|
__tablename__ = "osm_buildings_synthetic" |
|
102
|
|
|
__table_args__ = {"schema": "openstreetmap"} |
|
103
|
|
|
|
|
104
|
|
|
id = Column(String, primary_key=True) |
|
105
|
|
|
cell_id = Column(String, index=True) |
|
106
|
|
|
geom_building = Column(Geometry("Polygon", 3035), index=True) |
|
107
|
|
|
geom_point = Column(Geometry("POINT", 3035)) |
|
108
|
|
|
n_amenities_inside = Column(Integer) |
|
109
|
|
|
building = Column(String(11)) |
|
110
|
|
|
area = Column(REAL) |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
class BuildingElectricityPeakLoads(Base): |
|
114
|
|
|
""" |
|
115
|
|
|
Class definition of table demand.egon_building_electricity_peak_loads. |
|
116
|
|
|
|
|
117
|
|
|
Mapping of electricity demand time series and buildings including cell_id, |
|
118
|
|
|
building area and peak load. This table is created within |
|
119
|
|
|
:func:`hh_buildings.get_building_peak_loads()`. |
|
120
|
|
|
""" |
|
121
|
|
|
|
|
122
|
|
|
__tablename__ = "egon_building_electricity_peak_loads" |
|
123
|
|
|
__table_args__ = {"schema": "demand"} |
|
124
|
|
|
|
|
125
|
|
|
building_id = Column(Integer, primary_key=True) |
|
126
|
|
|
scenario = Column(String, primary_key=True) |
|
127
|
|
|
sector = Column(String, primary_key=True) |
|
128
|
|
|
peak_load_in_w = Column(REAL) |
|
129
|
|
|
voltage_level = Column(Integer, index=True) |
|
130
|
|
|
|
|
131
|
|
|
|
|
132
|
|
|
def match_osm_and_zensus_data( |
|
133
|
|
|
egon_hh_profile_in_zensus_cell, |
|
134
|
|
|
egon_map_zensus_buildings_residential, |
|
135
|
|
|
): |
|
136
|
|
|
""" |
|
137
|
|
|
Compares OSM buildings and census hh demand profiles. |
|
138
|
|
|
|
|
139
|
|
|
OSM building data and hh demand profiles based on census data is compared. |
|
140
|
|
|
Census cells with only profiles but no osm-ids are identified to generate |
|
141
|
|
|
synthetic buildings. Census building count is used, if available, to define |
|
142
|
|
|
number of missing buildings. Otherwise, we use a twofold approach for the |
|
143
|
|
|
rate: first, the rate is calculated using adjacent cells (function |
|
144
|
|
|
`find_adjacent_cells()`), a distance of 3 cells in each direction is used |
|
145
|
|
|
by default (resulting in a 7x7 lookup matrix). As fallback, the overall |
|
146
|
|
|
median profile/building rate is used to derive the number of buildings |
|
147
|
|
|
from the number of already generated demand profiles. |
|
148
|
|
|
|
|
149
|
|
|
Parameters |
|
150
|
|
|
---------- |
|
151
|
|
|
egon_hh_profile_in_zensus_cell: pd.DataFrame |
|
152
|
|
|
Table mapping hh demand profiles to census cells |
|
153
|
|
|
|
|
154
|
|
|
egon_map_zensus_buildings_residential: pd.DataFrame |
|
155
|
|
|
Table with buildings osm-id and cell_id |
|
156
|
|
|
|
|
157
|
|
|
Returns |
|
158
|
|
|
------- |
|
159
|
|
|
pd.DataFrame |
|
160
|
|
|
Table with cell_ids and number of missing buildings |
|
161
|
|
|
""" |
|
162
|
|
|
|
|
163
|
|
|
def find_adjacent_cells(row, adj_cell_radius): |
|
164
|
|
|
""" |
|
165
|
|
|
Find adjacent cells for cell by iterating over census grid ids |
|
166
|
|
|
(100mN...E...). |
|
167
|
|
|
|
|
168
|
|
|
Parameters |
|
169
|
|
|
---------- |
|
170
|
|
|
row : Dataframe row |
|
171
|
|
|
Dataframe row |
|
172
|
|
|
adj_cell_radius : int |
|
173
|
|
|
distance of cells in each direction to find cells, |
|
174
|
|
|
e.g. adj_cell_radius=3 -> 7x7 cell matrix |
|
175
|
|
|
|
|
176
|
|
|
Returns |
|
177
|
|
|
------- |
|
178
|
|
|
tuples of int |
|
179
|
|
|
N coordinates, E coordinates in format |
|
180
|
|
|
[(N_cell_1, E_cell_1), ..., (N_cell_n, E_cell_n)] |
|
181
|
|
|
""" |
|
182
|
|
|
return [ |
|
183
|
|
|
f"100mN{_[0]}E{_[1]}" |
|
184
|
|
|
for _ in np.array( |
|
185
|
|
|
np.meshgrid( |
|
186
|
|
|
np.arange( |
|
187
|
|
|
row.N - adj_cell_radius, row.N + adj_cell_radius + 1 |
|
188
|
|
|
), |
|
189
|
|
|
np.arange( |
|
190
|
|
|
row.E - adj_cell_radius, row.E + adj_cell_radius + 1 |
|
191
|
|
|
), |
|
192
|
|
|
) |
|
193
|
|
|
).T.reshape(-1, 2) |
|
194
|
|
|
] |
|
195
|
|
|
|
|
196
|
|
|
# count number of profiles for each cell |
|
197
|
|
|
profiles_per_cell = egon_hh_profile_in_zensus_cell.cell_profile_ids.apply( |
|
198
|
|
|
len |
|
199
|
|
|
) |
|
200
|
|
|
|
|
201
|
|
|
# Add number of profiles per cell |
|
202
|
|
|
number_of_buildings_profiles_per_cell = pd.merge( |
|
203
|
|
|
left=profiles_per_cell, |
|
204
|
|
|
right=egon_hh_profile_in_zensus_cell["cell_id"], |
|
205
|
|
|
left_index=True, |
|
206
|
|
|
right_index=True, |
|
207
|
|
|
) |
|
208
|
|
|
|
|
209
|
|
|
# count buildings/ids for each cell |
|
210
|
|
|
buildings_per_cell = egon_map_zensus_buildings_residential.groupby( |
|
211
|
|
|
"cell_id" |
|
212
|
|
|
)["id"].count() |
|
213
|
|
|
buildings_per_cell = buildings_per_cell.rename("building_ids") |
|
214
|
|
|
|
|
215
|
|
|
# add buildings left join to have all the cells with assigned profiles |
|
216
|
|
|
number_of_buildings_profiles_per_cell = pd.merge( |
|
217
|
|
|
left=number_of_buildings_profiles_per_cell, |
|
218
|
|
|
right=buildings_per_cell, |
|
219
|
|
|
left_on="cell_id", |
|
220
|
|
|
right_index=True, |
|
221
|
|
|
how="left", |
|
222
|
|
|
) |
|
223
|
|
|
|
|
224
|
|
|
# identify cell ids with profiles but no buildings |
|
225
|
|
|
number_of_buildings_profiles_per_cell = ( |
|
226
|
|
|
number_of_buildings_profiles_per_cell.fillna(0).astype(int) |
|
227
|
|
|
) |
|
228
|
|
|
missing_buildings = number_of_buildings_profiles_per_cell.loc[ |
|
229
|
|
|
number_of_buildings_profiles_per_cell.building_ids == 0, |
|
230
|
|
|
["cell_id", "cell_profile_ids"], |
|
231
|
|
|
].set_index("cell_id") |
|
232
|
|
|
|
|
233
|
|
|
# query zensus building count |
|
234
|
|
|
egon_destatis_building_count = Table( |
|
235
|
|
|
"egon_destatis_zensus_apartment_building_population_per_ha", |
|
236
|
|
|
Base.metadata, |
|
237
|
|
|
schema="society", |
|
238
|
|
|
) |
|
239
|
|
|
# get table metadata from db by name and schema |
|
240
|
|
|
inspect(engine).reflecttable(egon_destatis_building_count, None) |
|
241
|
|
|
|
|
242
|
|
|
with db.session_scope() as session: |
|
243
|
|
|
cells_query = session.query( |
|
244
|
|
