Total Complexity | 64 |
Total Lines | 1412 |
Duplicated Lines | 5.59 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.power_plants often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with power plant data. |
||
2 | """ |
||
3 | |||
4 | from pathlib import Path |
||
5 | |||
6 | from geoalchemy2 import Geometry |
||
7 | from shapely.geometry import Point |
||
8 | from sqlalchemy import BigInteger, Column, Float, Integer, Sequence, String |
||
9 | from sqlalchemy.dialects.postgresql import JSONB |
||
10 | from sqlalchemy.ext.declarative import declarative_base |
||
11 | from sqlalchemy.orm import sessionmaker |
||
12 | import geopandas as gpd |
||
13 | import numpy as np |
||
14 | import pandas as pd |
||
15 | |||
16 | from egon.data import db, logger |
||
17 | from egon.data.datasets import Dataset, wrapped_partial |
||
18 | from egon.data.datasets.mastr import ( |
||
19 | WORKING_DIR_MASTR_NEW, |
||
20 | WORKING_DIR_MASTR_OLD, |
||
21 | ) |
||
22 | from egon.data.datasets.power_plants.conventional import ( |
||
23 | match_nep_no_chp, |
||
24 | select_nep_power_plants, |
||
25 | select_no_chp_combustion_mastr, |
||
26 | ) |
||
27 | from egon.data.datasets.power_plants.mastr import ( |
||
28 | EgonPowerPlantsBiomass, |
||
29 | EgonPowerPlantsHydro, |
||
30 | EgonPowerPlantsPv, |
||
31 | EgonPowerPlantsWind, |
||
32 | import_mastr, |
||
33 | ) |
||
34 | from egon.data.datasets.power_plants.pv_rooftop import pv_rooftop_per_mv_grid |
||
35 | from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
||
36 | pv_rooftop_to_buildings, |
||
37 | ) |
||
38 | import egon.data.config |
||
39 | import egon.data.datasets.power_plants.assign_weather_data as assign_weather_data # noqa: E501 |
||
40 | import egon.data.datasets.power_plants.metadata as pp_metadata |
||
41 | import egon.data.datasets.power_plants.pv_ground_mounted as pv_ground_mounted |
||
42 | import egon.data.datasets.power_plants.wind_farms as wind_onshore |
||
43 | import egon.data.datasets.power_plants.wind_offshore as wind_offshore |
||
44 | |||
45 | Base = declarative_base() |
||
46 | |||
47 | |||
48 | View Code Duplication | class EgonPowerPlants(Base): |
|
|
|||
49 | __tablename__ = "egon_power_plants" |
||
50 | __table_args__ = {"schema": "supply"} |
||
51 | id = Column(BigInteger, Sequence("pp_seq"), primary_key=True) |
||
52 | sources = Column(JSONB) |
||
53 | source_id = Column(JSONB) |
||
54 | carrier = Column(String) |
||
55 | el_capacity = Column(Float) |
||
56 | bus_id = Column(Integer) |
||
57 | voltage_level = Column(Integer) |
||
58 | weather_cell_id = Column(Integer) |
||
59 | scenario = Column(String) |
||
60 | geom = Column(Geometry("POINT", 4326), index=True) |
||
61 | |||
62 | |||
63 | def create_tables(): |
||
64 | """Create tables for power plant data |
||
65 | Returns |
||
66 | ------- |
||
67 | None. |
||
68 | """ |
||
69 | |||
70 | # Tables for future scenarios |
||
71 | cfg = egon.data.config.datasets()["power_plants"] |
||
72 | db.execute_sql(f"CREATE SCHEMA IF NOT EXISTS {cfg['target']['schema']};") |
||
73 | engine = db.engine() |
||
74 | db.execute_sql( |
||
75 | f"""DROP TABLE IF EXISTS |
||
76 | {cfg['target']['schema']}.{cfg['target']['table']}""" |
||
77 | ) |
||
78 | |||
79 | db.execute_sql("""DROP SEQUENCE IF EXISTS pp_seq""") |
||
80 | EgonPowerPlants.__table__.create(bind=engine, checkfirst=True) |
||
81 | |||
82 | # Tables for status quo |
||
83 | tables = [ |
||
84 | EgonPowerPlantsWind, |
||
85 | EgonPowerPlantsPv, |
||
86 | EgonPowerPlantsBiomass, |
||
87 | EgonPowerPlantsHydro, |
||
88 | ] |
||
89 | for t in tables: |
||
90 | db.execute_sql( |
||
91 | f""" |
||
92 | DROP TABLE IF EXISTS {t.__table_args__['schema']}. |
||
93 | {t.__tablename__} CASCADE; |
||
94 | """ |
||
95 | ) |
||
96 | t.__table__.create(bind=engine, checkfirst=True) |
||
97 | |||
98 | |||
99 | def scale_prox2now(df, target, level="federal_state"): |
||
100 | """Scale installed capacities linear to status quo power plants |
||
101 | |||
102 | Parameters |
||
103 | ---------- |
||
104 | df : pandas.DataFrame |
||
105 | Status Quo power plants |
||
106 | target : pandas.Series |
||
107 | Target values for future scenario |
||
108 | level : str, optional |
||
109 | Scale per 'federal_state' or 'country'. The default is 'federal_state'. |
||
110 | |||
111 | Returns |
||
112 | ------- |
||
113 | df : pandas.DataFrame |
||
114 | Future power plants |
||
115 | |||
116 | """ |
||
117 | if level == "federal_state": |
||
118 | df.loc[:, "Nettonennleistung"] = ( |
||
119 | df.groupby(df.Bundesland) |
||
120 | .Nettonennleistung.apply(lambda grp: grp / grp.sum()) |
||
121 | .mul(target[df.Bundesland.values].values) |
||
122 | ) |
||
123 | else: |
||
124 | df.loc[:, "Nettonennleistung"] = df.Nettonennleistung * ( |
||
125 | target / df.Nettonennleistung.sum() |
||
126 | ) |
||
127 | |||
128 | df = df[df.Nettonennleistung > 0] |
||
129 | |||
130 | return df |
||
131 | |||
132 | |||
133 | def select_target(carrier, scenario): |
||
134 | """Select installed capacity per scenario and carrier |
||
135 | |||
136 | Parameters |
||
137 | ---------- |
||
138 | carrier : str |
||
139 | Name of energy carrier |
||
140 | scenario : str |
||
141 | Name of scenario |
||
142 | |||
143 | Returns |
||
144 | ------- |
||
145 | pandas.Series |
||
146 | Target values for carrier and scenario |
||
147 | |||
148 | """ |
||
149 | cfg = egon.data.config.datasets()["power_plants"] |
||
150 | |||
151 | return ( |
||
152 | pd.read_sql( |
||
153 | f"""SELECT DISTINCT ON (b.gen) |
||
154 | REPLACE(REPLACE(b.gen, '-', ''), 'ü', 'ue') as state, |
||
155 | a.capacity |
||
156 | FROM {cfg['sources']['capacities']} a, |
||
157 | {cfg['sources']['geom_federal_states']} b |
||
158 | WHERE a.nuts = b.nuts |
||
159 | AND scenario_name = '{scenario}' |
||
160 | AND carrier = '{carrier}' |
||
161 | AND b.gen NOT IN ('Baden-Württemberg (Bodensee)', |
||
162 | 'Bayern (Bodensee)')""", |
||
163 | con=db.engine(), |
||
164 | ) |
||
165 | .set_index("state") |
||
166 | .capacity |
||
167 | ) |
||
168 | |||
169 | |||
170 | def filter_mastr_geometry(mastr, federal_state=None): |
||
171 | """Filter data from MaStR by geometry |
||
172 | |||
173 | Parameters |
||
174 | ---------- |
||
175 | mastr : pandas.DataFrame |
||
