Passed
Pull Request — dev (#1008)
by
unknown
01:33
created

pv_rooftop_to_buildings()   A

Complexity

Conditions 2

Size

Total Lines 50
Code Lines 30

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 30
dl 0
loc 50
rs 9.16
c 0
b 0
f 0
cc 2
nop 0
1
"""
2
Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate new
3
PV rooftop generators for scenarios eGon2035 and eGon100RE.
4
Data cleaning: Drop duplicates and entries with missing critical data. Determine most
5
plausible capacity from multiple values given in MaStR data. Drop generators which don't
6
have any plausible capacity data (23.5MW > P > 0.1). Randomly and weighted add a
7
start-up date if it is missing. Extract zip and municipality from 'Standort' given in
8
MaStR data. Geocode unique zip and municipality combinations with Nominatim (1sec
9
delay). Drop generators for which geocoding failed or which are located outside the
10
municipalities of Germany. Add some visual sanity checks for cleaned data.
11
Allocation of MaStR data: Allocate each generator to an existing building from OSM.
12
Determine the quantile each generator and building is in depending on the capacity of
13
the generator and the area of the polygon of the building. Randomly distribute
14
generators within each municipality preferably within the same building area quantile as
15
the generators are capacity wise. If not enough buildings exists within a municipality
16
and quantile additional buildings from other quantiles are chosen randomly.
17
Desegregation of pv rooftop scenarios: The scenario data per federal state is linear
18
distributed to the mv grid districts according to the pv rooftop potential per mv grid
19
district. The rooftop potential is estimated from the building area given from the OSM
20
buildings. Grid districts, which are located in several federal states, are allocated PV
21
capacity according to their respective roof potential in the individual federal states.
22
The desegregation of PV plants within a grid districts respects existing plants from
23
MaStR, which did not reach their end of life. New PV plants are randomly and weighted
24
generated using a breakdown of MaStR data as generator basis. Plant metadata (e.g. plant
25
orientation) is also added random and weighted from MaStR data as basis.
26
"""
27
from __future__ import annotations
28
29
from collections import Counter
30
from functools import wraps
31
from pathlib import Path
32
from time import perf_counter
33
from typing import Any
34
35
from geoalchemy2 import Geometry
36
from geopy.extra.rate_limiter import RateLimiter
37
from geopy.geocoders import Nominatim
38
from loguru import logger
39
from numpy.random import RandomState, default_rng
40
from pyproj.crs.crs import CRS
41
from sqlalchemy import BigInteger, Column, Float, Integer, String
42
from sqlalchemy.dialects.postgresql import HSTORE
43
from sqlalchemy.ext.declarative import declarative_base
44
import geopandas as gpd
45
import numpy as np
46
import pandas as pd
47
48
from egon.data import config, db
49
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import (
50
    OsmBuildingsSynthetic,
51
)
52
from egon.data.datasets.scenario_capacities import EgonScenarioCapacities
53
from egon.data.datasets.zensus_vg250 import Vg250Gem
54
55
engine = db.engine()
56
Base = declarative_base()
57
SEED = int(config.settings()["egon-data"]["--random-seed"])
58
59
# TODO: move to yml
60
# mastr data
61
MASTR_RELEVANT_COLS = [
62
    "EinheitMastrNummer",
63
    "Bruttoleistung",
64
    "StatisikFlag",
65
    "Bruttoleistung_extended",
66
    "Nettonennleistung",
67
    "InstallierteLeistung",
68
    "zugeordneteWirkleistungWechselrichter",
69
    "EinheitBetriebsstatus",
70
    "Standort",
71
    "Bundesland",
72
    "Land",
73
    "Landkreis",
74
    "Gemeinde",
75
    "Postleitzahl",
76
    "Ort",
77
    "GeplantesInbetriebnahmedatum",
78
    "Inbetriebnahmedatum",
79
    "GemeinsamerWechselrichterMitSpeicher",
80
    "Lage",
81
    "Leistungsbegrenzung",
82
    "EinheitlicheAusrichtungUndNeigungswinkel",
83
    "Hauptausrichtung",
84
    "HauptausrichtungNeigungswinkel",
85
    "Nebenausrichtung",
86
]
87
88
MASTR_DTYPES = {
89
    "EinheitMastrNummer": str,
90
    "Bruttoleistung": float,
91
    "StatisikFlag": str,
92
    "Bruttoleistung_extended": float,
93
    "Nettonennleistung": float,
94
    "InstallierteLeistung": float,
95
    "zugeordneteWirkleistungWechselrichter": float,
96
    "EinheitBetriebsstatus": str,
97
    "Standort": str,
98
    "Bundesland": str,
99
    "Land": str,
100
    "Landkreis": str,
101
    "Gemeinde": str,
102
    # "Postleitzahl": int,  # fails because of nan values
103
    "Ort": str,
104
    "GemeinsamerWechselrichterMitSpeicher": str,
105
    "Lage": str,
106
    "Leistungsbegrenzung": str,
107
    # this will parse nan values as false wich is not always correct
108
    # "EinheitlicheAusrichtungUndNeigungswinkel": bool,
109
    "Hauptausrichtung": str,
110
    "HauptausrichtungNeigungswinkel": str,
111
    "Nebenausrichtung": str,
112
    "NebenausrichtungNeigungswinkel": str,
113
}
114
115
MASTR_PARSE_DATES = [
116
    "GeplantesInbetriebnahmedatum",
117
    "Inbetriebnahmedatum",
118
]
119
120
MASTR_INDEX_COL = "EinheitMastrNummer"
121
122
EPSG = 4326
123
SRID = 3035
124
125
# data cleaning
126
MAX_REALISTIC_PV_CAP = 23500
127
MIN_REALISTIC_PV_CAP = 0.1
128
ROUNDING = 1
129
130
# geopy
131
MIN_DELAY_SECONDS = 1
132
USER_AGENT = "rli_kh_geocoder"
133
134
# show additional logging information
135
VERBOSE = False
136
137
EXPORT_DIR = Path(__name__).resolve().parent / "data"
138
EXPORT_FILE = "mastr_geocoded.gpkg"
139
EXPORT_PATH = EXPORT_DIR / EXPORT_FILE
140
DRIVER = "GPKG"
141
142
# Number of quantiles
143
Q = 5
144
145
# Scenario Data
146
CARRIER = "solar_rooftop"
147
SCENARIOS = ["eGon2035", "eGon100RE"]
148
SCENARIO_TIMESTAMP = {
149
    "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"),
150
    "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"),
151
}
152
PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D")
153
154
# Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp
155
# https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf
156
MODUL_CAP = 0.4  # kWp
157
MODUL_SIZE = 1.096 * 1.754  # m²
158
PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE
159
160
# Estimation of usable roof area
161
# Factor for the conversion of building area to roof area
162
# estimation mean roof pitch: 35°
163
# estimation usable roof share: 80%
164
# estimation that only the south side of the building is used for pv
165
# see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf
166
# AREA_FACTOR = 1.221
167
# USABLE_ROOF_SHARE = 0.8
168
# SOUTH_SHARE = 0.5
169
# ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE
170
ROOF_FACTOR = 0.5
171
172
CAP_RANGES = [
173
    (0, 30),
174
    (30, 100),
175
    (100, float("inf")),
176
]
177
178
MIN_BUILDING_SIZE = 10.0
179
UPPER_QUNATILE = 0.95
180
LOWER_QUANTILE = 0.05
181
182
COLS_TO_RENAME = {
183
    "EinheitlicheAusrichtungUndNeigungswinkel": (
184
        "einheitliche_ausrichtung_und_neigungswinkel"
185
    ),
186
    "Hauptausrichtung": "hauptausrichtung",
187
    "HauptausrichtungNeigungswinkel": "hauptausrichtung_neigungswinkel",
188
}
189
190
COLS_TO_EXPORT = [
191
    "scenario",
192
    "bus_id",
193
    "building_id",
194
    "gens_id",
195
    "capacity",
196
    "einheitliche_ausrichtung_und_neigungswinkel",
197
    "hauptausrichtung",
198
    "hauptausrichtung_neigungswinkel",
199
    "voltage_level",
200
    "weather_cell_id",
201
]
202
203
# TODO
204
INCLUDE_SYNTHETIC_BUILDINGS = True
205
ONLY_BUILDINGS_WITH_DEMAND = True
206
TEST_RUN = False
207
208
209
def timer_func(func):
210
    @wraps(func)
211
    def timeit_wrapper(*args, **kwargs):
212
        start_time = perf_counter()
213
        result = func(*args, **kwargs)
214
        end_time = perf_counter()
215
        total_time = end_time - start_time
216
        logger.debug(
217
            f"Function {func.__name__} took {total_time:.4f} seconds."
218
        )
219
        return result
220
221
    return timeit_wrapper
222
223
224
@timer_func
225
def mastr_data(
226
    index_col: str | int | list[str] | list[int],
227
    usecols: list[str],
228
    dtype: dict[str, Any] | None,
229
    parse_dates: list[str] | None,
230
) -> pd.DataFrame:
231
    """
232
    Read MaStR data from csv.
233
234
    Parameters
235
    -----------
236
    index_col : str, int or list of str or int
237
        Column(s) to use as the row labels of the DataFrame.
238
    usecols : list of str
239
        Return a subset of the columns.
240
    dtype : dict of column (str) -> type (any), optional
241
        Data type for data or columns.
242
    parse_dates : list of names (str), optional
243
        Try to parse given columns to datetime.
244
    Returns
245
    -------
246
    pandas.DataFrame
247
        DataFrame containing MaStR data.
248
    """
249
    mastr_path = Path(
250
        config.datasets()["power_plants"]["sources"]["mastr_pv"]
251
    ).resolve()
252
253
    mastr_df = pd.read_csv(
254
        mastr_path,
255
        index_col=index_col,
256
        usecols=usecols,
257
        dtype=dtype,
258
        parse_dates=parse_dates,
259
    )
260
261
    mastr_df = mastr_df.loc[
262
        (mastr_df.StatisikFlag == "B")
263
        & (mastr_df.EinheitBetriebsstatus == "InBetrieb")
264
        & (mastr_df.Land == "Deutschland")
265
        & (mastr_df.Lage == "BaulicheAnlagen")
266
    ]
267
268
    if (
269
        config.settings()["egon-data"]["--dataset-boundary"]
270
        == "Schleswig-Holstein"
271
    ):
272
        init_len = len(mastr_df)
273
274
        mastr_df = mastr_df.loc[mastr_df.Bundesland == "SchleswigHolstein"]
275
276
        logger.info(
277
            f"Using only MaStR data within Schleswig-Holstein. "
278
            f"{init_len - len(mastr_df)} of {init_len} generators are dropped."
279
        )
280
281
    logger.debug("MaStR data loaded.")
282
283
    return mastr_df
284
285
286
@timer_func
287
def clean_mastr_data(
288
    mastr_df: pd.DataFrame,
289
    max_realistic_pv_cap: int | float,
290
    min_realistic_pv_cap: int | float,
291
    rounding: int,
292
    seed: int,
293
) -> pd.DataFrame:
294
    """
295
    Clean the MaStR data from implausible data.
296
297
    * Drop MaStR ID duplicates.
298
    * Drop generators with implausible capacities.
299
    * Drop generators without any kind of start-up date.
300
    * Clean up Standort column and capacity.
301
302
    Parameters
303
    -----------
304
    mastr_df : pandas.DataFrame
305
        DataFrame containing MaStR data.
306
    max_realistic_pv_cap : int or float
307
        Maximum capacity, which is considered to be realistic.
308
    min_realistic_pv_cap : int or float
309
        Minimum capacity, which is considered to be realistic.