|
egon_destatis_building_count.c.zensus_population_id, |
|
245
|
|
|
egon_destatis_building_count.c.building_count, |
|
246
|
|
|
) |
|
247
|
|
|
|
|
248
|
|
|
egon_destatis_building_count = pd.read_sql( |
|
249
|
|
|
cells_query.statement, |
|
250
|
|
|
cells_query.session.bind, |
|
251
|
|
|
index_col="zensus_population_id", |
|
252
|
|
|
) |
|
253
|
|
|
egon_destatis_building_count = egon_destatis_building_count.dropna() |
|
254
|
|
|
|
|
255
|
|
|
missing_buildings = pd.merge( |
|
256
|
|
|
left=missing_buildings, |
|
257
|
|
|
right=egon_destatis_building_count, |
|
258
|
|
|
left_index=True, |
|
259
|
|
|
right_index=True, |
|
260
|
|
|
how="left", |
|
261
|
|
|
) |
|
262
|
|
|
|
|
263
|
|
|
# exclude cells without buildings |
|
264
|
|
|
only_cells_with_buildings = ( |
|
265
|
|
|
number_of_buildings_profiles_per_cell["building_ids"] != 0 |
|
266
|
|
|
) |
|
267
|
|
|
# get profile/building rate for each cell |
|
268
|
|
|
profile_building_rate = ( |
|
269
|
|
|
number_of_buildings_profiles_per_cell.loc[ |
|
270
|
|
|
only_cells_with_buildings, "cell_profile_ids" |
|
271
|
|
|
] |
|
272
|
|
|
/ number_of_buildings_profiles_per_cell.loc[ |
|
273
|
|
|
only_cells_with_buildings, "building_ids" |
|
274
|
|
|
] |
|
275
|
|
|
) |
|
276
|
|
|
|
|
277
|
|
|
# prepare values for missing building counts by number of profile ids |
|
278
|
|
|
building_count_fillna = missing_buildings.loc[ |
|
279
|
|
|
missing_buildings["building_count"].isna(), "cell_profile_ids" |
|
280
|
|
|
] |
|
281
|
|
|
# devide by median profile/building rate |
|
282
|
|
|
building_count_fillna = ( |
|
283
|
|
|
building_count_fillna / profile_building_rate.median() |
|
284
|
|
|
) |
|
285
|
|
|
# replace missing building counts |
|
286
|
|
|
missing_buildings["building_count"] = missing_buildings[ |
|
287
|
|
|
"building_count" |
|
288
|
|
|
].fillna(value=building_count_fillna) |
|
289
|
|
|
|
|
290
|
|
|
# ========== START Update profile/building rate in cells w/o bld using adjacent cells ========== |
|
291
|
|
|
missing_buildings_temp = ( |
|
292
|
|
|
egon_hh_profile_in_zensus_cell[["cell_id", "grid_id"]] |
|
293
|
|
|
.set_index("cell_id") |
|
294
|
|
|
.loc[missing_buildings.index.unique()] |
|
295
|
|
|
) |
|
296
|
|
|
|
|
297
|
|
|
# Extract coordinates |
|
298
|
|
|
missing_buildings_temp = pd.concat( |
|
299
|
|
|
[ |
|
300
|
|
|
missing_buildings_temp, |
|
301
|
|
|
missing_buildings_temp.grid_id.str.extract(r"100mN(\d+)E(\d+)") |
|
302
|
|
|
.astype(int) |
|
303
|
|
|
.rename(columns={0: "N", 1: "E"}), |
|
304
|
|
|
], |
|
305
|
|
|
axis=1, |
|
306
|
|
|
) |
|
307
|
|
|
|
|
308
|
|
|
# Find adjacent cells for cell |
|
309
|
|
|
missing_buildings_temp["cell_adj"] = missing_buildings_temp.apply( |
|
310
|
|
|
find_adjacent_cells, adj_cell_radius=3, axis=1 |
|
311
|
|
|
) |
|
312
|
|
|
missing_buildings_temp = ( |
|
313
|
|
|
missing_buildings_temp.explode("cell_adj") |
|
314
|
|
|
.drop(columns=["grid_id", "N", "E"]) |
|
315
|
|
|
.reset_index() |
|
316
|
|
|
) |
|
317
|
|
|
|
|
318
|
|
|
# Create mapping table cell -> adjacent cells |
|
319
|
|
|
missing_buildings_temp = ( |
|
320
|
|
|
missing_buildings_temp.set_index("cell_adj") |
|
321
|
|
|
.join( |
|
322
|
|
|
egon_hh_profile_in_zensus_cell.set_index("grid_id").cell_id, |
|
323
|
|
|
rsuffix="_adj", |
|
324
|
|
|
) |
|
325
|
|
|
.dropna() |
|
326
|
|
|
.set_index("cell_id_adj") |
|
327
|
|
|
) |
|
328
|
|
|
|
|
329
|
|
|
# Calculate profile/building rate for those cells |
|
330
|
|
|
profile_building_rate.name = "profile_building_rate" |
|
331
|
|
|
missing_buildings_temp = missing_buildings_temp.join( |
|
332
|
|
|
number_of_buildings_profiles_per_cell[["cell_id"]] |
|
333
|
|
|
.join(profile_building_rate) |
|
334
|
|
|
.set_index("cell_id") |
|
335
|
|
|
) |
|
336
|
|
|
missing_buildings_temp = ( |
|
337
|
|
|
missing_buildings_temp.groupby("cell_id").median().dropna() |
|
338
|
|
|
) |
|
339
|
|
|
|
|
340
|
|
|
# Update mising buildings |
|
341
|
|
|
missing_buildings["building_count"] = ( |
|
342
|
|
|
missing_buildings.cell_profile_ids.div( |
|
343
|
|
|
missing_buildings_temp.profile_building_rate |
|
344
|
|
|
).fillna(missing_buildings.building_count) |
|
345
|
|
|
) |
|
346
|
|
|
# ========== END Update profile/building rate in cells w/o bld using adjacent cells ========== |
|
347
|
|
|
|
|
348
|
|
|
# ceil to have at least one building each cell and make type int |
|
349
|
|
|
missing_buildings = missing_buildings.apply(np.ceil).astype(int) |
|
350
|
|
|
# generate list of building ids for each cell |
|
351
|
|
|
missing_buildings["building_count"] = missing_buildings[ |
|
352
|
|
|
"building_count" |
|
353
|
|
|
].apply(range) |
|
354
|
|
|
missing_buildings = missing_buildings.explode(column="building_count") |
|
355
|
|
|
|
|
356
|
|
|
return missing_buildings |
|
357
|
|
|
|
|
358
|
|
|
|
|
359
|
|
|
def generate_synthetic_buildings(missing_buildings, edge_length): |
|
360
|
|
|
""" |
|
361
|
|
|
Generate synthetic square buildings in census cells for every entry |
|
362
|
|
|
in missing_buildings. |
|
363
|
|
|
|
|
364
|
|
|
Generate random placed synthetic buildings incl geom data within the bounds |
|
365
|
|
|
of the cencus cell. Buildings have each a square area with edge_length^2. |
|
366
|
|
|
|
|
367
|
|
|
|
|
368
|
|
|
Parameters |
|
369
|
|
|
---------- |
|
370
|
|
|
missing_buildings: pd.Series or pd.DataFrame |
|
371
|
|
|
Table with cell_ids and building number |
|
372
|
|
|
edge_length: int |
|
373
|
|
|
Edge length of square synthetic building in meter |
|
374
|
|
|
|
|
375
|
|
|
Returns |
|
376
|
|
|
------- |
|
377
|
|
|
pd.DataFrame |
|
378
|
|
|
Table with generated synthetic buildings, area, cell_id and geom data |
|
379
|
|
|
|
|
380
|
|
|
""" |
|
381
|
|
|
destatis_zensus_population_per_ha_inside_germany = Table( |
|
382
|
|
|
"destatis_zensus_population_per_ha_inside_germany", |
|
383
|
|
|
Base.metadata, |
|
384
|
|
|
schema="society", |
|
385
|
|
|
) |
|
386
|
|
|
# get table metadata from db by name and schema |
|
387
|
|
|
inspect(engine).reflecttable( |
|
388
|
|
|
destatis_zensus_population_per_ha_inside_germany, None |
|
389
|
|
|
) |
|