176 | All power plants listed in MaStR |
||
177 | federal_state : str or None |
||
178 | Name of federal state whoes power plants are returned. |
||
179 | If None, data for Germany is returned |
||
180 | |||
181 | Returns |
||
182 | ------- |
||
183 | mastr_loc : pandas.DataFrame |
||
184 | Power plants listed in MaStR with geometry inside German boundaries |
||
185 | |||
186 | """ |
||
187 | cfg = egon.data.config.datasets()["power_plants"] |
||
188 | |||
189 | if type(mastr) == pd.core.frame.DataFrame: |
||
190 | # Drop entries without geometry for insert |
||
191 | mastr_loc = mastr[ |
||
192 | mastr.Laengengrad.notnull() & mastr.Breitengrad.notnull() |
||
193 | ] |
||
194 | |||
195 | # Create geodataframe |
||
196 | mastr_loc = gpd.GeoDataFrame( |
||
197 | mastr_loc, |
||
198 | geometry=gpd.points_from_xy( |
||
199 | mastr_loc.Laengengrad, mastr_loc.Breitengrad, crs=4326 |
||
200 | ), |
||
201 | ) |
||
202 | else: |
||
203 | mastr_loc = mastr.copy() |
||
204 | |||
205 | # Drop entries outside of germany or federal state |
||
206 | if not federal_state: |
||
207 | sql = f"SELECT geometry as geom FROM {cfg['sources']['geom_germany']}" |
||
208 | else: |
||
209 | sql = f""" |
||
210 | SELECT geometry as geom |
||
211 | FROM boundaries.vg250_lan_union |
||
212 | WHERE REPLACE(REPLACE(gen, '-', ''), 'ü', 'ue') = '{federal_state}'""" |
||
213 | |||
214 | mastr_loc = ( |
||
215 | gpd.sjoin( |
||
216 | gpd.read_postgis(sql, con=db.engine()).to_crs(4326), |
||
217 | mastr_loc, |
||
218 | how="right", |
||
219 | ) |
||
220 | .query("index_left==0") |
||
221 | .drop("index_left", axis=1) |
||
222 | ) |
||
223 | |||
224 | return mastr_loc |
||
225 | |||
226 | |||
227 | def insert_biomass_plants(scenario): |
||
228 | """Insert biomass power plants of future scenario |
||
229 | |||
230 | Parameters |
||
231 | ---------- |
||
232 | scenario : str |
||
233 | Name of scenario. |
||
234 | |||
235 | Returns |
||
236 | ------- |
||
237 | None. |
||
238 | |||
239 | """ |
||
240 | cfg = egon.data.config.datasets()["power_plants"] |
||
241 | |||
242 | # import target values |
||
243 | target = select_target("biomass", scenario) |
||
244 | |||
245 | # import data for MaStR |
||
246 | mastr = pd.read_csv( |
||
247 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_biomass"] |
||
248 | ).query("EinheitBetriebsstatus=='InBetrieb'") |
||
249 | |||
250 | # Drop entries without federal state or 'AusschließlichWirtschaftszone' |
||
251 | mastr = mastr[ |
||
252 | mastr.Bundesland.isin( |
||
253 | pd.read_sql( |
||
254 | f"""SELECT DISTINCT ON (gen) |
||
255 | REPLACE(REPLACE(gen, '-', ''), 'ü', 'ue') as states |
||
256 | FROM {cfg['sources']['geom_federal_states']}""", |
||
257 | con=db.engine(), |
||
258 | ).states.values |
||
259 | ) |
||
260 | ] |
||
261 | |||
262 | # Scaling will be done per federal state in case of eGon2035 scenario. |
||
263 | if scenario == "eGon2035": |
||
264 | level = "federal_state" |
||
265 | else: |
||
266 | level = "country" |
||
267 | |||
268 | # Choose only entries with valid geometries inside DE/test mode |
||
269 | mastr_loc = filter_mastr_geometry(mastr).set_geometry("geometry") |
||
270 | |||
271 | # Scale capacities to meet target values |
||
272 | mastr_loc = scale_prox2now(mastr_loc, target, level=level) |
||
273 | |||
274 | # Assign bus_id |
||
275 | if len(mastr_loc) > 0: |
||
276 | mastr_loc["voltage_level"] = assign_voltage_level( |
||
277 | mastr_loc, cfg, WORKING_DIR_MASTR_OLD |
||
278 | ) |
||
279 | mastr_loc = assign_bus_id(mastr_loc, cfg) |
||
280 | |||
281 | # Insert entries with location |
||
282 | session = sessionmaker(bind=db.engine())() |
||
283 | |||
284 | for i, row in mastr_loc.iterrows(): |
||
285 | if not row.ThermischeNutzleistung > 0: |
||
286 | entry = EgonPowerPlants( |
||
287 | sources={"el_capacity": "MaStR scaled with NEP 2021"}, |
||
288 | source_id={"MastrNummer": row.EinheitMastrNummer}, |
||
289 | carrier="biomass", |
||
290 | el_capacity=row.Nettonennleistung, |
||
291 | scenario=scenario, |
||
292 | bus_id=row.bus_id, |
||
293 | voltage_level=row.voltage_level, |
||
294 | geom=f"SRID=4326;POINT({row.Laengengrad} {row.Breitengrad})", |
||
295 | ) |
||
296 | session.add(entry) |
||
297 | |||
298 | session.commit() |
||
299 | |||
300 | |||
301 | def insert_hydro_plants(scenario): |
||
302 | """Insert hydro power plants of future scenario. |
||
303 | |||
304 | Hydro power plants are diveded into run_of_river and reservoir plants |
||
305 | according to Marktstammdatenregister. |
||
306 | Additional hydro technologies (e.g. turbines inside drinking water |
||
307 | systems) are not considered. |
||
308 | |||
309 | Parameters |
||
310 | ---------- |
||
311 | scenario : str |
||
312 | Name of scenario. |
||
313 | |||
314 | Returns |
||
315 | ------- |
||
316 | None. |
||
317 | |||
318 | """ |
||
319 | cfg = egon.data.config.datasets()["power_plants"] |
||
320 | |||
321 | # Map MaStR carriers to eGon carriers |
||
322 | map_carrier = { |
||
323 | "run_of_river": ["Laufwasseranlage"], |
||
324 | "reservoir": ["Speicherwasseranlage"], |
||
325 | } |
||
326 | |||
327 | for carrier in map_carrier.keys(): |
||
328 | # import target values |
||
329 | if scenario == "eGon100RE": |
||
330 | try: |
||
331 | target = pd.read_sql( |
||
332 | f"""SELECT capacity FROM supply.egon_scenario_capacities |
||
333 | WHERE scenario_name = '{scenario}' |
||
334 | AND carrier = '{carrier}' |
||
335 | """, |
||
336 | con=db.engine(), |
||
337 | ).capacity[0] |
||
338 | except: |
||
339 | logger.info( |
||
340 | f"No assigned capacity for {carrier} in {scenario}" |
||
341 | ) |
||
342 | continue |
||
343 | |||
344 | elif scenario == "eGon2035": |
||
345 | target = select_target(carrier, scenario) |
||
346 | |||
347 | # import data for MaStR |
||
348 | mastr = pd.read_csv( |
||
349 | WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_hydro"] |
||
350 | ).query("EinheitBetriebsstatus=='InBetrieb'") |
||
351 | |||
352 | # Choose only plants with specific carriers |
||
353 | mastr = mastr[mastr.ArtDerWasserkraftanlage.isin(map_carrier[carrier])] |
||
354 | |||
355 | # Drop entries without federal state or 'AusschließlichWirtschaftszone' |
||
356 | mastr = mastr[ |
||
357 | mastr.Bundesland.isin( |
||
358 | pd.read_sql( |
||