310
    rounding : int
311
        Rounding to use when cleaning up capacity. E.g. when
312
        rounding is 1 a capacity of 9.93 will be rounded to 9.9.
313
    seed : int
314
        Seed to use for random operations with NumPy and pandas.
315
    Returns
316
    -------
317
    pandas.DataFrame
318
        DataFrame containing cleaned MaStR data.
319
    """
320
    init_len = len(mastr_df)
321
322
    # drop duplicates
323
    mastr_df = mastr_df.loc[~mastr_df.index.duplicated()]
324
325
    # drop invalid entries in standort
326
    index_to_drop = mastr_df.loc[
327
        (mastr_df.Standort.isna()) | (mastr_df.Standort.isnull())
328
    ].index
329
330
    mastr_df = mastr_df.loc[~mastr_df.index.isin(index_to_drop)]
331
332
    df = mastr_df[
333
        [
334
            "Bruttoleistung",
335
            "Bruttoleistung_extended",
336
            "Nettonennleistung",
337
            "zugeordneteWirkleistungWechselrichter",
338
            "InstallierteLeistung",
339
        ]
340
    ].round(rounding)
341
342
    # use only the smallest capacity rating if multiple are given
343
    mastr_df = mastr_df.assign(
344
        capacity=[
345
            most_plausible(p_tub, min_realistic_pv_cap)
346
            for p_tub in df.itertuples(index=False)
347
        ]
348
    )
349
350
    # drop generators without any capacity info
351
    # and capacity of zero
352
    # and if the capacity is > 23.5 MW, because
353
    # Germanies largest rooftop PV is 23 MW
354
    # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379
355
    mastr_df = mastr_df.loc[
356
        (~mastr_df.capacity.isna())
357
        & (mastr_df.capacity <= max_realistic_pv_cap)
358
        & (mastr_df.capacity > min_realistic_pv_cap)
359
    ]
360
361
    # get zip and municipality
362
    mastr_df[["zip_and_municipality", "drop_this"]] = pd.DataFrame(
363
        mastr_df.Standort.astype(str)
364
        .apply(
365
            zip_and_municipality_from_standort,
366
            args=(VERBOSE,),
367
        )
368
        .tolist(),
369
        index=mastr_df.index,
370
    )
371
372
    # drop invalid entries
373
    mastr_df = mastr_df.loc[mastr_df.drop_this].drop(columns="drop_this")
374
375
    # add ", Deutschland" just in case
376
    mastr_df = mastr_df.assign(
377
        zip_and_municipality=(mastr_df.zip_and_municipality + ", Deutschland")
378
    )
379
380
    # get consistent start-up date
381
    mastr_df = mastr_df.assign(
382
        start_up_date=mastr_df.Inbetriebnahmedatum,
383
    )
384
385
    mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
386
        mastr_df.start_up_date.isna()
387
    ].assign(
388
        start_up_date=mastr_df.GeplantesInbetriebnahmedatum.loc[
389
            mastr_df.start_up_date.isna()
390
        ]
391
    )
392
393
    # randomly and weighted fill missing start-up dates
394
    pool = mastr_df.loc[
395
        ~mastr_df.start_up_date.isna()
396
    ].start_up_date.to_numpy()
397
398
    size = len(mastr_df) - len(pool)
399
400
    if size > 0:
401
        np.random.seed(seed)
402
403
        choice = np.random.choice(
404
            pool,
405
            size=size,
406
            replace=False,
407
        )
408
409
        mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
410
            mastr_df.start_up_date.isna()
411
        ].assign(start_up_date=choice)
412
413
        logger.info(
414
            f"Randomly and weigthed added start-up date to {size} generators."
415
        )
416
417
    mastr_df = mastr_df.assign(
418
        start_up_date=pd.to_datetime(mastr_df.start_up_date, utc=True)
419
    )
420
421
    end_len = len(mastr_df)
422
    logger.debug(
423
        f"Dropped {init_len - end_len} "
424
        f"({((init_len - end_len) / init_len) * 100:g}%)"
425
        f" of {init_len} rows from MaStR DataFrame."
426
    )
427
428
    return mastr_df
429
430
431
def zip_and_municipality_from_standort(
432
    standort: str,
433
    verbose: bool = False,
434
) -> tuple[str, bool]:
435
    """
436
    Get zip code and municipality from Standort string split into a list.
437
    Parameters
438
    -----------
439
    standort : str
440
        Standort as given from MaStR data.
441
    verbose : bool
442
        Logs additional info if True.
443
    Returns
444
    -------
445
    str
446
        Standort with only the zip code and municipality
447
        as well a ', Germany' added.
448
    """
449
    if verbose:
450
        logger.debug(f"Uncleaned String: {standort}")
451
452
    standort_list = standort.split()
453
454
    found = False
455
    count = 0
456
457
    for count, elem in enumerate(standort_list):
458
        if len(elem) != 5:
459
            continue
460
        if not elem.isnumeric():
461
            continue
462
463
        found = True
464
465
        break
466
467
    if found:
468
        cleaned_str = " ".join(standort_list[count:])
469
470
        if verbose:
471
            logger.debug(f"Cleaned String:   {cleaned_str}")
472
473
        return cleaned_str, found
474
475
    logger.warning(
476
        "Couldn't identify zip code. This entry will be dropped."
477
        f" Original standort: {standort}."
478
    )
479
480
    return standort, found
481
482
483
def most_plausible(
484
    p_tub: tuple,
485
    min_realistic_pv_cap: int | float,
486
) -> float:
487
    """
488
    Try to determine the most plausible capacity.
489
    Try to determine the most plausible capacity from a given
490
    generator from MaStR data.
491
    Parameters
492
    -----------
493
    p_tub : tuple
494
        Tuple containing the different capacities given in
495
        the MaStR data.
496
    min_realistic_pv_cap : int or float
497
        Minimum capacity, which is considered to be realistic.
498
    Returns
499
    -------
500
    float
501
        Capacity of the generator estimated as the most realistic.
502
    """
503
    count = Counter(p_tub).most_common(3)
504
505
    if len(count) == 1:
506
        return count[0][0]
507
508
    val1 = count[0][0]
509
    val2 = count[1][0]
510
511
    if len(count) == 2:
512
        min_val = min(val1, val2)
513
        max_val = max(val1, val2)
514
    else:
515
        val3 = count[2][0]
516
517
        min_val = min(val1, val2, val3)
518
        max_val = max(val1, val2, val3)
519
520
    if min_val < min_realistic_pv_cap:
521
        return max_val
522
523
    return min_val
524
525
526
def geocoder(
527
    user_agent: str,
528
    min_delay_seconds: int,
529
) -> RateLimiter:
530
    """
531
    Setup Nominatim geocoding class.
532
    Parameters
533
    -----------
534
    user_agent : str
535
        The app name.
536
    min_delay_seconds : int
537
        Delay in seconds to use between requests to Nominatim.
538
        A minimum of 1 is advised.
539
    Returns
540
    -------
541
    geopy.extra.rate_limiter.RateLimiter
542
        Nominatim RateLimiter geocoding class to use for geocoding.
543
    """
544
    locator = Nominatim(user_agent=user_agent)
545
    return RateLimiter(
546
        locator.geocode,
547
        min_delay_seconds=min_delay_seconds,
548
    )
549
550
551
def geocoding_data(
552
    clean_mastr_df: pd.DataFrame,
553
) -> pd.DataFrame:
554
    """
555
    Setup DataFrame to geocode.
556
    Parameters
557
    -----------
558
    clean_mastr_df : pandas.DataFrame
559
        DataFrame containing cleaned MaStR data.
560
    Returns
561
    -------
562
    pandas.DataFrame
563
        DataFrame containing all unique combinations of
564
        zip codes with municipalities for geocoding.
565
    """
566
    return pd.DataFrame(
567
        data=clean_mastr_df.zip_and_municipality.unique(),
568
        columns=["zip_and_municipality"],
569
    )
570
571
572
@timer_func
573
def geocode_data(
574
    geocoding_df: pd.DataFrame,
575
    ratelimiter: RateLimiter,
576
    epsg: int,
577
) -> gpd.GeoDataFrame:
578
    """
579
    Geocode zip code and municipality.
580
    Extract latitude, longitude and altitude.
581
    Transfrom latitude and longitude to shapely
582
    Point and return a geopandas GeoDataFrame.
583
    Parameters
584
    -----------
585
    geocoding_df : pandas.DataFrame
586
        DataFrame containing all unique combinations of
587
        zip codes with municipalities for geocoding.
588
    ratelimiter : geopy.extra.rate_limiter.RateLimiter
589
        Nominatim RateLimiter geocoding class to use for geocoding.
590
    epsg : int
591
        EPSG ID to use as CRS.
592
    Returns
593
    -------
594
    geopandas.GeoDataFrame
595
        GeoDataFrame containing all unique combinations of
596
        zip codes with municipalities with matching geolocation.
597
    """
598
    logger.info(f"Geocoding {len(geocoding_df)} locations.")
599
600
    geocode_df = geocoding_df.assign(
601
        location=geocoding_df.zip_and_municipality.apply(ratelimiter)
602
    )
603
604
    geocode_df = geocode_df.assign(
605
        point=geocode_df.location.apply(
606
            lambda loc: tuple(loc.point) if loc else None
607
        )
608
    )
609
610
    geocode_df[["latitude", "longitude", "altitude"]] = pd.DataFrame(
611
        geocode_df.point.tolist(), index=geocode_df.index
612
    )
613
614
    return gpd.GeoDataFrame(
615
        geocode_df,
616
        geometry=gpd.points_from_xy(geocode_df.longitude, geocode_df.latitude),
617
        crs=f"EPSG:{epsg}",
618
    )
619
620
621
def merge_geocode_with_mastr(
622
    clean_mastr_df: pd.DataFrame, geocode_gdf: gpd.GeoDataFrame
623
) -> gpd.GeoDataFrame:
624
    """
625
    Merge geometry to original mastr data.
626
    Parameters
627
    -----------
628
    clean_mastr_df : pandas.DataFrame
629
        DataFrame containing cleaned MaStR data.
630
    geocode_gdf : geopandas.GeoDataFrame
631
        GeoDataFrame containing all unique combinations of
632
        zip codes with municipalities with matching geolocation.
633
    Returns
634
    -------
635
    gepandas.GeoDataFrame
636
        GeoDataFrame containing cleaned MaStR data with
637
        matching geolocation from geocoding.
638
    """
639
    return gpd.GeoDataFrame(
640
        clean_mastr_df.merge(
641
            geocode_gdf[["zip_and_municipality", "geometry"]],
642
            how="left",
643
            left_on="zip_and_municipality",
644
            right_on="zip_and_municipality",
645
        ),
646
        crs=geocode_gdf.crs,
647
    ).set_index(clean_mastr_df.index)
648
649
650
def drop_invalid_entries_from_gdf(
651
    gdf: gpd.GeoDataFrame,
652
) -> gpd.GeoDataFrame:
653
    """
654
    Drop invalid entries from geopandas GeoDataFrame.
655
    TODO: how to omit the logging from geos here???
656
    Parameters
657
    -----------
658
    gdf : geopandas.GeoDataFrame
659
        GeoDataFrame to be checked for validity.
660
    Returns
661
    -------
662
    gepandas.GeoDataFrame
663
        GeoDataFrame with rows with invalid geometries
664
        dropped.
665
    """
666
    valid_gdf = gdf.loc[gdf.is_valid]
667
668
    logger.debug(
669
        f"{len(gdf) - len(valid_gdf)} "
670
        f"({(len(gdf) - len(valid_gdf)) / len(gdf) * 100:g}%) "
671
        f"of {len(gdf)} values were invalid and are dropped."
672
    )
673
674
    return valid_gdf
675
676
677
@timer_func
678
def municipality_data() -> gpd.GeoDataFrame:
679
    """
680
    Get municipality data from eGo^n Database.