390
|
|
|
|
|
391
|
|
|
with db.session_scope() as session: |
|
392
|
|
|
cells_query = session.query( |
|
393
|
|
|
destatis_zensus_population_per_ha_inside_germany |
|
394
|
|
|
).filter( |
|
395
|
|
|
destatis_zensus_population_per_ha_inside_germany.c.id.in_( |
|
396
|
|
|
missing_buildings.index.unique() |
|
397
|
|
|
) |
|
398
|
|
|
) |
|
399
|
|
|
|
|
400
|
|
|
destatis_zensus_population_per_ha_inside_germany = gpd.read_postgis( |
|
401
|
|
|
cells_query.statement, cells_query.session.bind, index_col="id" |
|
402
|
|
|
) |
|
403
|
|
|
|
|
404
|
|
|
# add geom data of zensus cell |
|
405
|
|
|
missing_buildings_geom = pd.merge( |
|
406
|
|
|
left=destatis_zensus_population_per_ha_inside_germany[["geom"]], |
|
407
|
|
|
right=missing_buildings, |
|
408
|
|
|
left_index=True, |
|
409
|
|
|
right_index=True, |
|
410
|
|
|
how="right", |
|
411
|
|
|
) |
|
412
|
|
|
|
|
413
|
|
|
missing_buildings_geom = missing_buildings_geom.reset_index(drop=False) |
|
414
|
|
|
missing_buildings_geom = missing_buildings_geom.rename( |
|
415
|
|
|
columns={ |
|
416
|
|
|
"building_count": "building_id", |
|
417
|
|
|
"cell_profile_ids": "profiles", |
|
418
|
|
|
"id": "cell_id", |
|
419
|
|
|
} |
|
420
|
|
|
) |
|
421
|
|
|
|
|
422
|
|
|
# create random points within census cells |
|
423
|
|
|
points = random_point_in_square( |
|
424
|
|
|
geom=missing_buildings_geom["geom"], tol=edge_length / 2 |
|
425
|
|
|
) |
|
426
|
|
|
|
|
427
|
|
|
# Store center of poylon |
|
428
|
|
|
missing_buildings_geom["geom_point"] = points |
|
429
|
|
|
# Create building using a square around point |
|
430
|
|
|
missing_buildings_geom["geom_building"] = points.buffer( |
|
431
|
|
|
distance=edge_length / 2, cap_style=3 |
|
432
|
|
|
) |
|
433
|
|
|
missing_buildings_geom = missing_buildings_geom.drop(columns=["geom"]) |
|
434
|
|
|
missing_buildings_geom = gpd.GeoDataFrame( |
|
435
|
|
|
missing_buildings_geom, crs="EPSG:3035", geometry="geom_building" |
|
436
|
|
|
) |
|
437
|
|
|
|
|
438
|
|
|
# get table metadata from db by name and schema |
|
439
|
|
|
buildings = Table("osm_buildings", Base.metadata, schema="openstreetmap") |
|
440
|
|
|
inspect(engine).reflecttable(buildings, None) |
|
441
|
|
|
|
|
442
|
|
|
# get max number of building ids from non-filtered building table |
|
443
|
|
|
with db.session_scope() as session: |
|
444
|
|
|
buildings = session.execute(func.max(buildings.c.id)).scalar() |
|
445
|
|
|
|
|
446
|
|
|
# apply ids following the sequence of openstreetmap.osm_buildings id |
|
447
|
|
|
missing_buildings_geom["id"] = range( |
|
448
|
|
|
buildings + 1, |
|
449
|
|
|
buildings + len(missing_buildings_geom) + 1, |
|
450
|
|
|
) |
|
451
|
|
|
|
|
452
|
|
|
drop_columns = [ |
|
453
|
|
|
i |
|
454
|
|
|
for i in ["building_id", "profiles"] |
|
455
|
|
|
if i in missing_buildings_geom.columns |
|
456
|
|
|
] |
|
457
|
|
|
if drop_columns: |
|
458
|
|
|
missing_buildings_geom = missing_buildings_geom.drop( |
|
459
|
|
|
columns=drop_columns |
|
460
|
|
|
) |
|
461
|
|
|
|
|
462
|
|
|
missing_buildings_geom["building"] = "residential" |
|
463
|
|
|
missing_buildings_geom["area"] = missing_buildings_geom[ |
|
464
|
|
|
"geom_building" |
|
465
|
|
|
].area |
|
466
|
|
|
|
|
467
|
|
|
return missing_buildings_geom |
|
468
|
|
|
|
|
469
|
|
|
|
|
470
|
|
|
def generate_mapping_table( |
|
471
|
|
|
egon_map_zensus_buildings_residential_synth, |
|
472
|
|
|
egon_hh_profile_in_zensus_cell, |
|
473
|
|
|
): |
|
474
|
|
|
""" |
|
475
|
|
|
Generate a mapping table for hh profiles to buildings. |
|
476
|
|
|
|
|
477
|
|
|
All hh demand profiles are randomly assigned to buildings within the same |
|
478
|
|
|
cencus cell. |
|
479
|
|
|
|
|
480
|
|
|
* profiles > buildings: buildings can have multiple profiles but every |
|
481
|
|
|
building gets at least one profile |
|
482
|
|
|
* profiles < buildings: not every building gets a profile |
|
483
|
|
|
|
|
484
|
|
|
|
|
485
|
|
|
Parameters |
|
486
|
|
|
---------- |
|
487
|
|
|
egon_map_zensus_buildings_residential_synth: pd.DataFrame |
|
488
|
|
|
Table with OSM and synthetic buildings ids per census cell |
|
489
|
|
|
egon_hh_profile_in_zensus_cell: pd.DataFrame |
|
490
|
|
|
Table mapping hh demand profiles to census cells |
|
491
|
|
|
|
|
492
|
|
|
Returns |
|
493
|
|
|
------- |
|
494
|
|
|
pd.DataFrame |
|
495
|
|
|
Table with mapping of profile ids to buildings with OSM ids |
|
496
|
|
|
|
|
497
|
|
|
""" |
|
498
|
|
|
|
|
499
|
|
|
def create_pool(buildings, profiles): |
|
500
|
|
|
if profiles > buildings: |
|
501
|
|
|
surplus = profiles - buildings |
|
502
|
|
|
surplus = rng.integers(0, buildings, surplus) |
|
503
|
|
|
pool = list(range(buildings)) + list(surplus) |
|
504
|
|
|
else: |
|
505
|
|
|
pool = list(range(buildings)) |
|
506
|
|
|
result = random.sample(population=pool, k=profiles) |
|
507
|
|
|
|
|
508
|
|
|
return result |
|
509
|
|
|
|
|
510
|
|
|
# group oms_ids by census cells and aggregate to list |
|
511
|
|
|
osm_ids_per_cell = ( |
|
512
|
|
|
egon_map_zensus_buildings_residential_synth[["id", "cell_id"]] |
|
513
|
|
|
.groupby("cell_id") |
|
514
|
|
|
.agg(list) |
|
515
|
|
|
) |
|
516
|
|
|
|
|
517
|
|
|
# cell ids of cells with osm ids |
|
518
|
|
|
cells_with_buildings = osm_ids_per_cell.index.astype(int).values |
|
519
|
|
|
# cell ids of cells with profiles |
|
520
|
|
|
cells_with_profiles = ( |
|
521
|
|
|
egon_hh_profile_in_zensus_cell["cell_id"].astype(int).values |
|
522
|
|
|
) |
|
523
|
|
|
# cell ids of cells with osm ids and profiles |
|
524
|
|
|
cell_with_profiles_and_buildings = np.intersect1d( |
|
525
|
|
|
cells_with_profiles, cells_with_buildings |
|
526
|
|
|
) |
|
527
|
|
|
|
|
528
|
|
|
# cells with only buildings might not be residential etc. |
|
529
|
|
|
|
|
530
|
|
|
# reduced list of profile_ids per cell with both buildings and profiles |
|
531
|
|
|
profile_ids_per_cell_reduced = egon_hh_profile_in_zensus_cell.set_index( |
|
532
|
|
|
"cell_id" |
|
533
|
|
|
).loc[cell_with_profiles_and_buildings, "cell_profile_ids"] |
|
534
|
|
|
# reduced list of osm_ids per cell with both buildings and profiles |
|
535
|
|
|