359 | f"""SELECT DISTINCT ON (gen) |
||
360 | REPLACE(REPLACE(gen, '-', ''), 'ü', 'ue') as states |
||
361 | FROM {cfg['sources']['geom_federal_states']}""", |
||
362 | con=db.engine(), |
||
363 | ).states.values |
||
364 | ) |
||
365 | ] |
||
366 | |||
367 | # Scaling will be done per federal state in case of eGon2035 scenario. |
||
368 | if scenario == "eGon2035": |
||
369 | level = "federal_state" |
||
370 | else: |
||
371 | level = "country" |
||
372 | |||
373 | # Scale capacities to meet target values |
||
374 | mastr = scale_prox2now(mastr, target, level=level) |
||
375 | |||
376 | # Choose only entries with valid geometries inside DE/test mode |
||
377 | mastr_loc = filter_mastr_geometry(mastr).set_geometry("geometry") |
||
378 | # TODO: Deal with power plants without geometry |
||
379 | |||
380 | # Assign bus_id and voltage level |
||
381 | if len(mastr_loc) > 0: |
||
382 | mastr_loc["voltage_level"] = assign_voltage_level( |
||
383 | mastr_loc, cfg, WORKING_DIR_MASTR_NEW |
||
384 | ) |
||
385 | mastr_loc = assign_bus_id(mastr_loc, cfg) |
||
386 | |||
387 | # Insert entries with location |
||
388 | session = sessionmaker(bind=db.engine())() |
||
389 | for i, row in mastr_loc.iterrows(): |
||
390 | entry = EgonPowerPlants( |
||
391 | sources={"el_capacity": "MaStR scaled with NEP 2021"}, |
||
392 | source_id={"MastrNummer": row.EinheitMastrNummer}, |
||
393 | carrier=carrier, |
||
394 | el_capacity=row.Nettonennleistung, |
||
395 | scenario=scenario, |
||
396 | bus_id=row.bus_id, |
||
397 | voltage_level=row.voltage_level, |
||
398 | geom=f"SRID=4326;POINT({row.Laengengrad} {row.Breitengrad})", |
||
399 | ) |
||
400 | session.add(entry) |
||
401 | |||
402 | session.commit() |
||
403 | |||
404 | |||
405 | def assign_voltage_level(mastr_loc, cfg, mastr_working_dir): |
||
406 | """Assigns voltage level to power plants. |
||
407 | |||
408 | If location data inluding voltage level is available from |
||
409 | Marktstammdatenregister, this is used. Otherwise the voltage level is |
||
410 | assigned according to the electrical capacity. |
||
411 | |||
412 | Parameters |
||
413 | ---------- |
||
414 | mastr_loc : pandas.DataFrame |
||
415 | Power plants listed in MaStR with geometry inside German boundaries |
||
416 | |||
417 | Returns |
||
418 | ------- |
||
419 | pandas.DataFrame |
||
420 | Power plants including voltage_level |
||
421 | |||
422 | """ |
||
423 | mastr_loc["Spannungsebene"] = np.nan |
||
424 | mastr_loc["voltage_level"] = np.nan |
||
425 | |||
426 | if "LokationMastrNummer" in mastr_loc.columns: |
||
427 | # Adjust column names to format of MaStR location dataset |
||
428 | if mastr_working_dir == WORKING_DIR_MASTR_OLD: |
||
429 | cols = ["LokationMastrNummer", "Spannungsebene"] |
||
430 | elif mastr_working_dir == WORKING_DIR_MASTR_NEW: |
||
431 | cols = ["MaStRNummer", "Spannungsebene"] |
||
432 | else: |
||
433 | raise ValueError("Invalid MaStR working directory!") |
||
434 | |||
435 | location = ( |
||
436 | pd.read_csv( |
||
437 | mastr_working_dir / cfg["sources"]["mastr_location"], |
||
438 | usecols=cols, |
||
439 | ) |
||
440 | .rename(columns={"MaStRNummer": "LokationMastrNummer"}) |
||
441 | .set_index("LokationMastrNummer") |
||
442 | ) |
||
443 | |||
444 | location = location[~location.index.duplicated(keep="first")] |
||
445 | |||
446 | mastr_loc.loc[ |
||
447 | mastr_loc[ |
||
448 | mastr_loc.LokationMastrNummer.isin(location.index) |
||
449 | ].index, |
||
450 | "Spannungsebene", |
||
451 | ] = location.Spannungsebene[ |
||
452 | mastr_loc[ |
||
453 | mastr_loc.LokationMastrNummer.isin(location.index) |
||
454 | ].LokationMastrNummer |
||
455 | ].values |
||
456 | |||
457 | # Transfer voltage_level as integer from Spanungsebene |
||
458 | map_voltage_levels = pd.Series( |
||
459 | data={ |
||
460 | "Höchstspannung": 1, |
||
461 | "Hoechstspannung": 1, |
||
462 | "UmspannungZurHochspannung": 2, |
||
463 | "Hochspannung": 3, |
||
464 | "UmspannungZurMittelspannung": 4, |
||
465 | "Mittelspannung": 5, |
||
466 | "UmspannungZurNiederspannung": 6, |
||
467 | "Niederspannung": 7, |
||
468 | } |
||
469 | ) |
||
470 | |||
471 | mastr_loc.loc[ |
||
472 | mastr_loc[mastr_loc["Spannungsebene"].notnull()].index, |
||
473 | "voltage_level", |
||
474 | ] = map_voltage_levels[ |
||
475 | mastr_loc.loc[ |
||
476 | mastr_loc[mastr_loc["Spannungsebene"].notnull()].index, |
||
477 | "Spannungsebene", |
||
478 | ].values |
||
479 | ].values |
||
480 | |||
481 | else: |
||
482 | print( |
||
483 | "No information about MaStR location available. " |
||
484 | "All voltage levels are assigned using threshold values." |
||
485 | ) |
||
486 | |||
487 | # If no voltage level is available from mastr, choose level according |
||
488 | # to threshold values |
||
489 | |||
490 | mastr_loc.voltage_level = assign_voltage_level_by_capacity(mastr_loc) |
||
491 | |||
492 | return mastr_loc.voltage_level |
||
493 | |||
494 | |||
495 | def assign_voltage_level_by_capacity(mastr_loc): |
||
496 | for i, row in mastr_loc[mastr_loc.voltage_level.isnull()].iterrows(): |
||
497 | if row.Nettonennleistung > 120: |
||
498 | level = 1 |
||
499 | elif row.Nettonennleistung > 20: |
||
500 | level = 3 |
||
501 | elif row.Nettonennleistung > 5.5: |
||
502 | level = 4 |
||
503 | elif row.Nettonennleistung > 0.2: |
||
504 | level = 5 |
||
505 | elif row.Nettonennleistung > 0.1: |
||
506 | level = 6 |
||
507 | else: |
||
508 | level = 7 |
||
509 | |||
510 | mastr_loc.loc[i, "voltage_level"] = level |
||
511 | |||
512 | mastr_loc.voltage_level = mastr_loc.voltage_level.astype(int) |
||
513 | |||
514 | return mastr_loc.voltage_level |
||
515 | |||
516 | |||
517 | View Code Duplication | def assign_bus_id(power_plants, cfg, drop_missing=False): |
|
518 | """Assigns bus_ids to power plants according to location and voltage level |
||
519 | |||
520 | Parameters |
||
521 | ---------- |
||
522 | power_plants : pandas.DataFrame |
||
523 | Power plants including voltage level |
||
524 | |||
525 | Returns |
||
526 | ------- |
||
527 | power_plants : pandas.DataFrame |
||
528 | Power plants including voltage level and bus_id |
||
529 | |||
530 | """ |
||
531 | |||
532 | mv_grid_districts = db.select_geodataframe( |
||
533 | f""" |
||
534 | SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