681
    Returns
682
    -------
683
    gepandas.GeoDataFrame
684
        GeoDataFrame with municipality data.
685
    """
686
    with db.session_scope() as session:
687
        query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom"))
688
689
    return gpd.read_postgis(
690
        query.statement, query.session.bind, index_col="ags"
691
    )
692
693
694
@timer_func
695
def add_ags_to_gens(
696
    valid_mastr_gdf: gpd.GeoDataFrame,
697
    municipalities_gdf: gpd.GeoDataFrame,
698
) -> gpd.GeoDataFrame:
699
    """
700
    Add information about AGS ID to generators.
701
    Parameters
702
    -----------
703
    valid_mastr_gdf : geopandas.GeoDataFrame
704
        GeoDataFrame with valid and cleaned MaStR data.
705
    municipalities_gdf : geopandas.GeoDataFrame
706
        GeoDataFrame with municipality data.
707
    Returns
708
    -------
709
    gepandas.GeoDataFrame
710
        GeoDataFrame with valid and cleaned MaStR data
711
        with AGS ID added.
712
    """
713
    return valid_mastr_gdf.sjoin(
714
        municipalities_gdf,
715
        how="left",
716
        predicate="intersects",
717
    ).rename(columns={"index_right": "ags"})
718
719
720
def drop_gens_outside_muns(
721
    valid_mastr_gdf: gpd.GeoDataFrame,
722
) -> gpd.GeoDataFrame:
723
    """
724
    Drop all generators outside of municipalities.
725
    Parameters
726
    -----------
727
    valid_mastr_gdf : geopandas.GeoDataFrame
728
        GeoDataFrame with valid and cleaned MaStR data.
729
    Returns
730
    -------
731
    gepandas.GeoDataFrame
732
        GeoDataFrame with valid and cleaned MaStR data
733
        with generatos without an AGS ID dropped.
734
    """
735
    gdf = valid_mastr_gdf.loc[~valid_mastr_gdf.ags.isna()]
736
737
    logger.debug(
738
        f"{len(valid_mastr_gdf) - len(gdf)} "
739
        f"({(len(valid_mastr_gdf) - len(gdf)) / len(valid_mastr_gdf) * 100:g}%) "
740
        f"of {len(valid_mastr_gdf)} values are outside of the municipalities"
741
        " and are therefore dropped."
742
    )
743
744
    return gdf
745
746
747
class EgonMastrPvRoofGeocoded(Base):
748
    __tablename__ = "egon_mastr_pv_roof_geocoded"
749
    __table_args__ = {"schema": "supply"}
750
751
    zip_and_municipality = Column(String, primary_key=True, index=True)
752
    location = Column(String)
753
    point = Column(String)
754
    latitude = Column(Float)
755
    longitude = Column(Float)
756
    altitude = Column(Float)
757
    geometry = Column(Geometry(srid=EPSG))
758
759
760
def create_geocoded_table(geocode_gdf):
761
    """
762
    Create geocoded table mastr pv rooftop
763
    Parameters
764
    -----------
765
    geocode_gdf : geopandas.GeoDataFrame
766
        GeoDataFrame containing geocoding information on pv rooftop locations.
767
    """
768
    EgonMastrPvRoofGeocoded.__table__.drop(bind=engine, checkfirst=True)
769
    EgonMastrPvRoofGeocoded.__table__.create(bind=engine, checkfirst=True)
770
771
    geocode_gdf.to_postgis(
772
        name=EgonMastrPvRoofGeocoded.__table__.name,
773
        schema=EgonMastrPvRoofGeocoded.__table__.schema,
774
        con=db.engine(),
775
        if_exists="append",
776
        index=False,
777
        # dtype={}
778
    )
779
780
781
def geocoded_data_from_db(
782
    epsg: str | int,
783
) -> gpd.GeoDataFrame:
784
    """
785
    Read OSM buildings data from eGo^n Database.
786
    Parameters
787
    -----------
788
    to_crs : pyproj.crs.crs.CRS
789
        CRS to transform geometries to.
790
    Returns
791
    -------
792
    geopandas.GeoDataFrame
793
        GeoDataFrame containing OSM buildings data.
794
    """
795
    with db.session_scope() as session:
796
        query = session.query(
797
            EgonMastrPvRoofGeocoded.zip_and_municipality,
798
            EgonMastrPvRoofGeocoded.geometry,
799
        )
800
801
    return gpd.read_postgis(
802
        query.statement, query.session.bind, geom_col="geometry"
803
    ).to_crs(f"EPSG:{epsg}")
804
805
806
def load_mastr_data():
807
    """Read PV rooftop data from MaStR CSV
808
    Note: the source will be replaced as soon as the MaStR data is available
809
    in DB.
810
    Returns
811
    -------
812
    geopandas.GeoDataFrame
813
        GeoDataFrame containing MaStR data with geocoded locations.
814
    """
815
    mastr_df = mastr_data(
816
        MASTR_INDEX_COL,
817
        MASTR_RELEVANT_COLS,
818
        MASTR_DTYPES,
819
        MASTR_PARSE_DATES,
820
    )
821
822
    clean_mastr_df = clean_mastr_data(
823
        mastr_df,
824
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
825
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
826
        seed=SEED,
827
        rounding=ROUNDING,
828
    )
829
830
    geocode_gdf = geocoded_data_from_db(EPSG)
831
832
    mastr_gdf = merge_geocode_with_mastr(clean_mastr_df, geocode_gdf)
833
834
    valid_mastr_gdf = drop_invalid_entries_from_gdf(mastr_gdf)
835
836
    municipalities_gdf = municipality_data()
837
838
    valid_mastr_gdf = add_ags_to_gens(valid_mastr_gdf, municipalities_gdf)
839
840
    return drop_gens_outside_muns(valid_mastr_gdf)
841
842
843
class OsmBuildingsFiltered(Base):
844
    __tablename__ = "osm_buildings_filtered"
845
    __table_args__ = {"schema": "openstreetmap"}
846
847
    osm_id = Column(BigInteger)
848
    amenity = Column(String)
849
    building = Column(String)
850
    name = Column(String)
851
    geom = Column(Geometry(srid=SRID), index=True)
852
    area = Column(Float)
853
    geom_point = Column(Geometry(srid=SRID), index=True)
854
    tags = Column(HSTORE)
855
    id = Column(BigInteger, primary_key=True, index=True)
856
857
858
@timer_func
859
def osm_buildings(
860
    to_crs: CRS,
861
) -> gpd.GeoDataFrame:
862
    """
863
    Read OSM buildings data from eGo^n Database.
864
    Parameters
865
    -----------
866
    to_crs : pyproj.crs.crs.CRS
867
        CRS to transform geometries to.
868
    Returns
869
    -------
870
    geopandas.GeoDataFrame
871
        GeoDataFrame containing OSM buildings data.
872
    """
873
    with db.session_scope() as session:
874
        query = session.query(
875
            OsmBuildingsFiltered.id,
876
            OsmBuildingsFiltered.area,
877
            OsmBuildingsFiltered.geom_point.label("geom"),
878
        )
879
880
    return gpd.read_postgis(
881
        query.statement, query.session.bind, index_col="id"
882
    ).to_crs(to_crs)
883
884
885
@timer_func
886
def synthetic_buildings(
887
    to_crs: CRS,
888
) -> gpd.GeoDataFrame:
889
    """
890
    Read synthetic buildings data from eGo^n Database.
891
    Parameters
892
    -----------
893
    to_crs : pyproj.crs.crs.CRS
894
        CRS to transform geometries to.
895
    Returns
896
    -------
897
    geopandas.GeoDataFrame
898
        GeoDataFrame containing OSM buildings data.
899
    """
900
    with db.session_scope() as session:
901
        query = session.query(
902
            OsmBuildingsSynthetic.id,
903
            OsmBuildingsSynthetic.area,
904
            OsmBuildingsSynthetic.geom_point.label("geom"),
905
        )
906
907
    return gpd.read_postgis(
908
        query.statement, query.session.bind, index_col="id"
909
    ).to_crs(to_crs)
910
911
912
@timer_func
913
def add_ags_to_buildings(
914
    buildings_gdf: gpd.GeoDataFrame,
915
    municipalities_gdf: gpd.GeoDataFrame,
916
) -> gpd.GeoDataFrame:
917
    """
918
    Add information about AGS ID to buildings.
919
    Parameters
920
    -----------
921
    buildings_gdf : geopandas.GeoDataFrame
922
        GeoDataFrame containing OSM buildings data.
923
    municipalities_gdf : geopandas.GeoDataFrame
924
        GeoDataFrame with municipality data.
925
    Returns
926
    -------
927
    gepandas.GeoDataFrame
928
        GeoDataFrame containing OSM buildings data
929
        with AGS ID added.
930
    """
931
    return buildings_gdf.sjoin(
932
        municipalities_gdf,
933
        how="left",
934
        predicate="intersects",
935
    ).rename(columns={"index_right": "ags"})
936
937
938
def drop_buildings_outside_muns(
939
    buildings_gdf: gpd.GeoDataFrame,
940
) -> gpd.GeoDataFrame:
941
    """
942
    Drop all buildings outside of municipalities.
943
    Parameters
944
    -----------
945
    buildings_gdf : geopandas.GeoDataFrame
946
        GeoDataFrame containing OSM buildings data.
947
    Returns
948
    -------
949
    gepandas.GeoDataFrame
950
        GeoDataFrame containing OSM buildings data
951
        with buildings without an AGS ID dropped.
952
    """
953
    gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()]
954
955
    logger.debug(
956
        f"{len(buildings_gdf) - len(gdf)} "
957
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
958
        f"of {len(buildings_gdf)} values are outside of the municipalities "
959
        "and are therefore dropped."
960
    )
961
962
    return gdf
963
964
965
def egon_building_peak_loads():
966
    sql = """
967
    SELECT building_id
968
    FROM demand.egon_building_electricity_peak_loads
969
    WHERE scenario = 'eGon2035'
970
    """
971
972
    return (
973
        db.select_dataframe(sql).building_id.astype(int).sort_values().unique()
974
    )
975
976
977
@timer_func
978
def load_building_data():
979
    """
980
    Read buildings from DB
981
    Tables:
982
983
    * `openstreetmap.osm_buildings_filtered` (from OSM)
984
    * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us)
985
986
    Use column `id` for both as it is unique hence you concat both datasets. If
987
    INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be loaded.
988
989
    Returns
990
    -------
991
    gepandas.GeoDataFrame
992
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
993
        dropped.
994
    """
995
996
    municipalities_gdf = municipality_data()
997
998
    osm_buildings_gdf = osm_buildings(municipalities_gdf.crs)
999
1000
    if INCLUDE_SYNTHETIC_BUILDINGS:
1001
        synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs)
1002
1003
        buildings_gdf = gpd.GeoDataFrame(
1004
            pd.concat(
1005
                [
1006
                    osm_buildings_gdf,
1007
                    synthetic_buildings_gdf,
1008
                ]
1009
            ),
1010
            geometry="geom",
1011
            crs=osm_buildings_gdf.crs,
1012
        ).rename(columns={"area": "building_area"})
1013
1014
        buildings_gdf.index = buildings_gdf.index.astype(int)
1015
1016
    else:
1017
        buildings_gdf = osm_buildings_gdf.rename(
1018
            columns={"area": "building_area"}
1019
        )
1020
1021
    if ONLY_BUILDINGS_WITH_DEMAND:
1022
        building_ids = egon_building_peak_loads()
1023
1024
        init_len = len(building_ids)
1025
1026
        building_ids = np.intersect1d(
1027
            list(map(int, building_ids)),
1028
            list(map(int, buildings_gdf.index.to_numpy())),
1029
        )
1030
1031
        end_len = len(building_ids)
1032
1033
        logger.debug(
1034
            f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) of buildings have "
1035
            f"peak load."