osm_ids_per_cell_reduced = osm_ids_per_cell.loc[ |
|
536
|
|
|
cell_with_profiles_and_buildings, "id" |
|
537
|
|
|
].rename("building_ids") |
|
538
|
|
|
|
|
539
|
|
|
# concat both lists by same cell_id |
|
540
|
|
|
mapping_profiles_to_buildings_reduced = pd.concat( |
|
541
|
|
|
[profile_ids_per_cell_reduced, osm_ids_per_cell_reduced], axis=1 |
|
542
|
|
|
) |
|
543
|
|
|
|
|
544
|
|
|
# count number of profiles and buildings for each cell |
|
545
|
|
|
# tells how many profiles have to be assigned to how many buildings |
|
546
|
|
|
number_profiles_and_buildings_reduced = ( |
|
547
|
|
|
mapping_profiles_to_buildings_reduced.applymap(len) |
|
548
|
|
|
) |
|
549
|
|
|
|
|
550
|
|
|
# map profiles randomly per cell |
|
551
|
|
|
# if profiles > buildings, every building will get at least one profile |
|
552
|
|
|
rng = np.random.default_rng(RANDOM_SEED) |
|
553
|
|
|
random.seed(RANDOM_SEED) |
|
554
|
|
|
mapping_profiles_to_buildings = pd.Series( |
|
555
|
|
|
[ |
|
556
|
|
|
create_pool(buildings, profiles) |
|
557
|
|
|
for buildings, profiles in zip( |
|
558
|
|
|
number_profiles_and_buildings_reduced["building_ids"].values, |
|
559
|
|
|
number_profiles_and_buildings_reduced[ |
|
560
|
|
|
"cell_profile_ids" |
|
561
|
|
|
].values, |
|
562
|
|
|
) |
|
563
|
|
|
], |
|
564
|
|
|
index=number_profiles_and_buildings_reduced.index, |
|
565
|
|
|
) |
|
566
|
|
|
|
|
567
|
|
|
# unnest building assignement per cell |
|
568
|
|
|
mapping_profiles_to_buildings = ( |
|
569
|
|
|
mapping_profiles_to_buildings.rename("building") |
|
570
|
|
|
.explode() |
|
571
|
|
|
.reset_index() |
|
572
|
|
|
) |
|
573
|
|
|
# add profile position as attribute by number of entries per cell (*) |
|
574
|
|
|
mapping_profiles_to_buildings["profile"] = ( |
|
575
|
|
|
mapping_profiles_to_buildings.groupby(["cell_id"]).cumcount() |
|
576
|
|
|
) |
|
577
|
|
|
# get multiindex of profiles in cells (*) |
|
578
|
|
|
index_profiles = mapping_profiles_to_buildings.set_index( |
|
579
|
|
|
["cell_id", "profile"] |
|
580
|
|
|
).index |
|
581
|
|
|
# get multiindex of buildings in cells (*) |
|
582
|
|
|
index_buildings = mapping_profiles_to_buildings.set_index( |
|
583
|
|
|
["cell_id", "building"] |
|
584
|
|
|
).index |
|
585
|
|
|
|
|
586
|
|
|
# get list of profiles by cell and profile position |
|
587
|
|
|
profile_ids_per_cell_reduced = ( |
|
588
|
|
|
profile_ids_per_cell_reduced.explode().reset_index() |
|
589
|
|
|
) |
|
590
|
|
|
# assign profile position by order of list |
|
591
|
|
|
profile_ids_per_cell_reduced["profile"] = ( |
|
592
|
|
|
profile_ids_per_cell_reduced.groupby(["cell_id"]).cumcount() |
|
593
|
|
|
) |
|
594
|
|
|
profile_ids_per_cell_reduced = profile_ids_per_cell_reduced.set_index( |
|
595
|
|
|
["cell_id", "profile"] |
|
596
|
|
|
) |
|
597
|
|
|
|
|
598
|
|
|
# get list of building by cell and building number |
|
599
|
|
|
osm_ids_per_cell_reduced = osm_ids_per_cell_reduced.explode().reset_index() |
|
600
|
|
|
# assign building number by order of list |
|
601
|
|
|
osm_ids_per_cell_reduced["building"] = osm_ids_per_cell_reduced.groupby( |
|
602
|
|
|
["cell_id"] |
|
603
|
|
|
).cumcount() |
|
604
|
|
|
osm_ids_per_cell_reduced = osm_ids_per_cell_reduced.set_index( |
|
605
|
|
|
["cell_id", "building"] |
|
606
|
|
|
) |
|
607
|
|
|
|
|
608
|
|
|
# map profiles and buildings by profile position and building number |
|
609
|
|
|
# merge is possible as both index results from the same origin (*) and are |
|
610
|
|
|
# not rearranged, therefore in the same order |
|
611
|
|
|
mapping_profiles_to_buildings = pd.merge( |
|
612
|
|
|
osm_ids_per_cell_reduced.loc[index_buildings].reset_index(drop=False), |
|
613
|
|
|
profile_ids_per_cell_reduced.loc[index_profiles].reset_index( |
|
614
|
|
|
drop=True |
|
615
|
|
|
), |
|
616
|
|
|
left_index=True, |
|
617
|
|
|
right_index=True, |
|
618
|
|
|
) |
|
619
|
|
|
|
|
620
|
|
|
# rename columns |
|
621
|
|
|
mapping_profiles_to_buildings.rename( |
|
622
|
|
|
columns={ |
|
623
|
|
|
"building_ids": "building_id", |
|
624
|
|
|
"cell_profile_ids": "profile_id", |
|
625
|
|
|
}, |
|
626
|
|
|
inplace=True, |
|
627
|
|
|
) |
|
628
|
|
|
|
|
629
|
|
|
return mapping_profiles_to_buildings |
|
630
|
|
|
|
|
631
|
|
|
|
|
632
|
|
|
def reduce_synthetic_buildings( |
|
633
|
|
|
mapping_profiles_to_buildings, synthetic_buildings |
|
634
|
|
|
): |
|
635
|
|
|
"""Reduced list of synthetic buildings to amount actually used. |
|
636
|
|
|
|
|
637
|
|
|
Not all are used, due to randomised assignment with replacing |
|
638
|
|
|
Id's are adapted to continuous number sequence following |
|
639
|
|
|
openstreetmap.osm_buildings""" |
|
640
|
|
|
|
|
641
|
|
|
buildings = Table("osm_buildings", Base.metadata, schema="openstreetmap") |
|
642
|
|
|
# get table metadata from db by name and schema |
|
643
|
|
|
inspect(engine).reflecttable(buildings, None) |
|
644
|
|
|
|
|
645
|
|
|
# total number of buildings |
|
646
|
|
|
with db.session_scope() as session: |
|
647
|
|
|
buildings = session.execute(func.max(buildings.c.id)).scalar() |
|
648
|
|
|
|
|
649
|
|
|
synth_ids_used = mapping_profiles_to_buildings.loc[ |
|
650
|
|
|
mapping_profiles_to_buildings["building_id"] > buildings, |
|
651
|
|
|
"building_id", |
|
652
|
|
|
].unique() |
|
653
|
|
|
|
|
654
|
|
|
synthetic_buildings = synthetic_buildings.loc[ |
|
655
|
|
|
synthetic_buildings["id"].isin(synth_ids_used) |
|
656
|
|
|
] |
|
657
|
|
|
# id_mapping = dict( |
|
658
|
|
|
# list( |
|
659
|
|
|
# zip( |
|
660
|
|
|
# synth_ids_used, |
|
661
|
|
|
# range( |
|
662
|
|
|
# buildings, |
|
663
|
|
|
# buildings |
|
664
|
|
|
# + len(synth_ids_used) + 1 |
|
665
|
|
|
# ) |
|
666
|
|
|
# ) |
|
667
|
|
|
# ) |
|
668
|
|
|
# ) |
|
669
|
|
|
|
|
670
|
|
|
# time expensive because of regex |
|
671
|
|
|
# mapping_profiles_to_buildings['building_id'] = ( |
|
672
|
|
|
# mapping_profiles_to_buildings['building_id'].replace(id_mapping) |
|
673
|
|
|
# ) |
|
674
|
|
|
return synthetic_buildings |
|
675
|
|
|
|
|
676
|
|
|
|
|
677
|
|
|
def get_building_peak_loads(): |
|
678
|
|
|
""" |
|
679
|
|
|
Peak loads of buildings are determined. |
|
680
|
|
|
|
|
681
|
|
|