||
535 | """, |
||
536 | epsg=4326, |
||
537 | ) |
||
538 | |||
539 | ehv_grid_districts = db.select_geodataframe( |
||
540 | f""" |
||
541 | SELECT * FROM {cfg['sources']['ehv_voronoi']} |
||
542 | """, |
||
543 | epsg=4326, |
||
544 | ) |
||
545 | |||
546 | # Assign power plants in hv and below to hvmv bus |
||
547 | power_plants_hv = power_plants[power_plants.voltage_level >= 3].index |
||
548 | if len(power_plants_hv) > 0: |
||
549 | power_plants.loc[power_plants_hv, "bus_id"] = gpd.sjoin( |
||
550 | power_plants[power_plants.index.isin(power_plants_hv)], |
||
551 | mv_grid_districts, |
||
552 | ).bus_id |
||
553 | |||
554 | # Assign power plants in ehv to ehv bus |
||
555 | power_plants_ehv = power_plants[power_plants.voltage_level < 3].index |
||
556 | |||
557 | if len(power_plants_ehv) > 0: |
||
558 | ehv_join = gpd.sjoin( |
||
559 | power_plants[power_plants.index.isin(power_plants_ehv)], |
||
560 | ehv_grid_districts, |
||
561 | ) |
||
562 | |||
563 | if "bus_id_right" in ehv_join.columns: |
||
564 | power_plants.loc[power_plants_ehv, "bus_id"] = gpd.sjoin( |
||
565 | power_plants[power_plants.index.isin(power_plants_ehv)], |
||
566 | ehv_grid_districts, |
||
567 | ).bus_id_right |
||
568 | |||
569 | else: |
||
570 | power_plants.loc[power_plants_ehv, "bus_id"] = gpd.sjoin( |
||
571 | power_plants[power_plants.index.isin(power_plants_ehv)], |
||
572 | ehv_grid_districts, |
||
573 | ).bus_id |
||
574 | |||
575 | if drop_missing: |
||
576 | power_plants = power_plants[~power_plants.bus_id.isnull()] |
||
577 | |||
578 | # Assert that all power plants have a bus_id |
||
579 | assert power_plants.bus_id.notnull().all(), f"""Some power plants are |
||
580 | not attached to a bus: {power_plants[power_plants.bus_id.isnull()]}""" |
||
581 | |||
582 | return power_plants |
||
583 | |||
584 | |||
585 | def insert_hydro_biomass(): |
||
586 | """Insert hydro and biomass power plants in database |
||
587 | |||
588 | Returns |
||
589 | ------- |
||
590 | None. |
||
591 | |||
592 | """ |
||
593 | cfg = egon.data.config.datasets()["power_plants"] |
||
594 | db.execute_sql( |
||
595 | f""" |
||
596 | DELETE FROM {cfg['target']['schema']}.{cfg['target']['table']} |
||
597 | WHERE carrier IN ('biomass', 'reservoir', 'run_of_river') |
||
598 | AND scenario IN ('eGon2035', 'eGon100RE') |
||
599 | """ |
||
600 | ) |
||
601 | |||
602 | s = egon.data.config.settings()["egon-data"]["--scenarios"] |
||
603 | scenarios = [] |
||
604 | if "eGon2035" in s: |
||
605 | scenarios.append("eGon2035") |
||
606 | insert_biomass_plants("eGon2035") |
||
607 | if "eGon100RE" in s: |
||
608 | scenarios.append("eGon100RE") |
||
609 | |||
610 | for scenario in scenarios: |
||
611 | insert_hydro_plants(scenario) |
||
612 | |||
613 | |||
614 | def allocate_conventional_non_chp_power_plants(): |
||
615 | # This function is only designed to work for the eGon2035 scenario |
||
616 | if ( |
||
617 | "eGon2035" |
||
618 | not in egon.data.config.settings()["egon-data"]["--scenarios"] |
||
619 | ): |
||
620 | return |
||
621 | |||
622 | carrier = ["oil", "gas"] |
||
623 | |||
624 | cfg = egon.data.config.datasets()["power_plants"] |
||
625 | |||
626 | # Delete existing plants in the target table |
||
627 | db.execute_sql( |
||
628 | f""" |
||
629 | DELETE FROM {cfg ['target']['schema']}.{cfg ['target']['table']} |
||
630 | WHERE carrier IN ('gas', 'oil') |
||
631 | AND scenario='eGon2035'; |
||
632 | """ |
||
633 | ) |
||
634 | |||
635 | for carrier in carrier: |
||
636 | nep = select_nep_power_plants(carrier) |
||
637 | |||
638 | if nep.empty: |
||
639 | print(f"DataFrame from NEP for carrier {carrier} is empty!") |
||
640 | |||
641 | else: |
||
642 | mastr = select_no_chp_combustion_mastr(carrier) |
||
643 | |||
644 | # Assign voltage level to MaStR |
||
645 | mastr["voltage_level"] = assign_voltage_level( |
||
646 | mastr.rename({"el_capacity": "Nettonennleistung"}, axis=1), |
||
647 | cfg, |
||
648 | WORKING_DIR_MASTR_OLD, |
||
649 | ) |
||
650 | |||
651 | # Initalize DataFrame for matching power plants |
||
652 | matched = gpd.GeoDataFrame( |
||
653 | columns=[ |
||
654 | "carrier", |
||
655 | "el_capacity", |
||
656 | "scenario", |
||
657 | "geometry", |
||
658 | "MaStRNummer", |
||
659 | "source", |
||
660 | "voltage_level", |
||
661 | ] |
||
662 | ) |
||
663 | |||
664 | # Match combustion plants of a certain carrier from NEP list |
||
665 | # using PLZ and capacity |
||
666 | matched, mastr, nep = match_nep_no_chp( |
||
667 | nep, |
||
668 | mastr, |
||
669 | matched, |
||
670 | buffer_capacity=0.1, |
||
671 | consider_carrier=False, |
||
672 | ) |
||
673 | |||
674 | # Match plants from NEP list using city and capacity |
||
675 | matched, mastr, nep = match_nep_no_chp( |
||
676 | nep, |
||
677 | mastr, |
||
678 | matched, |
||
679 | buffer_capacity=0.1, |
||
680 | consider_carrier=False, |
||
681 | consider_location="city", |
||
682 | ) |
||
683 | |||
684 | # Match plants from NEP list using plz, |
||
685 | # neglecting the capacity |
||
686 | matched, mastr, nep = match_nep_no_chp( |
||
687 | nep, |
||
688 | mastr, |
||
689 | matched, |
||
690 | consider_location="plz", |
||
691 | consider_carrier=False, |
||
692 | consider_capacity=False, |
||
693 | ) |
||
694 | |||
695 | # Match plants from NEP list using city, |
||
696 | # neglecting the capacity |
||
697 | matched, mastr, nep = match_nep_no_chp( |
||
698 | nep, |
||
699 | mastr, |
||
700 | matched, |
||
701 | consider_location="city", |
||
702 | consider_carrier=False, |
||
703 | consider_capacity=False, |
||
704 | ) |
||
705 | |||
706 | # Match remaining plants from NEP using the federal state |
||
707 | matched, mastr, nep = match_nep_no_chp( |
||
708 | nep, |
||
709 | mastr, |
||
710 | matched, |
||
711 | buffer_capacity=0.1, |
||
712 | consider_location="federal_state", |
||
713 | consider_carrier=False, |
||
714 | ) |
||
715 | |||
716 | # Match remaining plants from NEP using the federal state |
||
717 | matched, mastr, nep = match_nep_no_chp( |
||
718 | nep, |
||
719 | mastr, |
||
720 | matched, |
||
721 | buffer_capacity=0.7, |
||
722 | consider_location="federal_state", |
||
723 | consider_carrier=False, |
||
724 | ) |
||
725 | |||
726 | print(f"{matched.el_capacity.sum()} MW of {carrier} matched") |
||