1036
        )
1037
1038
        buildings_gdf = buildings_gdf.loc[building_ids]
1039
1040
    buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf)
1041
1042
    buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf)
1043
1044
    grid_districts_gdf = grid_districts(EPSG)
1045
1046
    federal_state_gdf = federal_state_data(grid_districts_gdf.crs)
1047
1048
    grid_federal_state_gdf = overlay_grid_districts_with_counties(
1049
        grid_districts_gdf,
1050
        federal_state_gdf,
1051
    )
1052
1053
    buildings_overlay_gdf = add_overlay_id_to_buildings(
1054
        buildings_ags_gdf,
1055
        grid_federal_state_gdf,
1056
    )
1057
1058
    logger.debug("Loaded buildings.")
1059
1060
    buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf)
1061
1062
    # overwrite bus_id with data from new table
1063
    sql = "SELECT building_id, bus_id FROM boundaries.egon_map_zensus_mvgd_buildings"
1064
    map_building_bus_df = db.select_dataframe(sql)
1065
1066
    building_ids = np.intersect1d(
1067
        list(map(int, map_building_bus_df.building_id.unique())),
1068
        list(map(int, buildings_overlay_gdf.index.to_numpy())),
1069
    )
1070
1071
    buildings_within_gdf = buildings_overlay_gdf.loc[building_ids]
1072
1073
    gdf = (
1074
        buildings_within_gdf.reset_index()
1075
        .drop(columns=["bus_id"])
1076
        .merge(
1077
            how="left",
1078
            right=map_building_bus_df,
1079
            left_on="id",
1080
            right_on="building_id",
1081
        )
1082
        .drop(columns=["building_id"])
1083
        .set_index("id")
1084
        .sort_index()
1085
    )
1086
1087
    return gdf[~gdf.index.duplicated(keep="first")]
1088
1089
1090
@timer_func
1091
def sort_and_qcut_df(
1092
    df: pd.DataFrame | gpd.GeoDataFrame,
1093
    col: str,
1094
    q: int,
1095
) -> pd.DataFrame | gpd.GeoDataFrame:
1096
    """
1097
    Determine the quantile of a given attribute in a (Geo)DataFrame.
1098
    Sort the (Geo)DataFrame in ascending order for the given attribute.
1099
    Parameters
1100
    -----------
1101
    df : pandas.DataFrame or geopandas.GeoDataFrame
1102
        (Geo)DataFrame to sort and qcut.
1103
    col : str
1104
        Name of the attribute to sort and qcut the (Geo)DataFrame on.
1105
    q : int
1106
        Number of quantiles.
1107
    Returns
1108
    -------
1109
    pandas.DataFrame or gepandas.GeoDataFrame
1110
        Sorted and qcut (Geo)DataFrame.
1111
    """
1112
    df = df.sort_values(col, ascending=True)
1113
1114
    return df.assign(
1115
        quant=pd.qcut(
1116
            df[col],
1117
            q=q,
1118
            labels=range(q),
1119
        )
1120
    )
1121
1122
1123
@timer_func
1124
def allocate_pv(
1125
    q_mastr_gdf: gpd.GeoDataFrame,
1126
    q_buildings_gdf: gpd.GeoDataFrame,
1127
    seed: int,
1128
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1129
    """
1130
    Allocate the MaStR pv generators to the OSM buildings.
1131
    This will determine a building for each pv generator if there are more
1132
    buildings than generators within a given AGS. Primarily generators are
1133
    distributed with the same qunatile as the buildings. Multiple assignment
1134
    is excluded.
1135
    Parameters
1136
    -----------
1137
    q_mastr_gdf : geopandas.GeoDataFrame
1138
        GeoDataFrame containing geocoded and qcut MaStR data.
1139
    q_buildings_gdf : geopandas.GeoDataFrame
1140
        GeoDataFrame containing qcut OSM buildings data.
1141
    seed : int
1142
        Seed to use for random operations with NumPy and pandas.
1143
    Returns
1144
    -------
1145
    tuple with two geopandas.GeoDataFrame s
1146
        GeoDataFrame containing MaStR data allocated to building IDs.
1147
        GeoDataFrame containing building data allocated to MaStR IDs.
1148
    """
1149
    rng = default_rng(seed=seed)
1150
1151
    q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan)
1152
    q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan)
1153
1154
    ags_list = q_buildings_gdf.ags.unique()
1155
1156
    if TEST_RUN:
1157
        ags_list = ags_list[:250]
1158
1159
    num_ags = len(ags_list)
1160
1161
    t0 = perf_counter()
1162
1163
    for count, ags in enumerate(ags_list):
1164
1165
        buildings = q_buildings_gdf.loc[
1166
            (q_buildings_gdf.ags == ags) & (q_buildings_gdf.gens_id.isna())
1167
        ]
1168
        gens = q_mastr_gdf.loc[q_mastr_gdf.ags == ags]
1169
1170
        len_build = len(buildings)
1171
        len_gens = len(gens)
1172
1173
        if len_build < len_gens:
1174
            gens = gens.sample(len_build, random_state=RandomState(seed=seed))
1175
            logger.error(
1176
                f"There are {len_gens} generators and only {len_build}"
1177
                f" buildings in AGS {ags}. {len_gens - len(gens)} "
1178
                "generators were truncated to match the amount of buildings."
1179
            )
1180
1181
            assert len_build == len(gens)
1182
1183
        for quant in gens.quant.unique():
1184
            q_buildings = buildings.loc[
1185
                (buildings.quant == quant) & (buildings.gens_id.isna())
1186
            ]
1187
            q_gens = gens.loc[gens.quant == quant]
1188
1189
            len_build = len(q_buildings)
1190
            len_gens = len(q_gens)
1191
1192
            if len_build < len_gens:
1193
                delta = len_gens - len_build
1194
1195
                logger.warning(
1196
                    f"There are {len_gens} generators and only {len_build} "
1197
                    f"buildings in AGS {ags} and quantile {quant}. {delta} "
1198
                    f"buildings from AGS {ags} will be added randomly."
1199
                )
1200
1201
                add_buildings = pd.Index(
1202
                    rng.choice(
1203
                        buildings.loc[
1204
                            (buildings.quant != quant)
1205
                            & (buildings.gens_id.isna())
1206
                        ].index,
1207
                        size=delta,
1208
                        replace=False,
1209
                    )
1210
                )
1211
1212
                q_buildings = buildings.loc[
1213
                    q_buildings.index.append(add_buildings)
1214
                ]
1215
1216
                assert len(q_buildings) == len_gens
1217
1218
            chosen_buildings = pd.Index(
1219
                rng.choice(
1220
                    q_buildings.index,
1221
                    size=len_gens,
1222
                    replace=False,
1223
                )
1224
            )
1225
1226
            # q_mastr_gdf.loc[q_gens.index, "building_id"] = chosen_buildings
1227
            q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index
1228
1229
        if count % 100 == 0:
1230
            logger.debug(
1231
                f"Allocation of {count / num_ags * 100:g} % of AGS done. It took "
1232
                f"{perf_counter() - t0:g} seconds."
1233
            )
1234
1235
            t0 = perf_counter()
1236
1237
    assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()]
1238
1239
    q_mastr_gdf.loc[
1240
        assigned_buildings.gens_id, "building_id"
1241
    ] = assigned_buildings.index
1242
1243
    assigned_gens = q_mastr_gdf.loc[~q_buildings_gdf.building_id.isna()]
1244
1245
    assert len(assigned_buildings) == len(assigned_gens)
1246
1247
    logger.debug("Allocated status quo generators to buildings.")
1248
1249
    return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf)
1250
1251
1252
def frame_to_numeric(
1253
    df: pd.DataFrame | gpd.GeoDataFrame,
1254
) -> pd.DataFrame | gpd.GeoDataFrame:
1255
    """
1256
    Try to convert all columns of a DataFrame to numeric ignoring errors.
1257
    Parameters
1258
    ----------
1259
    df : pandas.DataFrame or geopandas.GeoDataFrame
1260
    Returns
1261
    -------
1262
    pandas.DataFrame or geopandas.GeoDataFrame
1263
    """
1264
    if str(df.index.dtype) == "object":
1265
        df.index = pd.to_numeric(df.index, errors="ignore")
1266
1267
    for col in df.columns:
1268
        if str(df[col].dtype) == "object":
1269
            df[col] = pd.to_numeric(df[col], errors="ignore")
1270
1271
    return df
1272
1273
1274
def validate_output(
1275
    desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame,
1276
    desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame,
1277
) -> None:
1278
    """
1279
    Validate output.
1280
1281
    * Validate that there are exactly as many buildings with a pv system as there are
1282
      pv systems with a building
1283
    * Validate that the building IDs with a pv system are the same building IDs as
1284
      assigned to the pv systems
1285
    * Validate that the pv system IDs with a building are the same pv system IDs as
1286
      assigned to the buildings
1287
1288
    Parameters
1289
    -----------
1290
    desagg_mastr_gdf : geopandas.GeoDataFrame
1291
        GeoDataFrame containing MaStR data allocated to building IDs.
1292
    desagg_buildings_gdf : geopandas.GeoDataFrame
1293
        GeoDataFrame containing building data allocated to MaStR IDs.
1294
    """
1295
    assert len(
1296
        desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()]
1297
    ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()])
1298
    assert (
1299
        np.sort(
1300
            desagg_mastr_gdf.loc[
1301
                ~desagg_mastr_gdf.building_id.isna()
1302
            ].building_id.unique()
1303
        )
1304
        == np.sort(
1305
            desagg_buildings_gdf.loc[
1306
                ~desagg_buildings_gdf.gens_id.isna()
1307
            ].index.unique()
1308
        )
1309
    ).all()
1310
    assert (
1311
        np.sort(
1312
            desagg_mastr_gdf.loc[
1313
                ~desagg_mastr_gdf.building_id.isna()
1314
            ].index.unique()
1315
        )
1316
        == np.sort(
1317
            desagg_buildings_gdf.loc[
1318
                ~desagg_buildings_gdf.gens_id.isna()
1319
            ].gens_id.unique()
1320
        )
1321
    ).all()
1322
1323
    logger.debug("Validated output.")
1324
1325
1326
def drop_unallocated_gens(
1327
    gdf: gpd.GeoDataFrame,
1328
) -> gpd.GeoDataFrame:
1329
    """
1330
    Drop generators which did not get allocated.
1331
1332
    Parameters
1333
    -----------
1334
    gdf : geopandas.GeoDataFrame
1335
        GeoDataFrame containing MaStR data allocated to building IDs.
1336
    Returns
1337
    -------
1338
    geopandas.GeoDataFrame
1339
        GeoDataFrame containing MaStR data with generators dropped which did not get
1340
        allocated.
1341
    """
1342
    init_len = len(gdf)
1343
    gdf = gdf.loc[~gdf.building_id.isna()]
1344
    end_len = len(gdf)
1345
1346
    logger.debug(
1347
        f"Dropped {init_len - end_len} "
1348
        f"({((init_len - end_len) / init_len) * 100:g}%)"
1349
        f" of {init_len} unallocated rows from MaStR DataFrame."
1350
    )
1351
1352
    return gdf
1353
1354
1355
@timer_func
1356
def allocate_to_buildings(
1357
    mastr_gdf: gpd.GeoDataFrame,
1358
    buildings_gdf: gpd.GeoDataFrame,
1359
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1360
    """
1361
    Allocate status quo pv rooftop generators to buildings.
1362
    Parameters
1363
    -----------
1364
    mastr_gdf : geopandas.GeoDataFrame
1365
        GeoDataFrame containing MaStR data with geocoded locations.