Timeseries for every building are accumulated, the maximum value |
|
682
|
|
|
determined and with the respective nuts3 factor scaled for 2035 and 2050 |
|
683
|
|
|
scenario. |
|
684
|
|
|
|
|
685
|
|
|
Note |
|
686
|
|
|
---------- |
|
687
|
|
|
In test-mode 'SH' the iteration takes place by 'cell_id' to avoid |
|
688
|
|
|
intensive RAM usage. For whole Germany 'nuts3' are taken and |
|
689
|
|
|
RAM > 32GB is necessary. |
|
690
|
|
|
""" |
|
691
|
|
|
|
|
692
|
|
|
with db.session_scope() as session: |
|
693
|
|
|
cells_query = ( |
|
694
|
|
|
session.query( |
|
695
|
|
|
HouseholdElectricityProfilesOfBuildings, |
|
696
|
|
|
HouseholdElectricityProfilesInCensusCells.nuts3, |
|
697
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2019, |
|
698
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2023, |
|
699
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2035, |
|
700
|
|
|
HouseholdElectricityProfilesInCensusCells.factor_2050, |
|
701
|
|
|
) |
|
702
|
|
|
.filter( |
|
703
|
|
|
HouseholdElectricityProfilesOfBuildings.cell_id |
|
704
|
|
|
== HouseholdElectricityProfilesInCensusCells.cell_id |
|
705
|
|
|
) |
|
706
|
|
|
.order_by(HouseholdElectricityProfilesOfBuildings.id) |
|
707
|
|
|
) |
|
708
|
|
|
|
|
709
|
|
|
df_buildings_and_profiles = pd.read_sql( |
|
710
|
|
|
cells_query.statement, cells_query.session.bind, index_col="id" |
|
711
|
|
|
) |
|
712
|
|
|
|
|
713
|
|
|
# fill columns with None with np.nan to allow multiplication with emtpy columns |
|
714
|
|
|
df_buildings_and_profiles = df_buildings_and_profiles.fillna(np.nan) |
|
715
|
|
|
|
|
716
|
|
|
# Read demand profiles from egon-data-bundle |
|
717
|
|
|
df_profiles = get_iee_hh_demand_profiles_raw() |
|
718
|
|
|
|
|
719
|
|
|
def ve(s): |
|
720
|
|
|
raise (ValueError(s)) |
|
721
|
|
|
|
|
722
|
|
|
dataset = egon.data.config.settings()["egon-data"][ |
|
723
|
|
|
"--dataset-boundary" |
|
724
|
|
|
] |
|
725
|
|
|
iterate_over = ( |
|
726
|
|
|
"nuts3" |
|
727
|
|
|
if dataset == "Everything" |
|
728
|
|
|
else ( |
|
729
|
|
|
"cell_id" |
|
730
|
|
|
if dataset == "Schleswig-Holstein" |
|
731
|
|
|
else ve(f"'{dataset}' is not a valid dataset boundary.") |
|
732
|
|
|
) |
|
733
|
|
|
) |
|
734
|
|
|
|
|
735
|
|
|
df_building_peak_loads = pd.DataFrame() |
|
736
|
|
|
|
|
737
|
|
|
for nuts3, df in df_buildings_and_profiles.groupby(by=iterate_over): |
|
738
|
|
|
df_building_peak_load_nuts3 = df_profiles.loc[:, df.profile_id] |
|
739
|
|
|
|
|
740
|
|
|
m_index = pd.MultiIndex.from_arrays( |
|
741
|
|
|
[df.profile_id, df.building_id], |
|
742
|
|
|
names=("profile_id", "building_id"), |
|
743
|
|
|
) |
|
744
|
|
|
df_building_peak_load_nuts3.columns = m_index |
|
745
|
|
|
df_building_peak_load_nuts3 = ( |
|
746
|
|
|
df_building_peak_load_nuts3.groupby("building_id", axis=1) |
|
747
|
|
|
.sum() |
|
748
|
|
|
.max() |
|
749
|
|
|
) |
|
750
|
|
|
|
|
751
|
|
|
df_building_peak_load_nuts3 = pd.DataFrame( |
|
752
|
|
|
[ |
|
753
|
|
|
df_building_peak_load_nuts3 * df["factor_2019"].unique(), |
|
754
|
|
|
df_building_peak_load_nuts3 * df["factor_2023"].unique(), |
|
755
|
|
|
df_building_peak_load_nuts3 * df["factor_2035"].unique(), |
|
756
|
|
|
df_building_peak_load_nuts3 * df["factor_2050"].unique(), |
|
757
|
|
|
], |
|
758
|
|
|
index=[ |
|
759
|
|
|
"status2019", |
|
760
|
|
|
"status2023", |
|
761
|
|
|
"eGon2035", |
|
762
|
|
|
"eGon100RE", |
|
763
|
|
|
], |
|
764
|
|
|
).T |
|
765
|
|
|
|
|
766
|
|
|
df_building_peak_loads = pd.concat( |
|
767
|
|
|
[df_building_peak_loads, df_building_peak_load_nuts3], axis=0 |
|
768
|
|
|
) |
|
769
|
|
|
|
|
770
|
|
|
df_building_peak_loads.reset_index(inplace=True) |
|
771
|
|
|
df_building_peak_loads["sector"] = "residential" |
|
772
|
|
|
|
|
773
|
|
|
BuildingElectricityPeakLoads.__table__.drop( |
|
774
|
|
|
bind=engine, checkfirst=True |
|
775
|
|
|
) |
|
776
|
|
|
BuildingElectricityPeakLoads.__table__.create( |
|
777
|
|
|
bind=engine, checkfirst=True |
|
778
|
|
|
) |
|
779
|
|
|
|
|
780
|
|
|
df_building_peak_loads = df_building_peak_loads.melt( |
|
781
|
|
|
id_vars=["building_id", "sector"], |
|
782
|
|
|
var_name="scenario", |
|
783
|
|
|
value_name="peak_load_in_w", |
|
784
|
|
|
) |
|
785
|
|
|
|
|
786
|
|
|
# Write peak loads into db |
|
787
|
|
|
with db.session_scope() as session: |
|
788
|
|
|
session.bulk_insert_mappings( |
|
789
|
|
|
BuildingElectricityPeakLoads, |
|
790
|
|
|
df_building_peak_loads.to_dict(orient="records"), |
|
791
|
|
|
) |
|
792
|
|
|
|
|
793
|
|
|
|
|
794
|
|
|
def map_houseprofiles_to_buildings(): |
|
795
|
|
|
""" |
|
796
|
|
|
Census hh demand profiles are assigned to residential buildings via osm ids. |
|
797
|
|
|
If no OSM ids are available, synthetic buildings are generated. A list of the |
|
798
|
|
|
generated buildings and supplementary data as well as the mapping table is stored |
|
799
|
|
|
in the db. |
|
800
|
|
|
|
|
801
|
|
|
**Tables** |
|
802
|
|
|
|
|
803
|
|
|
synthetic_buildings: |
|
804
|
|
|
schema: openstreetmap |
|
805
|
|
|
tablename: osm_buildings_synthetic |
|
806
|
|
|
|
|
807
|
|
|
mapping_profiles_to_buildings: |
|
808
|
|
|
schema: demand |
|
809
|
|
|
tablename: egon_household_electricity_profile_of_buildings |
|
810
|
|
|
|
|
811
|
|
|
""" |
|
812
|
|
|
# ========== Get census cells ========== |
|
813
|
|
|
egon_census_cells = Table( |
|
814
|
|
|
"egon_destatis_zensus_apartment_building_population_per_ha", |
|
815
|
|
|
Base.metadata, |
|
816
|
|
|
schema="society", |
|
817
|
|
|
) |
|
818
|
|
|
inspect(engine).reflecttable(egon_census_cells, None) |
|
819
|
|
|
|
|
820
|
|
|
with db.session_scope() as session: |
|
821
|
|
|
cells_query = session.query( |
|
822
|
|
|
egon_census_cells.c.zensus_population_id, |
|
823
|
|
|
egon_census_cells.c.population, |
|
824
|
|
|
egon_census_cells.c.geom, |
|
825
|
|
|
).order_by(egon_census_cells.c.zensus_population_id) |
|
826
|
|
|
gdf_egon_census_cells = gpd.read_postgis( |
|
827
|
|
|
cells_query.statement, cells_query.session.bind, geom_col="geom" |
|
828
|
|
|
) |
|
829
|
|
|
|
|
830
|
|
|
# ========== Get residential buildings ========== |
|
831
|
|
|