727 | print(f"{nep.c2035_capacity.sum()} MW of {carrier} not matched") |
||
728 | |||
729 | matched.crs = "EPSG:4326" |
||
730 | |||
731 | # Assign bus_id |
||
732 | # Load grid district polygons |
||
733 | mv_grid_districts = db.select_geodataframe( |
||
734 | f""" |
||
735 | SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
||
736 | """, |
||
737 | epsg=4326, |
||
738 | ) |
||
739 | |||
740 | ehv_grid_districts = db.select_geodataframe( |
||
741 | f""" |
||
742 | SELECT * FROM {cfg['sources']['ehv_voronoi']} |
||
743 | """, |
||
744 | epsg=4326, |
||
745 | ) |
||
746 | |||
747 | # Perform spatial joins for plants in ehv and hv level seperately |
||
748 | power_plants_hv = gpd.sjoin( |
||
749 | matched[matched.voltage_level >= 3], |
||
750 | mv_grid_districts[["bus_id", "geom"]], |
||
751 | how="left", |
||
752 | ).drop(columns=["index_right"]) |
||
753 | power_plants_ehv = gpd.sjoin( |
||
754 | matched[matched.voltage_level < 3], |
||
755 | ehv_grid_districts[["bus_id", "geom"]], |
||
756 | how="left", |
||
757 | ).drop(columns=["index_right"]) |
||
758 | |||
759 | # Combine both dataframes |
||
760 | power_plants = pd.concat([power_plants_hv, power_plants_ehv]) |
||
761 | |||
762 | # Insert into target table |
||
763 | session = sessionmaker(bind=db.engine())() |
||
764 | for i, row in power_plants.iterrows(): |
||
765 | entry = EgonPowerPlants( |
||
766 | sources={"el_capacity": row.source}, |
||
767 | source_id={"MastrNummer": row.MaStRNummer}, |
||
768 | carrier=row.carrier, |
||
769 | el_capacity=row.el_capacity, |
||
770 | voltage_level=row.voltage_level, |
||
771 | bus_id=row.bus_id, |
||
772 | scenario=row.scenario, |
||
773 | geom=f"SRID=4326;POINT({row.geometry.x} {row.geometry.y})", |
||
774 | ) |
||
775 | session.add(entry) |
||
776 | session.commit() |
||
777 | |||
778 | |||
779 | def allocate_other_power_plants(): |
||
780 | # This function is only designed to work for the eGon2035 scenario |
||
781 | if ( |
||
782 | "eGon2035" |
||
783 | not in egon.data.config.settings()["egon-data"]["--scenarios"] |
||
784 | ): |
||
785 | return |
||
786 | |||
787 | # Get configuration |
||
788 | cfg = egon.data.config.datasets()["power_plants"] |
||
789 | boundary = egon.data.config.settings()["egon-data"]["--dataset-boundary"] |
||
790 | |||
791 | db.execute_sql( |
||
792 | f""" |
||
793 | DELETE FROM {cfg['target']['schema']}.{cfg['target']['table']} |
||
794 | WHERE carrier ='others' |
||
795 | """ |
||
796 | ) |
||
797 | |||
798 | # Define scenario, carrier 'others' is only present in 'eGon2035' |
||
799 | scenario = "eGon2035" |
||
800 | |||
801 | # Select target values for carrier 'others' |
||
802 | target = db.select_dataframe( |
||
803 | f""" |
||
804 | SELECT sum(capacity) as capacity, carrier, scenario_name, nuts |
||
805 | FROM {cfg['sources']['capacities']} |
||
806 | WHERE scenario_name = '{scenario}' |
||
807 | AND carrier = 'others' |
||
808 | GROUP BY carrier, nuts, scenario_name; |
||
809 | """ |
||
810 | ) |
||
811 | |||
812 | # Assign name of federal state |
||
813 | |||
814 | map_states = { |
||
815 | "DE1": "BadenWuerttemberg", |
||
816 | "DEA": "NordrheinWestfalen", |
||
817 | "DE7": "Hessen", |
||
818 | "DE4": "Brandenburg", |
||
819 | "DE5": "Bremen", |
||
820 | "DEB": "RheinlandPfalz", |
||
821 | "DEE": "SachsenAnhalt", |
||
822 | "DEF": "SchleswigHolstein", |
||
823 | "DE8": "MecklenburgVorpommern", |
||
824 | "DEG": "Thueringen", |
||
825 | "DE9": "Niedersachsen", |
||
826 | "DED": "Sachsen", |
||
827 | "DE6": "Hamburg", |
||
828 | "DEC": "Saarland", |
||
829 | "DE3": "Berlin", |
||
830 | "DE2": "Bayern", |
||
831 | } |
||
832 | |||
833 | target = ( |
||
834 | target.replace({"nuts": map_states}) |
||
835 | .rename(columns={"nuts": "Bundesland"}) |
||
836 | .set_index("Bundesland") |
||
837 | ) |
||
838 | target = target.capacity |
||
839 | |||
840 | # Select 'non chp' power plants from mastr table |
||
841 | mastr_combustion = select_no_chp_combustion_mastr("others") |
||
842 | |||
843 | # Rename columns |
||
844 | mastr_combustion = mastr_combustion.rename( |
||
845 | columns={ |
||
846 | "carrier": "Energietraeger", |
||
847 | "plz": "Postleitzahl", |
||
848 | "city": "Ort", |
||
849 | "federal_state": "Bundesland", |
||
850 | "el_capacity": "Nettonennleistung", |
||
851 | } |
||
852 | ) |
||
853 | |||
854 | # Select power plants representing carrier 'others' from MaStR files |
||
855 | mastr_sludge = pd.read_csv( |
||
856 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_gsgk"] |
||
857 | ).query( |
||
858 | """EinheitBetriebsstatus=='InBetrieb'and Energietraeger=='Klärschlamm'""" # noqa: E501 |
||
859 | ) |
||
860 | mastr_geothermal = pd.read_csv( |
||
861 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_gsgk"] |
||
862 | ).query( |
||
863 | "EinheitBetriebsstatus=='InBetrieb' and Energietraeger=='Geothermie' " |
||
864 | "and Technologie == 'ORCOrganicRankineCycleAnlage'" |
||
865 | ) |
||
866 | |||
867 | mastr_sg = pd.concat([mastr_sludge, mastr_geothermal]) |
||
868 | |||
869 | # Insert geometry column |
||
870 | mastr_sg = mastr_sg[~(mastr_sg["Laengengrad"].isnull())] |
||
871 | mastr_sg = gpd.GeoDataFrame( |
||
872 | mastr_sg, |
||
873 | geometry=gpd.points_from_xy( |
||
874 | mastr_sg["Laengengrad"], mastr_sg["Breitengrad"], crs=4326 |
||
875 | ), |
||
876 | ) |
||
877 | |||
878 | # Exclude columns which are not essential |
||
879 | mastr_sg = mastr_sg.filter( |
||
880 | [ |
||
881 | "EinheitMastrNummer", |
||
882 | "Nettonennleistung", |
||
883 | "geometry", |
||
884 | "Energietraeger", |
||
885 | "Postleitzahl", |
||
886 | "Ort", |
||
887 | "Bundesland", |
||
888 | ], |
||
889 | axis=1, |
||
890 | ) |
||
891 | # Rename carrier |
||
892 | mastr_sg.Energietraeger = "others" |
||
893 | |||
894 | # Change data type |
||
895 | mastr_sg["Postleitzahl"] = mastr_sg["Postleitzahl"].astype(int) |
||
896 | |||
897 | # Capacity in MW |
||
898 | mastr_sg.loc[:, "Nettonennleistung"] *= 1e-3 |
||
899 | |||
900 | # Merge different sources to one df |
||
901 | mastr_others = pd.concat([mastr_sg, mastr_combustion]).reset_index() |
||
902 | |||
903 | # Delete entries outside Schleswig-Holstein for test mode |
||
904 | if boundary == "Schleswig-Holstein": |
||
905 | mastr_others = mastr_others[ |
||