1366
    buildings_gdf : geopandas.GeoDataFrame
1367
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
1368
        dropped.
1369
    Returns
1370
    -------
1371
    tuple with two geopandas.GeoDataFrame s
1372
        GeoDataFrame containing MaStR data allocated to building IDs.
1373
        GeoDataFrame containing building data allocated to MaStR IDs.
1374
    """
1375
    logger.debug("Starting allocation of status quo.")
1376
1377
    q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q)
1378
    q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q)
1379
1380
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv(
1381
        q_mastr_gdf, q_buildings_gdf, SEED
1382
    )
1383
1384
    validate_output(desagg_mastr_gdf, desagg_buildings_gdf)
1385
1386
    return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf
1387
1388
1389
@timer_func
1390
def grid_districts(
1391
    epsg: int,
1392
) -> gpd.GeoDataFrame:
1393
    """
1394
    Load mv grid district geo data from eGo^n Database as
1395
    geopandas.GeoDataFrame.
1396
    Parameters
1397
    -----------
1398
    epsg : int
1399
        EPSG ID to use as CRS.
1400
    Returns
1401
    -------
1402
    geopandas.GeoDataFrame
1403
        GeoDataFrame containing mv grid district ID and geo shapes data.
1404
    """
1405
    gdf = db.select_geodataframe(
1406
        """
1407
        SELECT bus_id, geom
1408
        FROM grid.egon_mv_grid_district
1409
        ORDER BY bus_id
1410
        """,
1411
        index_col="bus_id",
1412
        geom_col="geom",
1413
        epsg=epsg,
1414
    )
1415
1416
    gdf.index = gdf.index.astype(int)
1417
1418
    logger.debug("Grid districts loaded.")
1419
1420
    return gdf
1421
1422
1423
def scenario_data(
1424
    carrier: str = "solar_rooftop",
1425
    scenario: str = "eGon2035",
1426
) -> pd.DataFrame:
1427
    """
1428
    Get scenario capacity data from eGo^n Database.
1429
    Parameters
1430
    -----------
1431
    carrier : str
1432
        Carrier type to filter table by.
1433
    scenario : str
1434
        Scenario to filter table by.
1435
    Returns
1436
    -------
1437
    geopandas.GeoDataFrame
1438
        GeoDataFrame with scenario capacity data in GW.
1439
    """
1440
    with db.session_scope() as session:
1441
        query = session.query(EgonScenarioCapacities).filter(
1442
            EgonScenarioCapacities.carrier == carrier,
1443
            EgonScenarioCapacities.scenario_name == scenario,
1444
        )
1445
1446
    df = pd.read_sql(
1447
        query.statement, query.session.bind, index_col="index"
1448
    ).sort_index()
1449
1450
    logger.debug("Scenario capacity data loaded.")
1451
1452
    return df
1453
1454
1455 View Code Duplication
class Vg250Lan(Base):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
1456
    __tablename__ = "vg250_lan"
1457
    __table_args__ = {"schema": "boundaries"}
1458
1459
    id = Column(BigInteger, primary_key=True, index=True)
1460
    ade = Column(BigInteger)
1461
    gf = Column(BigInteger)
1462
    bsg = Column(BigInteger)
1463
    ars = Column(String)
1464
    ags = Column(String)
1465
    sdv_ars = Column(String)
1466
    gen = Column(String)
1467
    bez = Column(String)
1468
    ibz = Column(BigInteger)
1469
    bem = Column(String)
1470
    nbd = Column(String)
1471
    sn_l = Column(String)
1472
    sn_r = Column(String)
1473
    sn_k = Column(String)
1474
    sn_v1 = Column(String)
1475
    sn_v2 = Column(String)
1476
    sn_g = Column(String)
1477
    fk_s3 = Column(String)
1478
    nuts = Column(String)
1479
    ars_0 = Column(String)
1480
    ags_0 = Column(String)
1481
    wsk = Column(String)
1482
    debkg_id = Column(String)
1483
    rs = Column(String)
1484
    sdv_rs = Column(String)
1485
    rs_0 = Column(String)
1486
    geometry = Column(Geometry(srid=EPSG), index=True)
1487
1488
1489
def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame:
1490
    """
1491
    Get feder state data from eGo^n Database.
1492
    Parameters
1493
    -----------
1494
    to_crs : pyproj.crs.crs.CRS
1495
        CRS to transform geometries to.
1496
    Returns
1497
    -------
1498
    geopandas.GeoDataFrame
1499
        GeoDataFrame with federal state data.
1500
    """
1501
    with db.session_scope() as session:
1502
        query = session.query(
1503
            Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom")
1504
        )
1505
1506
        gdf = gpd.read_postgis(
1507
            query.statement, session.connection(), index_col="id"
1508
        ).to_crs(to_crs)
1509
1510
    logger.debug("Federal State data loaded.")
1511
1512
    return gdf
1513
1514
1515
@timer_func
1516
def overlay_grid_districts_with_counties(
1517
    mv_grid_district_gdf: gpd.GeoDataFrame,
1518
    federal_state_gdf: gpd.GeoDataFrame,
1519
) -> gpd.GeoDataFrame:
1520
    """
1521
    Calculate the intersections of mv grid districts and counties.
1522
    Parameters
1523
    -----------
1524
    mv_grid_district_gdf : gpd.GeoDataFrame
1525
        GeoDataFrame containing mv grid district ID and geo shapes data.
1526
    federal_state_gdf : gpd.GeoDataFrame
1527
        GeoDataFrame with federal state data.
1528
    Returns
1529
    -------
1530
    geopandas.GeoDataFrame
1531
        GeoDataFrame containing OSM buildings data.
1532
    """
1533
    logger.debug(
1534
        "Calculating intersection overlay between mv grid districts and "
1535
        "counties. This may take a while..."
1536
    )
1537
1538
    gdf = gpd.overlay(
1539
        federal_state_gdf.to_crs(mv_grid_district_gdf.crs),
1540
        mv_grid_district_gdf.reset_index(),
1541
        how="intersection",
1542
        keep_geom_type=True,
1543
    )
1544
1545
    logger.debug("Done!")
1546
1547
    return gdf
1548
1549
1550
@timer_func
1551
def add_overlay_id_to_buildings(
1552
    buildings_gdf: gpd.GeoDataFrame,
1553
    grid_federal_state_gdf: gpd.GeoDataFrame,
1554
) -> gpd.GeoDataFrame:
1555
    """
1556
    Add information about overlay ID to buildings.
1557
    Parameters
1558
    -----------
1559
    buildings_gdf : geopandas.GeoDataFrame
1560
        GeoDataFrame containing OSM buildings data.
1561
    grid_federal_state_gdf : geopandas.GeoDataFrame
1562
        GeoDataFrame with intersection shapes between counties and grid districts.
1563
    Returns
1564
    -------
1565
    geopandas.GeoDataFrame
1566
        GeoDataFrame containing OSM buildings data with overlay ID added.
1567
    """
1568
    gdf = (
1569
        buildings_gdf.to_crs(grid_federal_state_gdf.crs)
1570
        .sjoin(
1571
            grid_federal_state_gdf,
1572
            how="left",
1573
            predicate="intersects",
1574
        )
1575
        .rename(columns={"index_right": "overlay_id"})
1576
    )
1577
1578
    logger.debug("Added overlay ID to OSM buildings.")
1579
1580
    return gdf
1581
1582
1583
def drop_buildings_outside_grids(
1584
    buildings_gdf: gpd.GeoDataFrame,
1585
) -> gpd.GeoDataFrame:
1586
    """
1587
    Drop all buildings outside of grid areas.
1588
    Parameters
1589
    -----------
1590
    buildings_gdf : geopandas.GeoDataFrame
1591
        GeoDataFrame containing OSM buildings data.
1592
    Returns
1593
    -------
1594
    gepandas.GeoDataFrame
1595
        GeoDataFrame containing OSM buildings data
1596
        with buildings without an bus ID dropped.
1597
    """
1598
    gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()]
1599
1600
    logger.debug(
1601
        f"{len(buildings_gdf) - len(gdf)} "
1602
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
1603
        f"of {len(buildings_gdf)} values are outside of the grid areas "
1604
        "and are therefore dropped."
1605
    )
1606
1607
    return gdf
1608
1609
1610
def cap_per_bus_id(
1611
    scenario: str,
1612
) -> pd.DataFrame:
1613
    """
1614
    Get table with total pv rooftop capacity per grid district.
1615
1616
    Parameters
1617
    -----------
1618
    scenario : str
1619
        Scenario name.
1620
    Returns
1621
    -------
1622
    pandas.DataFrame
1623
        DataFrame with total rooftop capacity per mv grid.
1624
    """
1625
    targets = config.datasets()["solar_rooftop"]["targets"]
1626
1627
    sql = f"""
1628
    SELECT bus as bus_id, p_nom as capacity
1629
    FROM {targets['generators']['schema']}.{targets['generators']['table']}
1630
    WHERE carrier = 'solar_rooftop'
1631
    AND scn_name = '{scenario}'
1632
    """
1633
1634
    return db.select_dataframe(sql, index_col="bus_id")
1635
1636
    # overlay_gdf = overlay_gdf.assign(capacity=np.nan)
1637
    #
1638
    # for cap, nuts in scenario_df[["capacity", "nuts"]].itertuples(index=False):
1639
    #     nuts_gdf = overlay_gdf.loc[overlay_gdf.nuts == nuts]
1640
    #
1641
    #     capacity = nuts_gdf.building_area.multiply(
1642
    #         cap / nuts_gdf.building_area.sum()
1643
    #     )
1644
    #
1645
    #     overlay_gdf.loc[nuts_gdf.index] = overlay_gdf.loc[
1646
    #         nuts_gdf.index
1647
    #     ].assign(capacity=capacity.multiply(conversion).to_numpy())
1648
    #
1649
    # return overlay_gdf[["bus_id", "capacity"]].groupby("bus_id").sum()
1650
1651
1652
def determine_end_of_life_gens(
1653
    mastr_gdf: gpd.GeoDataFrame,
1654
    scenario_timestamp: pd.Timestamp,
1655
    pv_rooftop_lifetime: pd.Timedelta,
1656
) -> gpd.GeoDataFrame:
1657
    """
1658
    Determine if an old PV system has reached its end of life.
1659
    Parameters
1660
    -----------
1661
    mastr_gdf : geopandas.GeoDataFrame
1662
        GeoDataFrame containing geocoded MaStR data.
1663
    scenario_timestamp : pandas.Timestamp
1664
        Timestamp at which the scenario takes place.
1665
    pv_rooftop_lifetime : pandas.Timedelta
1666
        Average expected lifetime of PV rooftop systems.
1667
    Returns
1668
    -------
1669
    geopandas.GeoDataFrame
1670
        GeoDataFrame containing geocoded MaStR data and info if the system
1671
        has reached its end of life.
1672
    """
1673
    before = mastr_gdf.capacity.sum()
1674
1675
    mastr_gdf = mastr_gdf.assign(
1676
        age=scenario_timestamp - mastr_gdf.start_up_date
1677
    )
1678
1679
    mastr_gdf = mastr_gdf.assign(
1680
        end_of_life=pv_rooftop_lifetime < mastr_gdf.age
1681
    )
1682
1683
    after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum()
1684
1685
    logger.debug(
1686
        "Determined if pv rooftop systems reached their end of life.\nTotal capacity: "
1687
        f"{before}\nActive capacity: {after}"
1688
    )
1689
1690
    return mastr_gdf
1691
1692
1693
def calculate_max_pv_cap_per_building(
1694
    buildings_gdf: gpd.GeoDataFrame,
1695
    mastr_gdf: gpd.GeoDataFrame,
1696
    pv_cap_per_sq_m: float | int,
1697
    roof_factor: float | int,
1698
) -> gpd.GeoDataFrame:
1699
    """
1700
    Calculate the estimated maximum possible PV capacity per building.