egon_osm_buildings_residential = Table( |
|
832
|
|
|
"osm_buildings_residential", |
|
833
|
|
|
Base.metadata, |
|
834
|
|
|
schema="openstreetmap", |
|
835
|
|
|
) |
|
836
|
|
|
inspect(engine).reflecttable(egon_osm_buildings_residential, None) |
|
837
|
|
|
|
|
838
|
|
|
with db.session_scope() as session: |
|
839
|
|
|
cells_query = session.query( |
|
840
|
|
|
egon_osm_buildings_residential.c.id.label("building_id"), |
|
841
|
|
|
egon_osm_buildings_residential.c.geom_building, |
|
842
|
|
|
).order_by(egon_osm_buildings_residential.c.id) |
|
843
|
|
|
gdf_egon_osm_buildings = gpd.read_postgis( |
|
844
|
|
|
cells_query.statement, |
|
845
|
|
|
cells_query.session.bind, |
|
846
|
|
|
geom_col="geom_building", |
|
847
|
|
|
) |
|
848
|
|
|
|
|
849
|
|
|
# ========== Clip buildings centroids with census cells to get main buildings ========== |
|
850
|
|
|
|
|
851
|
|
|
# Copy buildings and set centroid as geom |
|
852
|
|
|
gdf_egon_osm_buildings_main = gdf_egon_osm_buildings.copy() |
|
853
|
|
|
gdf_egon_osm_buildings_main["geom_point"] = gdf_egon_osm_buildings_main.centroid |
|
854
|
|
|
gdf_egon_osm_buildings_main = gdf_egon_osm_buildings_main.drop( |
|
855
|
|
|
columns=["geom_building"]).set_geometry("geom_point") |
|
856
|
|
|
|
|
857
|
|
|
egon_map_zensus_buildings_residential_main = gpd.sjoin( |
|
858
|
|
|
gdf_egon_osm_buildings_main, |
|
859
|
|
|
gdf_egon_census_cells, |
|
860
|
|
|
how="inner", |
|
861
|
|
|
predicate="within" |
|
862
|
|
|
)[["building_id", "zensus_population_id"]].rename(columns={"zensus_population_id": "cell_id"}) |
|
863
|
|
|
|
|
864
|
|
|
# ========== Clip buildings with census cells to get building parts ========== |
|
865
|
|
|
|
|
866
|
|
|
# Clip to create new build parts as buildings |
|
867
|
|
|
gdf_egon_osm_buildings_census_cells = gdf_egon_census_cells.overlay( |
|
868
|
|
|
gdf_egon_osm_buildings, how="intersection" |
|
869
|
|
|
) |
|
870
|
|
|
|
|
871
|
|
|
# Remove main buildings which are not located in populated census cells |
|
872
|
|
|
buildings_centroid_not_in_census_cells = gdf_egon_osm_buildings_census_cells.loc[ |
|
873
|
|
|
~gdf_egon_osm_buildings_census_cells.building_id.isin( |
|
874
|
|
|
egon_map_zensus_buildings_residential_main.building_id)] |
|
875
|
|
|
gdf_egon_osm_buildings_census_cells = gdf_egon_osm_buildings_census_cells.loc[ |
|
876
|
|
|
~gdf_egon_osm_buildings_census_cells.building_id.isin( |
|
877
|
|
|
buildings_centroid_not_in_census_cells.building_id.to_list()) |
|
878
|
|
|
] |
|
879
|
|
|
|
|
880
|
|
|
gdf_egon_osm_buildings_census_cells["geom_point"] = ( |
|
881
|
|
|
gdf_egon_osm_buildings_census_cells.centroid |
|
882
|
|
|
) |
|
883
|
|
|
|
|
884
|
|
|
# Add column with unique building ids using suffixes (building parts split by clipping) |
|
885
|
|
|
gdf_egon_osm_buildings_census_cells["building_id_temp"] = ( |
|
886
|
|
|
gdf_egon_osm_buildings_census_cells["building_id"].astype(str) |
|
887
|
|
|
) |
|
888
|
|
|
g = ( |
|
889
|
|
|
gdf_egon_osm_buildings_census_cells.groupby("building_id_temp") |
|
890
|
|
|
.cumcount() |
|
891
|
|
|
.add(1) |
|
892
|
|
|
.astype(str) |
|
893
|
|
|
) |
|
894
|
|
|
gdf_egon_osm_buildings_census_cells["building_id_temp"] += "_" + g |
|
895
|
|
|
|
|
896
|
|
|
# Check |
|
897
|
|
|
try: |
|
898
|
|
|
assert len( |
|
899
|
|
|
gdf_egon_osm_buildings_census_cells.building_id_temp.unique() |
|
900
|
|
|
) == len(gdf_egon_osm_buildings_census_cells) |
|
901
|
|
|
except AssertionError: |
|
902
|
|
|
print( |
|
903
|
|
|
"The length of split buildings do not match with original count." |
|
904
|
|
|
) |
|
905
|
|
|
|
|
906
|
|
|
egon_map_zensus_buildings_residential = ( |
|
907
|
|
|
gdf_egon_osm_buildings_census_cells[ |
|
908
|
|
|
["zensus_population_id", "building_id_temp"] |
|
909
|
|
|
].rename( |
|
910
|
|
|
columns={ |
|
911
|
|
|
"zensus_population_id": "cell_id", |
|
912
|
|
|
"building_id_temp": "id", |
|
913
|
|
|
} |
|
914
|
|
|
) |
|
915
|
|
|
) |
|
916
|
|
|
|
|
917
|
|
|
# Get household profile to census cells allocations |
|
918
|
|
|
with db.session_scope() as session: |
|
919
|
|
|
cells_query = session.query(HouseholdElectricityProfilesInCensusCells) |
|
920
|
|
|
egon_hh_profile_in_zensus_cell = pd.read_sql( |
|
921
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
|
922
|
|
|
) |
|
923
|
|
|
|
|
924
|
|
|
# Match OSM and zensus data to define missing buildings |
|
925
|
|
|
missing_buildings = match_osm_and_zensus_data( |
|
926
|
|
|
egon_hh_profile_in_zensus_cell, |
|
927
|
|
|
egon_map_zensus_buildings_residential, |
|
928
|
|
|
) |
|
929
|
|
|
|
|
930
|
|
|
# randomly generate synthetic buildings in cell without any |
|
931
|
|
|
synthetic_buildings = generate_synthetic_buildings( |
|
932
|
|
|
missing_buildings, edge_length=5 |
|
933
|
|
|
) |
|
934
|
|
|
|
|
935
|
|
|
# add synthetic buildings to df |
|
936
|
|
|
egon_map_zensus_buildings_residential_synth = pd.concat( |
|
937
|
|
|
[ |
|
938
|
|
|
egon_map_zensus_buildings_residential, |
|
939
|
|
|
synthetic_buildings[["id", "cell_id"]], |
|
940
|
|
|
], |
|
941
|
|
|
ignore_index=True, |
|
942
|
|
|
) |
|
943
|
|
|
|
|
944
|
|
|
# assign profiles to buildings |
|
945
|
|
|
mapping_profiles_to_buildings = generate_mapping_table( |
|
946
|
|
|
egon_map_zensus_buildings_residential_synth, |
|
947
|
|
|
egon_hh_profile_in_zensus_cell, |
|
948
|
|
|
) |
|
949
|
|
|
|
|
950
|
|
|
# remove suffixes from buildings split into parts before to merge them back together |
|
951
|
|
|
mapping_profiles_to_buildings["building_id"] = ( |
|
952
|
|
|
mapping_profiles_to_buildings.building_id.astype(str).apply( |
|
953
|
|
|
lambda s: s.split("_")[0] if "_" in s else s |
|
954
|
|
|
) |
|
955
|
|
|
) |
|
956
|
|
|
mapping_profiles_to_buildings["building_id"] = ( |
|
957
|
|
|
mapping_profiles_to_buildings["building_id"].astype(int) |
|
958
|
|
|
) |
|
959
|
|
|
|
|
960
|
|
|
# reduce list to only used synthetic buildings |
|
961
|
|
|
synthetic_buildings = reduce_synthetic_buildings( |
|
962
|
|
|
mapping_profiles_to_buildings, synthetic_buildings |
|
963
|
|
|
) |
|
964
|
|
|
synthetic_buildings["n_amenities_inside"] = 0 |
|
965
|
|
|
|
|
966
|
|
|