906 | mastr_others["Bundesland"] == "SchleswigHolstein" |
||
907 | ] |
||
908 | |||
909 | # Scale capacities prox to now to meet target values |
||
910 | mastr_prox = scale_prox2now(mastr_others, target, level="federal_state") |
||
911 | |||
912 | # Assign voltage_level based on scaled capacity |
||
913 | mastr_prox["voltage_level"] = np.nan |
||
914 | mastr_prox["voltage_level"] = assign_voltage_level_by_capacity(mastr_prox) |
||
915 | |||
916 | # Rename columns |
||
917 | mastr_prox = mastr_prox.rename( |
||
918 | columns={ |
||
919 | "Energietraeger": "carrier", |
||
920 | "Postleitzahl": "plz", |
||
921 | "Ort": "city", |
||
922 | "Bundesland": "federal_state", |
||
923 | "Nettonennleistung": "el_capacity", |
||
924 | } |
||
925 | ) |
||
926 | |||
927 | # Assign bus_id |
||
928 | mastr_prox = assign_bus_id(mastr_prox, cfg) |
||
929 | mastr_prox = mastr_prox.set_crs(4326, allow_override=True) |
||
930 | |||
931 | # Insert into target table |
||
932 | session = sessionmaker(bind=db.engine())() |
||
933 | for i, row in mastr_prox.iterrows(): |
||
934 | entry = EgonPowerPlants( |
||
935 | sources=row.el_capacity, |
||
936 | source_id={"MastrNummer": row.EinheitMastrNummer}, |
||
937 | carrier=row.carrier, |
||
938 | el_capacity=row.el_capacity, |
||
939 | voltage_level=row.voltage_level, |
||
940 | bus_id=row.bus_id, |
||
941 | scenario=scenario, |
||
942 | geom=f"SRID=4326; {row.geometry}", |
||
943 | ) |
||
944 | session.add(entry) |
||
945 | session.commit() |
||
946 | |||
947 | |||
948 | def discard_not_available_generators(gen, max_date): |
||
949 | gen["decommissioning_date"] = pd.to_datetime( |
||
950 | gen["decommissioning_date"] |
||
951 | ) |
||
952 | gen["commissioning_date"] = pd.to_datetime(gen["commissioning_date"]) |
||
953 | # drop plants that are commissioned after the max date |
||
954 | gen = gen[gen["commissioning_date"] < max_date] |
||
955 | |||
956 | # drop decommissioned plants while keeping the ones decommissioned |
||
957 | # after the max date |
||
958 | gen.loc[(gen["decommissioning_date"] > max_date), "status"] = ( |
||
959 | "InBetrieb" |
||
960 | ) |
||
961 | |||
962 | gen = gen.loc[ |
||
963 | gen["status"].isin(["InBetrieb", "VoruebergehendStillgelegt"]) |
||
964 | ] |
||
965 | |||
966 | # drop unnecessary columns |
||
967 | gen = gen.drop(columns=["commissioning_date", "decommissioning_date"]) |
||
968 | |||
969 | return gen |
||
970 | |||
971 | |||
972 | def get_conventional_power_plants_non_chp(scn_name): |
||
973 | |||
974 | cfg = egon.data.config.datasets()["power_plants"] |
||
975 | # Write conventional power plants in supply.egon_power_plants |
||
976 | common_columns = [ |
||
977 | "EinheitMastrNummer", |
||
978 | "Energietraeger", |
||
979 | "Nettonennleistung", |
||
980 | "Laengengrad", |
||
981 | "Breitengrad", |
||
982 | "Gemeinde", |
||
983 | "Inbetriebnahmedatum", |
||
984 | "EinheitBetriebsstatus", |
||
985 | "DatumEndgueltigeStilllegung", |
||
986 | ] |
||
987 | # import nuclear power plants |
||
988 | nuclear = pd.read_csv( |
||
989 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_nuclear"], |
||
990 | usecols=common_columns, |
||
991 | ) |
||
992 | # import combustion power plants |
||
993 | comb = pd.read_csv( |
||
994 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_combustion"], |
||
995 | usecols=common_columns + ["ThermischeNutzleistung"], |
||
996 | ) |
||
997 | |||
998 | conv = pd.concat([comb, nuclear]) |
||
999 | |||
1000 | conv = conv[ |
||
1001 | conv.Energietraeger.isin( |
||
1002 | [ |
||
1003 | "Braunkohle", |
||
1004 | "Mineralölprodukte", |
||
1005 | "Steinkohle", |
||
1006 | "Kernenergie", |
||
1007 | "Erdgas", |
||
1008 | ] |
||
1009 | ) |
||
1010 | ] |
||
1011 | |||
1012 | # drop plants that are decommissioned |
||
1013 | conv["DatumEndgueltigeStilllegung"] = pd.to_datetime( |
||
1014 | conv["DatumEndgueltigeStilllegung"] |
||
1015 | ) |
||
1016 | |||
1017 | # keep plants that were decommissioned after the max date |
||
1018 | conv.loc[ |
||
1019 | ( |
||
1020 | conv.DatumEndgueltigeStilllegung |
||
1021 | > egon.data.config.datasets()["mastr_new"][f"{scn_name}_date_max"] |
||
1022 | ), |
||
1023 | "EinheitBetriebsstatus", |
||
1024 | ] = "InBetrieb" |
||
1025 | |||
1026 | conv = conv.loc[conv.EinheitBetriebsstatus == "InBetrieb"] |
||
1027 | |||
1028 | conv = conv.drop( |
||
1029 | columns=["EinheitBetriebsstatus", "DatumEndgueltigeStilllegung"] |
||
1030 | ) |
||
1031 | |||
1032 | # convert from KW to MW |
||
1033 | conv["Nettonennleistung"] = conv["Nettonennleistung"] / 1000 |
||
1034 | |||
1035 | # drop generators installed after 2019 |
||
1036 | conv["Inbetriebnahmedatum"] = pd.to_datetime(conv["Inbetriebnahmedatum"]) |
||
1037 | conv = conv[ |
||
1038 | conv["Inbetriebnahmedatum"] |
||
1039 | < egon.data.config.datasets()["mastr_new"][f"{scn_name}_date_max"] |
||
1040 | ] |
||
1041 | |||
1042 | conv_cap_chp = ( |
||
1043 | conv.groupby("Energietraeger")["Nettonennleistung"].sum() / 1e3 |
||
1044 | ) |
||
1045 | # drop chp generators |
||
1046 | conv["ThermischeNutzleistung"] = conv["ThermischeNutzleistung"].fillna(0) |
||
1047 | conv = conv[conv.ThermischeNutzleistung == 0] |
||
1048 | conv_cap_no_chp = ( |
||
1049 | conv.groupby("Energietraeger")["Nettonennleistung"].sum() / 1e3 |
||
1050 | ) |
||
1051 | |||
1052 | logger.info("Dropped CHP generators in GW") |
||
1053 | logger.info(conv_cap_chp - conv_cap_no_chp) |
||
1054 | |||
1055 | # rename carriers |
||
1056 | # rename carriers |
||
1057 | conv["Energietraeger"] = conv["Energietraeger"].replace( |
||
1058 | to_replace={ |
||
1059 | "Braunkohle": "lignite", |
||
1060 | "Steinkohle": "coal", |
||
1061 | "Erdgas": "gas", |
||
1062 | "Mineralölprodukte": "oil", |
||
1063 | "Kernenergie": "nuclear", |
||
1064 | } |
||
1065 | ) |
||
1066 | |||
1067 | # rename columns |
||
1068 | conv.rename( |
||
1069 | columns={ |
||
1070 | "EinheitMastrNummer": "gens_id", |
||
1071 | "Energietraeger": "carrier", |
||
1072 | "Nettonennleistung": "capacity", |
||
1073 | "Gemeinde": "location", |
||
1074 | }, |
||
1075 | inplace=True, |
||
1076 | ) |
||
1077 | conv["bus_id"] = np.nan |
||
1078 | conv["geom"] = gpd.points_from_xy( |
||
1079 | conv.Laengengrad, conv.Breitengrad, crs=4326 |
||
1080 | ) |
||