1701
    Parameters
1702
    -----------
1703
    buildings_gdf : geopandas.GeoDataFrame
1704
        GeoDataFrame containing OSM buildings data.
1705
    mastr_gdf : geopandas.GeoDataFrame
1706
        GeoDataFrame containing geocoded MaStR data.
1707
    pv_cap_per_sq_m : float, int
1708
        Average expected, installable PV capacity per square meter.
1709
    roof_factor : float, int
1710
        Average for PV usable roof area share.
1711
    Returns
1712
    -------
1713
    geopandas.GeoDataFrame
1714
        GeoDataFrame containing OSM buildings data with estimated maximum PV
1715
        capacity.
1716
    """
1717
    gdf = (
1718
        buildings_gdf.reset_index()
1719
        .rename(columns={"index": "id"})
1720
        .merge(
1721
            mastr_gdf[
1722
                [
1723
                    "capacity",
1724
                    "end_of_life",
1725
                    "building_id",
1726
                    "EinheitlicheAusrichtungUndNeigungswinkel",
1727
                    "Hauptausrichtung",
1728
                    "HauptausrichtungNeigungswinkel",
1729
                ]
1730
            ],
1731
            how="left",
1732
            left_on="id",
1733
            right_on="building_id",
1734
        )
1735
        .set_index("id")
1736
        .drop(columns="building_id")
1737
    )
1738
1739
    return gdf.assign(
1740
        max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m),
1741
        end_of_life=gdf.end_of_life.fillna(True).astype(bool),
1742
        bus_id=gdf.bus_id.astype(int),
1743
    )
1744
1745
1746
def calculate_building_load_factor(
1747
    mastr_gdf: gpd.GeoDataFrame,
1748
    buildings_gdf: gpd.GeoDataFrame,
1749
    rounding: int = 4,
1750
) -> gpd.GeoDataFrame:
1751
    """
1752
    Calculate the roof load factor from existing PV systems.
1753
    Parameters
1754
    -----------
1755
    mastr_gdf : geopandas.GeoDataFrame
1756
        GeoDataFrame containing geocoded MaStR data.
1757
    buildings_gdf : geopandas.GeoDataFrame
1758
        GeoDataFrame containing OSM buildings data.
1759
    rounding : int
1760
        Rounding to use for load factor.
1761
    Returns
1762
    -------
1763
    geopandas.GeoDataFrame
1764
        GeoDataFrame containing geocoded MaStR data with calculated load factor.
1765
    """
1766
    gdf = mastr_gdf.merge(
1767
        buildings_gdf[["max_cap", "building_area"]]
1768
        .loc[~buildings_gdf["max_cap"].isna()]
1769
        .reset_index(),
1770
        how="left",
1771
        left_on="building_id",
1772
        right_on="id",
1773
    ).set_index("id")
1774
1775
    return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding))
1776
1777
1778
def get_probability_for_property(
1779
    mastr_gdf: gpd.GeoDataFrame,
1780
    cap_range: tuple[int | float, int | float],
1781
    prop: str,
1782
) -> tuple[np.array, np.array]:
1783
    """
1784
    Calculate the probability of the different options of a property of the
1785
    existing PV plants.
1786
    Parameters
1787
    -----------
1788
    mastr_gdf : geopandas.GeoDataFrame
1789
        GeoDataFrame containing geocoded MaStR data.
1790
    cap_range : tuple(int, int)
1791
        Capacity range of PV plants to look at.
1792
    prop : str
1793
        Property to calculate probabilities for. String needs to be in columns
1794
        of mastr_gdf.
1795
    Returns
1796
    -------
1797
    tuple
1798
        numpy.array
1799
            Unique values of property.
1800
        numpy.array
1801
            Probabilties per unique value.
1802
    """
1803
    cap_range_gdf = mastr_gdf.loc[
1804
        (mastr_gdf.capacity > cap_range[0])
1805
        & (mastr_gdf.capacity <= cap_range[1])
1806
    ]
1807
1808
    if prop == "load_factor":
1809
        cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1]
1810
1811
    count = Counter(
1812
        cap_range_gdf[prop].loc[
1813
            ~cap_range_gdf[prop].isna()
1814
            & ~cap_range_gdf[prop].isnull()
1815
            & ~(cap_range_gdf[prop] == "None")
1816
        ]
1817
    )
1818
1819
    values = np.array(list(count.keys()))
1820
    probabilities = np.fromiter(count.values(), dtype=float)
1821
    probabilities = probabilities / np.sum(probabilities)
1822
1823
    return values, probabilities
1824
1825
1826
@timer_func
1827
def probabilities(
1828
    mastr_gdf: gpd.GeoDataFrame,
1829
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1830
    properties: list[str] | None = None,
1831
) -> dict:
1832
    """
1833
    Calculate the probability of the different options of properties of the
1834
    existing PV plants.
1835
    Parameters
1836
    -----------
1837
    mastr_gdf : geopandas.GeoDataFrame
1838
        GeoDataFrame containing geocoded MaStR data.
1839
    cap_ranges : list(tuple(int, int))
1840
        List of capacity ranges to distinguish between. The first tuple should
1841
        start with a zero and the last one should end with infinite.
1842
    properties : list(str)
1843
        List of properties to calculate probabilities for. Strings needs to be
1844
        in columns of mastr_gdf.
1845
    Returns
1846
    -------
1847
    dict
1848
        Dictionary with values and probabilities per capacity range.
1849
    """
1850
    if cap_ranges is None:
1851
        cap_ranges = [
1852
            (0, 30),
1853
            (30, 100),
1854
            (100, float("inf")),
1855
        ]
1856
    if properties is None:
1857
        properties = [
1858
            "EinheitlicheAusrichtungUndNeigungswinkel",
1859
            "Hauptausrichtung",
1860
            "HauptausrichtungNeigungswinkel",
1861
            "load_factor",
1862
        ]
1863
1864
    prob_dict = {}
1865
1866
    for cap_range in cap_ranges:
1867
        prob_dict[cap_range] = {
1868
            "values": {},
1869
            "probabilities": {},
1870
        }
1871
1872
        for prop in properties:
1873
            v, p = get_probability_for_property(
1874
                mastr_gdf,
1875
                cap_range,
1876
                prop,
1877
            )
1878
1879
            prob_dict[cap_range]["values"][prop] = v
1880
            prob_dict[cap_range]["probabilities"][prop] = p
1881
1882
    return prob_dict
1883
1884
1885
def cap_share_per_cap_range(
1886
    mastr_gdf: gpd.GeoDataFrame,
1887
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1888
) -> dict[tuple[int | float, int | float], float]:
1889
    """
1890
    Calculate the share of PV capacity from the total PV capacity within
1891
    capacity ranges.
1892
    Parameters
1893
    -----------
1894
    mastr_gdf : geopandas.GeoDataFrame
1895
        GeoDataFrame containing geocoded MaStR data.
1896
    cap_ranges : list(tuple(int, int))
1897
        List of capacity ranges to distinguish between. The first tuple should
1898
        start with a zero and the last one should end with infinite.
1899
    Returns
1900
    -------
1901
    dict
1902
        Dictionary with share of PV capacity from the total PV capacity within
1903
        capacity ranges.
1904
    """
1905
    if cap_ranges is None:
1906
        cap_ranges = [
1907
            (0, 30),
1908
            (30, 100),
1909
            (100, float("inf")),
1910
        ]
1911
1912
    cap_share_dict = {}
1913
1914
    total_cap = mastr_gdf.capacity.sum()
1915
1916
    for cap_range in cap_ranges:
1917
        cap_share = (
1918
            mastr_gdf.loc[
1919
                (mastr_gdf.capacity > cap_range[0])
1920
                & (mastr_gdf.capacity <= cap_range[1])
1921
            ].capacity.sum()
1922
            / total_cap
1923
        )
1924
1925
        cap_share_dict[cap_range] = cap_share
1926
1927
    return cap_share_dict
1928
1929
1930
def mean_load_factor_per_cap_range(
1931
    mastr_gdf: gpd.GeoDataFrame,
1932
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1933
) -> dict[tuple[int | float, int | float], float]:
1934
    """
1935
    Calculate the mean roof load factor per capacity range from existing PV
1936
    plants.
1937
    Parameters
1938
    -----------
1939
    mastr_gdf : geopandas.GeoDataFrame
1940
        GeoDataFrame containing geocoded MaStR data.
1941
    cap_ranges : list(tuple(int, int))
1942
        List of capacity ranges to distinguish between. The first tuple should
1943
        start with a zero and the last one should end with infinite.
1944
    Returns
1945
    -------
1946
    dict
1947
        Dictionary with mean roof load factor per capacity range.
1948
    """
1949
    if cap_ranges is None:
1950
        cap_ranges = [
1951
            (0, 30),
1952
            (30, 100),
1953
            (100, float("inf")),
1954
        ]
1955
1956
    load_factor_dict = {}
1957
1958
    for cap_range in cap_ranges:
1959
        load_factor = mastr_gdf.loc[
1960
            (mastr_gdf.load_factor <= 1)
1961
            & (mastr_gdf.capacity > cap_range[0])
1962
            & (mastr_gdf.capacity <= cap_range[1])
1963
        ].load_factor.mean()
1964
1965
        load_factor_dict[cap_range] = load_factor
1966
1967
    return load_factor_dict
1968
1969
1970
def building_area_range_per_cap_range(
1971
    mastr_gdf: gpd.GeoDataFrame,
1972
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1973
    min_building_size: int | float = 10.0,
1974
    upper_quantile: float = 0.95,
1975
    lower_quantile: float = 0.05,
1976
) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]:
1977
    """
1978
    Estimate normal building area range per capacity range.
1979
    Calculate the mean roof load factor per capacity range from existing PV
1980
    plants.
1981
    Parameters
1982
    -----------
1983
    mastr_gdf : geopandas.GeoDataFrame
1984
        GeoDataFrame containing geocoded MaStR data.
1985
    cap_ranges : list(tuple(int, int))
1986
        List of capacity ranges to distinguish between. The first tuple should
1987
        start with a zero and the last one should end with infinite.
1988
    min_building_size : int, float
1989
        Minimal building size to consider for PV plants.
1990
    upper_quantile : float
1991
        Upper quantile to estimate maximum building size per capacity range.
1992
    lower_quantile : float
1993
        Lower quantile to estimate minimum building size per capacity range.
1994
    Returns
1995
    -------
1996
    dict
1997
        Dictionary with estimated normal building area range per capacity
1998
        range.