# ========== Reallocate profiles from building part to main building (correct cell_id) ========== |
|
967
|
|
|
# cf. https://github.com/openego/eGon-data/issues/1190 |
|
968
|
|
|
|
|
969
|
|
|
# Get and allocate main building_id |
|
970
|
|
|
egon_map_zensus_buildings_residential_main = pd.merge( |
|
971
|
|
|
mapping_profiles_to_buildings[["cell_id", "building_id"]], |
|
972
|
|
|
egon_map_zensus_buildings_residential_main, |
|
973
|
|
|
on='building_id', |
|
974
|
|
|
how='left', |
|
975
|
|
|
suffixes=('_df1', '_df2') |
|
976
|
|
|
).dropna() |
|
977
|
|
|
egon_map_zensus_buildings_residential_main[ |
|
978
|
|
|
"cell_id_df2"] = egon_map_zensus_buildings_residential_main["cell_id_df2"].astype(int) |
|
979
|
|
|
mapping_profiles_to_buildings2 = mapping_profiles_to_buildings.copy() |
|
980
|
|
|
mapping_profiles_to_buildings["cell_id"] = egon_map_zensus_buildings_residential_main["cell_id_df2"] |
|
981
|
|
|
|
|
982
|
|
|
# Retain original values where no main building has been found |
|
983
|
|
|
# (centroid of building part not in a cell) |
|
984
|
|
|
mapping_profiles_to_buildings["cell_id"].fillna(mapping_profiles_to_buildings2["cell_id"], inplace=True) |
|
985
|
|
|
mapping_profiles_to_buildings["cell_id"] = mapping_profiles_to_buildings["cell_id"].astype(int) |
|
986
|
|
|
|
|
987
|
|
|
# ========== Write results to DB ========== |
|
988
|
|
|
|
|
989
|
|
|
OsmBuildingsSynthetic.__table__.drop(bind=engine, checkfirst=True) |
|
990
|
|
|
OsmBuildingsSynthetic.__table__.create(bind=engine, checkfirst=True) |
|
991
|
|
|
|
|
992
|
|
|
# Write new buildings incl coord into db |
|
993
|
|
|
n_amenities_inside_type = OsmBuildingsSynthetic.n_amenities_inside.type |
|
994
|
|
|
synthetic_buildings.to_postgis( |
|
995
|
|
|
"osm_buildings_synthetic", |
|
996
|
|
|
con=engine, |
|
997
|
|
|
if_exists="append", |
|
998
|
|
|
schema="openstreetmap", |
|
999
|
|
|
dtype={ |
|
1000
|
|
|
"id": OsmBuildingsSynthetic.id.type, |
|
1001
|
|
|
"cell_id": OsmBuildingsSynthetic.cell_id.type, |
|
1002
|
|
|
"geom_building": OsmBuildingsSynthetic.geom_building.type, |
|
1003
|
|
|
"geom_point": OsmBuildingsSynthetic.geom_point.type, |
|
1004
|
|
|
"n_amenities_inside": n_amenities_inside_type, |
|
1005
|
|
|
"building": OsmBuildingsSynthetic.building.type, |
|
1006
|
|
|
"area": OsmBuildingsSynthetic.area.type, |
|
1007
|
|
|
}, |
|
1008
|
|
|
) |
|
1009
|
|
|
|
|
1010
|
|
|
HouseholdElectricityProfilesOfBuildings.__table__.drop( |
|
1011
|
|
|
bind=engine, checkfirst=True |
|
1012
|
|
|
) |
|
1013
|
|
|
HouseholdElectricityProfilesOfBuildings.__table__.create( |
|
1014
|
|
|
bind=engine, checkfirst=True |
|
1015
|
|
|
) |
|
1016
|
|
|
|
|
1017
|
|
|
# Write building mapping into db |
|
1018
|
|
|
with db.session_scope() as session: |
|
1019
|
|
|
session.bulk_insert_mappings( |
|
1020
|
|
|
HouseholdElectricityProfilesOfBuildings, |
|
1021
|
|
|
mapping_profiles_to_buildings.to_dict(orient="records"), |
|
1022
|
|
|
) |
|
1023
|
|
|
|
|
1024
|
|
|
|
|
1025
|
|
|
def create_buildings_profiles_stats(): |
|
1026
|
|
|
""" |
|
1027
|
|
|
Create DB table `demand.egon_household_electricity_profile_of_buildings_stats` |
|
1028
|
|
|
with household profile type counts per building |
|
1029
|
|
|
""" |
|
1030
|
|
|
|
|
1031
|
|
|
# Drop and recreate table if existing |
|
1032
|
|
|
HouseholdElectricityProfilesOfBuildingsStats.__table__.drop( |
|
1033
|
|
|
bind=engine, checkfirst=True |
|
1034
|
|
|
) |
|
1035
|
|
|
HouseholdElectricityProfilesOfBuildingsStats.__table__.create( |
|
1036
|
|
|
bind=engine, checkfirst=True |
|
1037
|
|
|
) |
|
1038
|
|
|
|
|
1039
|
|
|
# Query final profile table |
|
1040
|
|
|
with db.session_scope() as session: |
|
1041
|
|
|
cells_query = session.query( |
|
1042
|
|
|
HouseholdElectricityProfilesOfBuildings, |
|
1043
|
|
|
).order_by(HouseholdElectricityProfilesOfBuildings.id) |
|
1044
|
|
|
|
|
1045
|
|
|
df_buildings_and_profiles = pd.read_sql( |
|
1046
|
|
|
cells_query.statement, cells_query.session.bind, index_col="id" |
|
1047
|
|
|
) |
|
1048
|
|
|
|
|
1049
|
|
|
# Extract household type prefix |
|
1050
|
|
|
df_buildings_and_profiles = df_buildings_and_profiles.assign( |
|
1051
|
|
|
household_type=df_buildings_and_profiles.profile_id.str[:2] |
|
1052
|
|
|
) |
|
1053
|
|
|
|
|
1054
|
|
|
# Unstack and create total |
|
1055
|
|
|
df_buildings_and_profiles = ( |
|
1056
|
|
|
df_buildings_and_profiles.groupby("building_id") |
|
1057
|
|
|
.value_counts(["household_type"]) |
|
1058
|
|
|
.unstack(fill_value=0) |
|
1059
|
|
|
) |
|
1060
|
|
|
df_buildings_and_profiles["households_total"] = ( |
|
1061
|
|
|
df_buildings_and_profiles.sum(axis=1) |
|
1062
|
|
|
) |
|
1063
|
|
|
|
|
1064
|
|
|
# Write to DB |
|
1065
|
|
|
df_buildings_and_profiles.to_sql( |
|
1066
|
|
|
name=HouseholdElectricityProfilesOfBuildingsStats.__table__.name, |
|
1067
|
|
|
schema=HouseholdElectricityProfilesOfBuildingsStats.__table__.schema, |
|
1068
|
|
|
con=engine, |
|
1069
|
|
|
if_exists="append", |
|
1070
|
|
|
) |
|
1071
|
|
|
|
|
1072
|
|
|
|
|
1073
|
|
|
class setup(Dataset): |
|
1074
|
|
|
""" |
|
1075
|
|
|
Household electricity demand profiles for scenarios in 2035 and 2050 |
|
1076
|
|
|
assigned to buildings. |
|
1077
|
|
|
|
|
1078
|
|
|
Assignment of household electricity demand timeseries to OSM buildings |
|
1079
|
|
|
and generation of randomly placed synthetic 5x5m buildings if no |
|
1080
|
|
|
sufficient OSM-data available in the respective census cell. |
|
1081
|
|
|
|
|
1082
|
|
|
For more information see data documentation on :ref:`electricity-demand-ref`. |
|
1083
|
|
|
|
|
1084
|
|
|
*Dependencies* |
|
1085
|
|
|
* :py:func:`houseprofiles_in_census_cells |
|
1086
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_profiles.houseprofiles_in_census_cells>` |
|
1087
|
|
|
|
|
1088
|
|
|
*Resulting tables* |
|
1089
|
|
|
* :py:class:`OsmBuildingsSynthetic |
|
1090
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_buildings.OsmBuildingsSynthetic>` |
|
1091
|
|
|
is created and filled |
|
1092
|
|
|
* :py:class:`HouseholdElectricityProfilesOfBuildings |
|
1093