1081 | conv.loc[(conv.Laengengrad.isna() | conv.Breitengrad.isna()), "geom"] = ( |
||
1082 | Point() |
||
1083 | ) |
||
1084 | conv = gpd.GeoDataFrame(conv, geometry="geom") |
||
1085 | |||
1086 | # assign voltage level by capacity |
||
1087 | conv["voltage_level"] = np.nan |
||
1088 | conv["voltage_level"] = assign_voltage_level_by_capacity( |
||
1089 | conv.rename(columns={"capacity": "Nettonennleistung"}) |
||
1090 | ) |
||
1091 | # Add further information |
||
1092 | conv["sources"] = [{"el_capacity": "MaStR"}] * conv.shape[0] |
||
1093 | conv["source_id"] = conv["gens_id"].apply(lambda x: {"MastrNummer": x}) |
||
1094 | conv["scenario"] = scn_name |
||
1095 | |||
1096 | return conv |
||
1097 | |||
1098 | |||
1099 | def power_plants_status_quo(scn_name="status2019"): |
||
1100 | def fill_missing_bus_and_geom(gens, carrier): |
||
1101 | # drop generators without data to get geometry. |
||
1102 | drop_id = gens[ |
||
1103 | (gens.geom.is_empty) |
||
1104 | & ~(gens.location.isin(geom_municipalities.index)) |
||
1105 | ].index |
||
1106 | new_geom = gens["capacity"][ |
||
1107 | (gens.geom.is_empty) |
||
1108 | & (gens.location.isin(geom_municipalities.index)) |
||
1109 | ] |
||
1110 | logger.info( |
||
1111 | f"""{len(drop_id)} {carrier} generator(s) ({int(gens.loc[drop_id, 'capacity'] |
||
1112 | .sum())}MW) were drop""" |
||
1113 | ) |
||
1114 | |||
1115 | logger.info( |
||
1116 | f"""{len(new_geom)} {carrier} generator(s) ({int(new_geom |
||
1117 | .sum())}MW) received a geom based on location |
||
1118 | """ |
||
1119 | ) |
||
1120 | gens.drop(index=drop_id, inplace=True) |
||
1121 | |||
1122 | # assign missing geometries based on location and buses based on geom |
||
1123 | |||
1124 | gens["geom"] = gens.apply( |
||
1125 | lambda x: ( |
||
1126 | geom_municipalities.at[x["location"], "geom"] |
||
1127 | if x["geom"].is_empty |
||
1128 | else x["geom"] |
||
1129 | ), |
||
1130 | axis=1, |
||
1131 | ) |
||
1132 | gens["bus_id"] = gens.sjoin( |
||
1133 | mv_grid_districts[["bus_id", "geom"]], how="left" |
||
1134 | ).bus_id_right.values |
||
1135 | |||
1136 | gens = gens.dropna(subset=["bus_id"]) |
||
1137 | # convert geom to WKB |
||
1138 | gens["geom"] = gens["geom"].to_wkt() |
||
1139 | |||
1140 | return gens |
||
1141 | |||
1142 | def convert_master_info(df): |
||
1143 | # Add further information |
||
1144 | df["sources"] = [{"el_capacity": "MaStR"}] * df.shape[0] |
||
1145 | df["source_id"] = df["gens_id"].apply(lambda x: {"MastrNummer": x}) |
||
1146 | return df |
||
1147 | |||
1148 | def log_insert_capacity(df, tech): |
||
1149 | logger.info( |
||
1150 | f""" |
||
1151 | {len(df)} {tech} generators with a total installed capacity of |
||
1152 | {int(df["el_capacity"].sum())} MW were inserted into the db |
||
1153 | """ |
||
1154 | ) |
||
1155 | |||
1156 | con = db.engine() |
||
1157 | cfg = egon.data.config.datasets()["power_plants"] |
||
1158 | |||
1159 | db.execute_sql( |
||
1160 | f""" |
||
1161 | DELETE FROM {cfg['target']['schema']}.{cfg['target']['table']} |
||
1162 | WHERE carrier IN ('wind_onshore', 'solar', 'biomass', |
||
1163 | 'run_of_river', 'reservoir', 'solar_rooftop', |
||
1164 | 'wind_offshore', 'nuclear', 'coal', 'lignite', 'oil', |
||
1165 | 'gas') |
||
1166 | AND scenario = '{scn_name}' |
||
1167 | """ |
||
1168 | ) |
||
1169 | |||
1170 | # import municipalities to assign missing geom and bus_id |
||
1171 | geom_municipalities = gpd.GeoDataFrame.from_postgis( |
||
1172 | """ |
||
1173 | SELECT gen, ST_UNION(geometry) as geom |
||
1174 | FROM boundaries.vg250_gem |
||
1175 | GROUP BY gen |
||
1176 | """, |
||
1177 | con, |
||
1178 | geom_col="geom", |
||
1179 | ).set_index("gen") |
||
1180 | geom_municipalities["geom"] = geom_municipalities["geom"].centroid |
||
1181 | |||
1182 | mv_grid_districts = gpd.GeoDataFrame.from_postgis( |
||
1183 | f""" |
||
1184 | SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
||
1185 | """, |
||
1186 | con, |
||
1187 | ) |
||
1188 | mv_grid_districts.geom = mv_grid_districts.geom.to_crs(4326) |
||
1189 | |||
1190 | # Conventional non CHP |
||
1191 | # ################### |
||
1192 | conv = get_conventional_power_plants_non_chp(scn_name) |
||
1193 | conv = fill_missing_bus_and_geom(conv, carrier="conventional") |
||
1194 | conv= conv.rename(columns={"capacity": "el_capacity"}) |
||
1195 | |||
1196 | # Write into DB |
||
1197 | with db.session_scope() as session: |
||
1198 | session.bulk_insert_mappings( |
||
1199 | EgonPowerPlants, |
||
1200 | conv.to_dict(orient="records"), |
||
1201 | ) |
||
1202 | |||
1203 | log_insert_capacity(conv, tech="conventional non chp") |
||
1204 | |||
1205 | # Hydro Power Plants |
||
1206 | # ################### |
||
1207 | hydro = gpd.GeoDataFrame.from_postgis( |
||
1208 | f"""SELECT *, city AS location FROM {cfg['sources']['hydro']} |
||
1209 | WHERE plant_type IN ('Laufwasseranlage', 'Speicherwasseranlage')""", |
||
1210 | con, |
||
1211 | geom_col="geom", |
||
1212 | ) |
||
1213 | |||
1214 | hydro = fill_missing_bus_and_geom(hydro, carrier="hydro") |
||
1215 | |||
1216 | hydro = convert_master_info(hydro) |
||
1217 | hydro["carrier"] = hydro["plant_type"].replace( |
||
1218 | to_replace={ |
||
1219 | "Laufwasseranlage": "run_of_river", |
||
1220 | "Speicherwasseranlage": "reservoir", |
||
1221 | } |
||
1222 | ) |
||
1223 | hydro["scenario"] = scn_name |
||
1224 | hydro = hydro.rename(columns={"capacity": "el_capacity"}) |
||
1225 | hydro = hydro.drop(columns="id") |
||
1226 | |||
1227 | # Write into DB |
||
1228 | with db.session_scope() as session: |
||
1229 | session.bulk_insert_mappings( |
||
1230 | EgonPowerPlants, |
||
1231 | hydro.to_dict(orient="records"), |
||
1232 | ) |
||
1233 | |||
1234 | log_insert_capacity(hydro, tech="hydro") |
||
1235 | |||
1236 | # Biomass |
||
1237 | # ################### |
||
1238 | biomass = gpd.GeoDataFrame.from_postgis( |
||
1239 | f"""SELECT *, city AS location FROM {cfg['sources']['biomass']}""", |
||
1240 | con, |
||
1241 | geom_col="geom", |
||
1242 | ) |
||
1243 | |||
1244 | # drop chp generators |
||
1245 | biomass["th_capacity"] = biomass["th_capacity"].fillna(0) |
||
1246 | biomass = biomass[biomass.th_capacity == 0] |
||
1247 | |||
1248 | biomass = fill_missing_bus_and_geom(biomass, carrier="biomass") |
||
1249 | |||