1999
    """
2000
    if cap_ranges is None:
2001
        cap_ranges = [
2002
            (0, 30),
2003
            (30, 100),
2004
            (100, float("inf")),
2005
        ]
2006
2007
    building_area_range_dict = {}
2008
2009
    n_ranges = len(cap_ranges)
2010
2011
    for count, cap_range in enumerate(cap_ranges):
2012
        cap_range_gdf = mastr_gdf.loc[
2013
            (mastr_gdf.capacity > cap_range[0])
2014
            & (mastr_gdf.capacity <= cap_range[1])
2015
        ]
2016
2017
        if count == 0:
2018
            building_area_range_dict[cap_range] = (
2019
                min_building_size,
2020
                cap_range_gdf.building_area.quantile(upper_quantile),
2021
            )
2022
        elif count == n_ranges - 1:
2023
            building_area_range_dict[cap_range] = (
2024
                cap_range_gdf.building_area.quantile(lower_quantile),
2025
                float("inf"),
2026
            )
2027
        else:
2028
            building_area_range_dict[cap_range] = (
2029
                cap_range_gdf.building_area.quantile(lower_quantile),
2030
                cap_range_gdf.building_area.quantile(upper_quantile),
2031
            )
2032
2033
    values = list(building_area_range_dict.values())
2034
2035
    building_area_range_normed_dict = {}
2036
2037
    for count, (cap_range, (min_area, max_area)) in enumerate(
2038
        building_area_range_dict.items()
2039
    ):
2040
        if count == 0:
2041
            building_area_range_normed_dict[cap_range] = (
2042
                min_area,
2043
                np.mean((values[count + 1][0], max_area)),
2044
            )
2045
        elif count == n_ranges - 1:
2046
            building_area_range_normed_dict[cap_range] = (
2047
                np.mean((values[count - 1][1], min_area)),
2048
                max_area,
2049
            )
2050
        else:
2051
            building_area_range_normed_dict[cap_range] = (
2052
                np.mean((values[count - 1][1], min_area)),
2053
                np.mean((values[count + 1][0], max_area)),
2054
            )
2055
2056
    return building_area_range_normed_dict
2057
2058
2059
@timer_func
2060
def desaggregate_pv_in_mv_grid(
2061
    buildings_gdf: gpd.GeoDataFrame,
2062
    pv_cap: float | int,
2063
    **kwargs,
2064
) -> gpd.GeoDataFrame:
2065
    """
2066
    Desaggregate PV capacity on buildings within a given grid district.
2067
    Parameters
2068
    -----------
2069
    buildings_gdf : geopandas.GeoDataFrame
2070
        GeoDataFrame containing buildings within the grid district.
2071
    pv_cap : float, int
2072
        PV capacity to desaggregate.
2073
    Other Parameters
2074
    -----------
2075
    prob_dict : dict
2076
        Dictionary with values and probabilities per capacity range.
2077
    cap_share_dict : dict
2078
        Dictionary with share of PV capacity from the total PV capacity within
2079
        capacity ranges.
2080
    building_area_range_dict : dict
2081
        Dictionary with estimated normal building area range per capacity
2082
        range.
2083
    load_factor_dict : dict
2084
        Dictionary with mean roof load factor per capacity range.
2085
    seed : int
2086
        Seed to use for random operations with NumPy and pandas.
2087
    pv_cap_per_sq_m : float, int
2088
        Average expected, installable PV capacity per square meter.
2089
    Returns
2090
    -------
2091
    geopandas.GeoDataFrame
2092
        GeoDataFrame containing OSM building data with desaggregated PV
2093
        plants.
2094
    """
2095
    bus_id = int(buildings_gdf.bus_id.iat[0])
2096
2097
    rng = default_rng(seed=kwargs["seed"])
2098
    random_state = RandomState(seed=kwargs["seed"])
2099
2100
    results_df = pd.DataFrame(columns=buildings_gdf.columns)
2101
2102
    for cap_range, share in kwargs["cap_share_dict"].items():
2103
        pv_cap_range = pv_cap * share
2104
2105
        b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range]
2106
2107
        cap_range_buildings_gdf = buildings_gdf.loc[
2108
            ~buildings_gdf.index.isin(results_df.index)
2109
            & (buildings_gdf.building_area > b_area_min)
2110
            & (buildings_gdf.building_area <= b_area_max)
2111
        ]
2112
2113
        mean_load_factor = kwargs["load_factor_dict"][cap_range]
2114
        cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2115
            mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2116
            load_factor=np.nan,
2117
            capacity=np.nan,
2118
        )
2119
2120
        total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2121
2122
        if total_mean_cap == 0:
2123
            logger.warning(
2124
                f"There are no matching roof for capacity range {cap_range} "
2125
                f"kW in grid {bus_id}. Using all buildings as fallback."
2126
            )
2127
2128
            cap_range_buildings_gdf = buildings_gdf.loc[
2129
                ~buildings_gdf.index.isin(results_df.index)
2130
            ]
2131
2132
            if len(cap_range_buildings_gdf) == 0:
2133
                logger.warning(
2134
                    "There are no roofes available for capacity range "
2135
                    f"{cap_range} kW in grid {bus_id}. Allowing dual use."
2136
                )
2137
                cap_range_buildings_gdf = buildings_gdf.copy()
2138
2139
            cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2140
                mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2141
                load_factor=np.nan,
2142
                capacity=np.nan,
2143
            )
2144
2145
            total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2146
2147
        elif total_mean_cap < pv_cap_range:
2148
            logger.warning(
2149
                f"Average roof utilization of the roof area in grid {bus_id} "
2150
                f"and capacity range {cap_range} kW is not sufficient. The "
2151
                "roof utilization will be above average."
2152
            )
2153
2154
        frac = max(
2155
            pv_cap_range / total_mean_cap,
2156
            1 / len(cap_range_buildings_gdf),
2157
        )
2158
2159
        samples_gdf = cap_range_buildings_gdf.sample(
2160
            frac=min(1, frac),
2161
            random_state=random_state,
2162
        )
2163
2164
        cap_range_dict = kwargs["prob_dict"][cap_range]
2165
2166
        values_dict = cap_range_dict["values"]
2167
        p_dict = cap_range_dict["probabilities"]
2168
2169
        load_factors = rng.choice(
2170
            a=values_dict["load_factor"],
2171
            size=len(samples_gdf),
2172
            p=p_dict["load_factor"],
2173
        )
2174
2175
        samples_gdf = samples_gdf.assign(
2176
            load_factor=load_factors,
2177
            capacity=(
2178
                samples_gdf.building_area
2179
                * load_factors
2180
                * kwargs["pv_cap_per_sq_m"]
2181
            ).clip(lower=0.4),
2182
        )
2183
2184
        missing_factor = pv_cap_range / samples_gdf.capacity.sum()
2185
2186
        samples_gdf = samples_gdf.assign(
2187
            capacity=(samples_gdf.capacity * missing_factor),
2188
            load_factor=(samples_gdf.load_factor * missing_factor),
2189
        )
2190
2191
        assert np.isclose(
2192
            samples_gdf.capacity.sum(),
2193
            pv_cap_range,
2194
            rtol=1e-03,
2195
        ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}"
2196
2197
        results_df = pd.concat(
2198
            [
2199
                results_df,
2200
                samples_gdf,
2201
            ],
2202
        )
2203
2204
    total_missing_factor = pv_cap / results_df.capacity.sum()
2205
2206
    results_df = results_df.assign(
2207
        capacity=(results_df.capacity * total_missing_factor),
2208
    )
2209
2210
    assert np.isclose(
2211
        results_df.capacity.sum(),
2212
        pv_cap,
2213
        rtol=1e-03,
2214
    ), f"{results_df.capacity.sum()} != {pv_cap}"
2215
2216
    return gpd.GeoDataFrame(
2217
        results_df,
2218
        crs=samples_gdf.crs,
0 ignored issues
show
introduced by
The variable samples_gdf does not seem to be defined in case the for loop on line 2102 is not entered. Are you sure this can never be the case?
Loading history...
2219
        geometry="geom",
2220
    )
2221
2222
2223
@timer_func
2224
def desaggregate_pv(
2225
    buildings_gdf: gpd.GeoDataFrame,
2226
    cap_df: pd.DataFrame,
2227
    **kwargs,
2228
) -> gpd.GeoDataFrame:
2229
    """
2230
    Desaggregate PV capacity on buildings within a given grid district.
2231
    Parameters
2232
    -----------
2233
    buildings_gdf : geopandas.GeoDataFrame
2234
        GeoDataFrame containing OSM buildings data.
2235
    cap_df : pandas.DataFrame
2236
        DataFrame with total rooftop capacity per mv grid.
2237
    Other Parameters
2238
    -----------
2239
    prob_dict : dict
2240
        Dictionary with values and probabilities per capacity range.
2241
    cap_share_dict : dict
2242
        Dictionary with share of PV capacity from the total PV capacity within
2243
        capacity ranges.
2244
    building_area_range_dict : dict
2245
        Dictionary with estimated normal building area range per capacity
2246
        range.
2247
    load_factor_dict : dict
2248
        Dictionary with mean roof load factor per capacity range.
2249
    seed : int
2250
        Seed to use for random operations with NumPy and pandas.
2251
    pv_cap_per_sq_m : float, int
2252
        Average expected, installable PV capacity per square meter.
2253
    Returns
2254
    -------
2255
    geopandas.GeoDataFrame
2256
        GeoDataFrame containing OSM building data with desaggregated PV
2257
        plants.
2258
    """
2259
    allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life]
2260
2261
    building_bus_ids = set(buildings_gdf.bus_id)
2262
    cap_bus_ids = set(cap_df.index)
2263
2264
    logger.debug(
2265
        f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from capacity: "
2266
        f"{len(cap_bus_ids)}"
2267
    )
2268
2269
    if len(building_bus_ids) > len(cap_bus_ids):
2270
        missing = building_bus_ids - cap_bus_ids
2271
    else:
2272
        missing = cap_bus_ids - building_bus_ids
2273
2274
    logger.debug(str(missing))
2275
2276
    bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids))
2277
2278
    # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index)
2279
2280
    for bus_id in bus_ids:
2281
        buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id]
2282
2283
        pv_installed_gdf = buildings_grid_gdf.loc[
2284
            ~buildings_grid_gdf.end_of_life
2285
        ]
2286
2287
        pv_installed = pv_installed_gdf.capacity.sum()
2288
2289
        pot_buildings_gdf = buildings_grid_gdf.drop(
2290
            index=pv_installed_gdf.index
2291
        )
2292
2293
        if len(pot_buildings_gdf) == 0:
2294
            logger.error(
2295
                f"In grid {bus_id} there are no potential buildings to allocate "
2296
                "PV capacity to. The grid is skipped. This message should only "
2297
                "appear doing test runs with few buildings."
2298
            )
2299
2300
            continue
2301
2302
        pv_target = cap_df.at[bus_id, "capacity"] * 1000
2303
2304
        logger.debug(f"pv_target: {pv_target}")
2305
2306
        pv_missing = pv_target - pv_installed
2307
2308
        if pv_missing <= 0:
2309
            logger.info(
2310
                f"In grid {bus_id} there is more PV installed ({pv_installed: g}) in "
2311
                f"status Quo than allocated within the scenario ({pv_target: g}). No "
2312
                f"new generators are added."
2313
            )
2314
2315
            continue
2316
2317
        if pot_buildings_gdf.max_cap.sum() < pv_missing:
2318
            logger.error(
2319
                f"In grid {bus_id} there is less PV potential ("
2320
                f"{pot_buildings_gdf.max_cap.sum():g} kW) than allocated PV  capacity "
2321
                f"({pv_missing:g} kW). The average roof utilization will be very high."
2322
            )
2323
2324
        gdf = desaggregate_pv_in_mv_grid(
2325
            buildings_gdf=pot_buildings_gdf,
2326
            pv_cap=pv_missing,
2327
            **kwargs,
2328
        )
2329
2330
        logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}")
2331
        logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}")
2332
        logger.debug(
2333
            f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}"
2334
        )
2335
2336
        if not np.isclose(
2337
            gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3
2338
        ):
2339
            logger.warning(
2340
                f"The desired capacity and actual capacity in grid {bus_id} differ.\n"
2341
                f"Desired cap: {pv_target}\nActual cap: "
2342
                f"{gdf.capacity.sum() + pv_installed}"
2343
            )
2344
2345
        allocated_buildings_gdf = pd.concat(
2346
            [
2347
                allocated_buildings_gdf,
2348
                gdf,
2349
            ]
2350
        )
2351
2352
    logger.debug("Desaggregated scenario.")