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_buildings.HouseholdElectricityProfilesOfBuildings>` |
|
1094
|
|
|
is created and filled |
|
1095
|
|
|
* :py:class:`BuildingElectricityPeakLoads |
|
1096
|
|
|
<egon.data.datasets.electricity_demand_timeseries.hh_buildings.BuildingElectricityPeakLoads>` |
|
1097
|
|
|
is created and filled |
|
1098
|
|
|
|
|
1099
|
|
|
**The following datasets from the database are used for creation:** |
|
1100
|
|
|
|
|
1101
|
|
|
* `demand.household_electricity_profiles_in_census_cells`: |
|
1102
|
|
|
Lists references and scaling parameters to time series data for each |
|
1103
|
|
|
household in a cell by identifiers. This table is fundamental for |
|
1104
|
|
|
creating subsequent data like demand profiles on MV grid level or |
|
1105
|
|
|
for determining the peak load at load. Only the profile reference |
|
1106
|
|
|
and the cell identifiers are used. |
|
1107
|
|
|
|
|
1108
|
|
|
* `society.egon_destatis_zensus_apartment_building_population_per_ha`: |
|
1109
|
|
|
Lists number of apartments, buildings and population for each census |
|
1110
|
|
|
cell. |
|
1111
|
|
|
|
|
1112
|
|
|
* `boundaries.egon_map_zensus_buildings_residential`: |
|
1113
|
|
|
List of OSM tagged buildings which are considered to be residential. |
|
1114
|
|
|
|
|
1115
|
|
|
|
|
1116
|
|
|
**What is the goal?** |
|
1117
|
|
|
|
|
1118
|
|
|
To assign every household demand profile allocated each census cell to a |
|
1119
|
|
|
specific building. |
|
1120
|
|
|
|
|
1121
|
|
|
**What is the challenge?** |
|
1122
|
|
|
|
|
1123
|
|
|
The census and the OSM dataset differ from each other. The census uses |
|
1124
|
|
|
statistical methods and therefore lacks accuracy at high spatial |
|
1125
|
|
|
resolution. The OSM dataset is a community based dataset which is |
|
1126
|
|
|
extended throughout and does not claim to be complete. By merging these |
|
1127
|
|
|
datasets inconsistencies need to be addressed. For example: not yet |
|
1128
|
|
|
tagged buildings in OSM or new building areas not considered in census |
|
1129
|
|
|
2011. |
|
1130
|
|
|
|
|
1131
|
|
|
**How are these datasets combined?** |
|
1132
|
|
|
|
|
1133
|
|
|
The assignment of household demand timeseries to buildings takes place |
|
1134
|
|
|
at cell level. Within each cell a pool of profiles exists, produced by |
|
1135
|
|
|
the 'HH Demand" module. These profiles are randomly assigned to a |
|
1136
|
|
|
filtered list of OSM buildings within this cell. Every profile is |
|
1137
|
|
|
assigned to a building and every building get a profile assigned if |
|
1138
|
|
|
there is enough households by the census data. If there are more |
|
1139
|
|
|
profiles than buildings, all additional profiles are randomly assigned. |
|
1140
|
|
|
Therefore, multiple profiles can be assigned to one building, making it a |
|
1141
|
|
|
multi-household building. If there are no OSM buildings available, |
|
1142
|
|
|
synthetic ones are created (see below). |
|
1143
|
|
|
|
|
1144
|
|
|
**What are central assumptions during the data processing?** |
|
1145
|
|
|
|
|
1146
|
|
|
* Mapping zensus data to OSM data is not trivial. |
|
1147
|
|
|
Discrepancies are substituted. |
|
1148
|
|
|
* Missing OSM buildings are generated by census building count. |
|
1149
|
|
|
* If no census building count data is available, the number of buildings |
|
1150
|
|
|
is derived by an average rate of households/buildings applied to the |
|
1151
|
|
|
number of households. |
|
1152
|
|
|
|
|
1153
|
|
|
**Drawbacks and limitations of the data** |
|
1154
|
|
|
|
|
1155
|
|
|
* Missing OSM buildings in cells without census building count are |
|
1156
|
|
|
derived by an average (median) rate of households/buildings applied |
|
1157
|
|
|
to the number of households. We use a twofold approach for the rate: |
|
1158
|
|
|
first, the rate is calculated using adjacent cells (function |
|
1159
|
|
|
`find_adjacent_cells()`), a distance of 3 cells in each direction is |
|
1160
|
|
|
used by default (resulting in a 7x7 lookup matrix). For the remaining |
|
1161
|
|
|
cells, i.e. cells without any rate in the adjacent cells, the global |
|
1162
|
|
|
median rate is used. |
|
1163
|
|
|
|
|
1164
|
|
|
As only whole houses can exist, the substitute is ceiled to the next |
|
1165
|
|
|
higher integer. Ceiling is applied to avoid rounding to amount of 0 |
|
1166
|
|
|
buildings. |
|
1167
|
|
|
|
|
1168
|
|
|
* As this dataset uses the load profile assignment at census cell level |
|
1169
|
|
|
conducted in hh_profiles.py, also check drawbacks and limitations in that module. |
|
1170
|
|
|
|
|
1171
|
|
|
**Example Query** |
|
1172
|
|
|
|
|
1173
|
|
|
* Get a list with number of houses, households and household types per |
|
1174
|
|
|
census cell |
|
1175
|
|
|
|
|
1176
|
|
|
.. code-block:: SQL |
|
1177
|
|
|
|
|
1178
|
|
|
SELECT t1.cell_id, building_count, hh_count, hh_types FROM ( |
|
1179
|
|
|
SELECT |
|
1180
|
|
|
cell_id, |
|
1181
|
|
|
COUNT(DISTINCT(building_id)) AS building_count, |
|
1182
|
|
|
COUNT(profile_id) AS hh_count |
|
1183
|
|
|
FROM demand.egon_household_electricity_profile_of_buildings |
|
1184
|
|
|
GROUP BY cell_id |
|
1185
|
|
|
) AS t1 |
|
1186
|
|
|
FULL OUTER JOIN ( |
|
1187
|
|
|
SELECT |
|
1188
|
|
|
cell_id, |
|
1189
|
|
|
array_agg( |
|
1190
|
|
|
array[CAST(hh_10types AS char), hh_type] |
|
1191
|
|
|
) AS hh_types |
|
1192
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
|
1193
|
|
|
GROUP BY cell_id |
|
1194
|
|
|
) AS t2 |
|
1195
|
|
|
ON t1.cell_id = t2.cell_id |
|
1196
|
|
|
|
|
1197
|
|
|
""" |
|
1198
|
|
|
|
|
1199
|
|
|
#: |
|
1200
|
|
|
name: str = "Demand_Building_Assignment" |
|
1201
|
|
|
#: |
|
1202
|
|
|
version: str = "0.0.7" |
|
1203
|
|
|
#: |
|
1204
|
|
|
tasks = ( |
|
1205
|
|
|
map_houseprofiles_to_buildings, |
|
1206
|
|
|
create_buildings_profiles_stats, |
|
1207
|
|
|
get_building_peak_loads, |
|
1208
|
|
|
) |
|
1209
|
|
|
|
|
1210
|
|
|
def __init__(self, dependencies): |
|
1211
|
|
|
super().__init__( |
|
1212
|
|
|
name=self.name, |
|
1213
|
|
|
version=self.version, |
|
1214
|
|
|
dependencies=dependencies, |
|
1215
|
|
|
tasks=self.tasks, |
|
1216
|
|
|
) |
|
1217
|
|
|
|