1250 | biomass = convert_master_info(biomass) |
||
1251 | biomass["scenario"] = scn_name |
||
1252 | biomass["carrier"] = "biomass" |
||
1253 | biomass = biomass.rename(columns={"capacity": "el_capacity"}) |
||
1254 | biomass = biomass.drop(columns="id") |
||
1255 | |||
1256 | # Write into DB |
||
1257 | with db.session_scope() as session: |
||
1258 | session.bulk_insert_mappings( |
||
1259 | EgonPowerPlants, |
||
1260 | biomass.to_dict(orient="records"), |
||
1261 | ) |
||
1262 | |||
1263 | log_insert_capacity(biomass, tech="biomass") |
||
1264 | |||
1265 | # Solar |
||
1266 | # ################### |
||
1267 | solar = gpd.GeoDataFrame.from_postgis( |
||
1268 | f"""SELECT *, city AS location FROM {cfg['sources']['pv']} |
||
1269 | WHERE site_type IN ('Freifläche', |
||
1270 | 'Bauliche Anlagen (Hausdach, Gebäude und Fassade)') """, |
||
1271 | con, |
||
1272 | geom_col="geom", |
||
1273 | ) |
||
1274 | map_solar = { |
||
1275 | "Freifläche": "solar", |
||
1276 | "Bauliche Anlagen (Hausdach, Gebäude und Fassade)": "solar_rooftop", |
||
1277 | } |
||
1278 | solar["carrier"] = solar["site_type"].replace(to_replace=map_solar) |
||
1279 | |||
1280 | solar = fill_missing_bus_and_geom(solar, carrier="solar") |
||
1281 | solar = convert_master_info(solar) |
||
1282 | solar["scenario"] = scn_name |
||
1283 | solar = solar.rename(columns={"capacity": "el_capacity"}) |
||
1284 | solar = solar.drop(columns="id") |
||
1285 | |||
1286 | # Write into DB |
||
1287 | with db.session_scope() as session: |
||
1288 | session.bulk_insert_mappings( |
||
1289 | EgonPowerPlants, |
||
1290 | solar.to_dict(orient="records"), |
||
1291 | ) |
||
1292 | |||
1293 | log_insert_capacity(solar, tech="solar") |
||
1294 | |||
1295 | # Wind |
||
1296 | # ################### |
||
1297 | wind_onshore = gpd.GeoDataFrame.from_postgis( |
||
1298 | f"""SELECT *, city AS location FROM {cfg['sources']['wind']}""", |
||
1299 | con, |
||
1300 | geom_col="geom", |
||
1301 | ) |
||
1302 | |||
1303 | wind_onshore = fill_missing_bus_and_geom( |
||
1304 | wind_onshore, carrier="wind_onshore" |
||
1305 | ) |
||
1306 | wind_onshore = convert_master_info(wind_onshore) |
||
1307 | wind_onshore["scenario"] = scn_name |
||
1308 | wind_onshore = wind_onshore.rename(columns={"capacity": "el_capacity"}) |
||
1309 | wind_onshore["carrier"] = "wind_onshore" |
||
1310 | wind_onshore = wind_onshore.drop(columns="id") |
||
1311 | |||
1312 | # Write into DB |
||
1313 | with db.session_scope() as session: |
||
1314 | session.bulk_insert_mappings( |
||
1315 | EgonPowerPlants, |
||
1316 | wind_onshore.to_dict(orient="records"), |
||
1317 | ) |
||
1318 | |||
1319 | log_insert_capacity(wind_onshore, tech="wind_onshore") |
||
1320 | |||
1321 | |||
1322 | tasks = ( |
||
1323 | create_tables, |
||
1324 | import_mastr, |
||
1325 | ) |
||
1326 | |||
1327 | for scn_name in egon.data.config.settings()["egon-data"]["--scenarios"]: |
||
1328 | if "status" in scn_name: |
||
1329 | tasks += ( |
||
1330 | wrapped_partial( |
||
1331 | power_plants_status_quo, |
||
1332 | scn_name=scn_name, |
||
1333 | postfix=f"_{scn_name[-4:]}", |
||
1334 | ), |
||
1335 | ) |
||
1336 | |||
1337 | if ( |
||
1338 | "eGon2035" in egon.data.config.settings()["egon-data"]["--scenarios"] |
||
1339 | or "eGon100RE" in egon.data.config.settings()["egon-data"]["--scenarios"] |
||
1340 | ): |
||
1341 | tasks = tasks + ( |
||
1342 | insert_hydro_biomass, |
||
1343 | allocate_conventional_non_chp_power_plants, |
||
1344 | allocate_other_power_plants, |
||
1345 | { |
||
1346 | wind_onshore.insert, |
||
1347 | pv_ground_mounted.insert, |
||
1348 | pv_rooftop_per_mv_grid, |
||
1349 | }, |
||
1350 | ) |
||
1351 | |||
1352 | tasks = tasks + ( |
||
1353 | pv_rooftop_to_buildings, |
||
1354 | wind_offshore.insert, |
||
1355 | ) |
||
1356 | |||
1357 | for scn_name in egon.data.config.settings()["egon-data"]["--scenarios"]: |
||
1358 | tasks += (wrapped_partial(assign_weather_data.weatherId_and_busId, |
||
1359 | scn_name=scn_name, |
||
1360 | postfix=f"_{scn_name}" |
||
1361 | ),) |
||
1362 | |||
1363 | tasks += (pp_metadata.metadata,) |
||
1364 | |||
1365 | class PowerPlants(Dataset): |
||
1366 | """ |
||
1367 | This module creates all electrical generators for different scenarios. It |
||
1368 | also calculates the weather area for each weather dependent generator. |
||
1369 | |||
1370 | *Dependencies* |
||
1371 | * :py:class:`Chp <egon.data.datasets.chp.Chp>` |
||
1372 | * :py:class:`CtsElectricityDemand |
||
1373 | <egon.data.datasets.electricity_demand.CtsElectricityDemand>` |
||
1374 | * :py:class:`HouseholdElectricityDemand |
||
1375 | <egon.data.datasets.electricity_demand.HouseholdElectricityDemand>` |
||
1376 | * :py:class:`mastr_data <egon.data.datasets.mastr.mastr_data>` |
||
1377 | * :py:func:`define_mv_grid_districts |
||
1378 | <egon.data.datasets.mv_grid_districts.define_mv_grid_districts>` |
||
1379 | * :py:class:`RePotentialAreas |
||
1380 | <egon.data.datasets.re_potential_areas.RePotentialAreas>` |
||
1381 | * :py:class:`ZensusVg250 |
||
1382 | <egon.data.datasets.RenewableFeedin>` |
||
1383 | * :py:class:`ScenarioCapacities |
||
1384 | <egon.data.datasets.scenario_capacities.ScenarioCapacities>` |
||
1385 | * :py:class:`ScenarioParameters |
||
1386 | <egon.data.datasets.scenario_parameters.ScenarioParameters>` |
||
1387 | * :py:func:`Setup <egon.data.datasets.database.setup>` |
||
1388 | * :py:class:`substation_extraction |
||
1389 | <egon.data.datasets.substation.substation_extraction>` |
||
1390 | * :py:class:`Vg250MvGridDistricts |
||
1391 | <egon.data.datasets.Vg250MvGridDistricts>` |
||
1392 | * :py:class:`ZensusMvGridDistricts |
||
1393 | <egon.data.datasets.zensus_mv_grid_districts.ZensusMvGridDistricts>` |
||
1394 | |||
1395 | *Resulting tables* |
||
1396 | * :py:class:`supply.egon_power_plants |
||
1397 | <egon.data.datasets.power_plants.EgonPowerPlants>` is filled |
||
1398 | |||
1399 | """ |
||
1400 | |||
1401 | #: |
||
1402 | name: str = "PowerPlants" |
||
1403 | #: |
||
1404 | version: str = "0.0.27" |
||
1405 | |||
1406 | def __init__(self, dependencies): |
||
1407 | super().__init__( |
||
1408 | name=self.name, |
||
1409 | version=self.version, |
||
1410 | dependencies=dependencies, |
||
1411 | tasks=tasks, |
||
1412 | ) |
||
1414 |