2353
    logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}")
2354
    logger.debug(
2355
        f"Generator capacity: {allocated_buildings_gdf.capacity.sum(): g}"
2356
    )
2357
2358
    return gpd.GeoDataFrame(
2359
        allocated_buildings_gdf,
2360
        crs=gdf.crs,
0 ignored issues
show
introduced by
The variable gdf does not seem to be defined for all execution paths.
Loading history...
2361
        geometry="geom",
2362
    )
2363
2364
2365
@timer_func
2366
def add_buildings_meta_data(
2367
    buildings_gdf: gpd.GeoDataFrame,
2368
    prob_dict: dict,
2369
    seed: int,
2370
) -> gpd.GeoDataFrame:
2371
    """
2372
    Randomly add additional metadata to desaggregated PV plants.
2373
    Parameters
2374
    -----------
2375
    buildings_gdf : geopandas.GeoDataFrame
2376
        GeoDataFrame containing OSM buildings data with desaggregated PV
2377
        plants.
2378
    prob_dict : dict
2379
        Dictionary with values and probabilities per capacity range.
2380
    seed : int
2381
        Seed to use for random operations with NumPy and pandas.
2382
    Returns
2383
    -------
2384
    geopandas.GeoDataFrame
2385
        GeoDataFrame containing OSM building data with desaggregated PV
2386
        plants.
2387
    """
2388
    rng = default_rng(seed=seed)
2389
    buildings_gdf = buildings_gdf.reset_index().rename(
2390
        columns={
2391
            "index": "building_id",
2392
        }
2393
    )
2394
2395
    for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items():
2396
        cap_range_gdf = buildings_gdf.loc[
2397
            (buildings_gdf.capacity >= min_cap)
2398
            & (buildings_gdf.capacity < max_cap)
2399
        ]
2400
2401
        for key, values in cap_range_prob_dict["values"].items():
2402
            if key == "load_factor":
2403
                continue
2404
2405
            gdf = cap_range_gdf.loc[
2406
                cap_range_gdf[key].isna()
2407
                | cap_range_gdf[key].isnull()
2408
                | (cap_range_gdf[key] == "None")
2409
            ]
2410
2411
            key_vals = rng.choice(
2412
                a=values,
2413
                size=len(gdf),
2414
                p=cap_range_prob_dict["probabilities"][key],
2415
            )
2416
2417
            buildings_gdf.loc[gdf.index, key] = key_vals
2418
2419
    return buildings_gdf
2420
2421
2422
def add_voltage_level(
2423
    buildings_gdf: gpd.GeoDataFrame,
2424
) -> gpd.GeoDataFrame:
2425
    """
2426
    Add voltage level derived from generator capacity to the power plants.
2427
    Parameters
2428
    -----------
2429
    buildings_gdf : geopandas.GeoDataFrame
2430
        GeoDataFrame containing OSM buildings data with desaggregated PV
2431
        plants.
2432
    Returns
2433
    -------
2434
    geopandas.GeoDataFrame
2435
        GeoDataFrame containing OSM building data with voltage level per generator.
2436
    """
2437
2438
    def voltage_levels(p: float) -> int:
2439
        if p < 100:
2440
            return 7
2441
        elif p < 200:
2442
            return 6
2443
        elif p < 5500:
2444
            return 5
2445
        elif p < 20000:
2446
            return 4
2447
        elif p < 120000:
2448
            return 3
2449
        return 1
2450
2451
    return buildings_gdf.assign(
2452
        voltage_level=buildings_gdf.capacity.apply(voltage_levels)
2453
    )
2454
2455
2456
def add_start_up_date(
2457
    buildings_gdf: gpd.GeoDataFrame,
2458
    start: pd.Timestamp,
2459
    end: pd.Timestamp,
2460
    seed: int,
2461
):
2462
    """
2463
    Randomly and linear add start-up date to new pv generators.
2464
    Parameters
2465
    ----------
2466
    buildings_gdf : geopandas.GeoDataFrame
2467
        GeoDataFrame containing OSM buildings data with desaggregated PV
2468
        plants.
2469
    start : pandas.Timestamp
2470
        Minimum Timestamp to use.
2471
    end : pandas.Timestamp
2472
        Maximum Timestamp to use.
2473
    seed : int
2474
        Seed to use for random operations with NumPy and pandas.
2475
    Returns
2476
    -------
2477
    geopandas.GeoDataFrame
2478
        GeoDataFrame containing OSM buildings data with start-up date added.
2479
    """
2480
    rng = default_rng(seed=seed)
2481
2482
    date_range = pd.date_range(start=start, end=end, freq="1D")
2483
2484
    return buildings_gdf.assign(
2485
        start_up_date=rng.choice(date_range, size=len(buildings_gdf))
2486
    )
2487
2488
2489
@timer_func
2490
def allocate_scenarios(
2491
    mastr_gdf: gpd.GeoDataFrame,
2492
    valid_buildings_gdf: gpd.GeoDataFrame,
2493
    last_scenario_gdf: gpd.GeoDataFrame,
2494
    scenario: str,
2495
):
2496
    """
2497
    Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings.
2498
    Parameters
2499
    ----------
2500
    mastr_gdf : geopandas.GeoDataFrame
2501
        GeoDataFrame containing geocoded MaStR data.
2502
    valid_buildings_gdf : geopandas.GeoDataFrame
2503
        GeoDataFrame containing OSM buildings data.
2504
    last_scenario_gdf : geopandas.GeoDataFrame
2505
        GeoDataFrame containing OSM buildings matched with pv generators from temporal
2506
        preceding scenario.
2507
    scenario : str
2508
        Scenario to desaggrgate and allocate.
2509
    Returns
2510
    -------
2511
    tuple
2512
        geopandas.GeoDataFrame
2513
            GeoDataFrame containing OSM buildings matched with pv generators.
2514
        pandas.DataFrame
2515
            DataFrame containing pv rooftop capacity per grid id.
2516
    """
2517
    cap_per_bus_id_df = cap_per_bus_id(scenario)
2518
2519
    logger.debug(
2520
        f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}"
2521
    )
2522
2523
    last_scenario_gdf = determine_end_of_life_gens(
2524
        last_scenario_gdf,
2525
        SCENARIO_TIMESTAMP[scenario],
2526
        PV_ROOFTOP_LIFETIME,
2527
    )
2528
2529
    buildings_gdf = calculate_max_pv_cap_per_building(
2530
        valid_buildings_gdf,
2531
        last_scenario_gdf,
2532
        PV_CAP_PER_SQ_M,
2533
        ROOF_FACTOR,
2534
    )
2535
2536
    mastr_gdf = calculate_building_load_factor(
2537
        mastr_gdf,
2538
        buildings_gdf,
2539
    )
2540
2541
    probabilities_dict = probabilities(
2542
        mastr_gdf,
2543
        cap_ranges=CAP_RANGES,
2544
    )
2545
2546
    cap_share_dict = cap_share_per_cap_range(
2547
        mastr_gdf,
2548
        cap_ranges=CAP_RANGES,
2549
    )
2550
2551
    load_factor_dict = mean_load_factor_per_cap_range(
2552
        mastr_gdf,
2553
        cap_ranges=CAP_RANGES,
2554
    )
2555
2556
    building_area_range_dict = building_area_range_per_cap_range(
2557
        mastr_gdf,
2558
        cap_ranges=CAP_RANGES,
2559
        min_building_size=MIN_BUILDING_SIZE,
2560
        upper_quantile=UPPER_QUNATILE,
2561
        lower_quantile=LOWER_QUANTILE,
2562
    )
2563
2564
    allocated_buildings_gdf = desaggregate_pv(
2565
        buildings_gdf=buildings_gdf,
2566
        cap_df=cap_per_bus_id_df,
2567
        prob_dict=probabilities_dict,
2568
        cap_share_dict=cap_share_dict,
2569
        building_area_range_dict=building_area_range_dict,
2570
        load_factor_dict=load_factor_dict,
2571
        seed=SEED,
2572
        pv_cap_per_sq_m=PV_CAP_PER_SQ_M,
2573
    )
2574
2575
    allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario)
2576
2577
    meta_buildings_gdf = frame_to_numeric(
2578
        add_buildings_meta_data(
2579
            allocated_buildings_gdf,
2580
            probabilities_dict,
2581
            SEED,
2582
        )
2583
    )
2584
2585
    return (
2586
        add_start_up_date(
2587
            meta_buildings_gdf,
2588
            start=last_scenario_gdf.start_up_date.max(),
2589
            end=SCENARIO_TIMESTAMP[scenario],
2590
            seed=SEED,
2591
        ),
2592
        cap_per_bus_id_df,
2593
    )
2594
2595
2596
class EgonPowerPlantPvRoofBuildingScenario(Base):
2597
    __tablename__ = "egon_power_plants_pv_roof_building"
2598
    __table_args__ = {"schema": "supply"}
2599
2600
    index = Column(Integer, primary_key=True, index=True)
2601
    scenario = Column(String)
2602
    bus_id = Column(Integer, nullable=True)
2603
    building_id = Column(Integer)
2604
    gens_id = Column(String, nullable=True)
2605
    capacity = Column(Float)
2606
    einheitliche_ausrichtung_und_neigungswinkel = Column(Float)
2607
    hauptausrichtung = Column(String)
2608
    hauptausrichtung_neigungswinkel = Column(String)
2609
    voltage_level = Column(Integer)
2610
    weather_cell_id = Column(Integer)
2611
2612
2613
def create_scenario_table(buildings_gdf):
2614
    """Create mapping table pv_unit <-> building for scenario"""
2615
    EgonPowerPlantPvRoofBuildingScenario.__table__.drop(
2616
        bind=engine, checkfirst=True
2617
    )
2618
    EgonPowerPlantPvRoofBuildingScenario.__table__.create(
2619
        bind=engine, checkfirst=True
2620
    )
2621
2622
    buildings_gdf.rename(columns=COLS_TO_RENAME).assign(
2623
        capacity=buildings_gdf.capacity.div(10**3)  # kW -> MW
2624
    )[COLS_TO_EXPORT].reset_index().to_sql(
2625
        name=EgonPowerPlantPvRoofBuildingScenario.__table__.name,
2626
        schema=EgonPowerPlantPvRoofBuildingScenario.__table__.schema,
2627
        con=db.engine(),
2628
        if_exists="append",
2629
        index=False,
2630
    )
2631
2632
2633
def geocode_mastr_data():
2634
    """
2635
    Read PV rooftop data from MaStR CSV
2636
    TODO: the source will be replaced as soon as the MaStR data is available
2637
     in DB.
2638
    """
2639
    mastr_df = mastr_data(
2640
        MASTR_INDEX_COL,
2641
        MASTR_RELEVANT_COLS,
2642
        MASTR_DTYPES,
2643
        MASTR_PARSE_DATES,
2644
    )
2645
2646
    clean_mastr_df = clean_mastr_data(
2647
        mastr_df,
2648
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
2649
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
2650
        seed=SEED,
2651
        rounding=ROUNDING,
2652
    )
2653
2654
    geocoding_df = geocoding_data(clean_mastr_df)
2655
2656
    ratelimiter = geocoder(USER_AGENT, MIN_DELAY_SECONDS)
2657
2658
    geocode_gdf = geocode_data(geocoding_df, ratelimiter, EPSG)
2659
2660
    create_geocoded_table(geocode_gdf)
2661
2662
2663
def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
2664
    sql = """
2665
    SELECT building_id, zensus_population_id
2666
    FROM boundaries.egon_map_zensus_mvgd_buildings
2667
    """
2668
2669
    buildings_gdf = buildings_gdf.merge(
2670
        right=db.select_dataframe(sql),
2671
        how="left",
2672
        on="building_id",
2673
    )
2674
2675
    sql = """
2676
    SELECT zensus_population_id, w_id as weather_cell_id
2677
    FROM boundaries.egon_map_zensus_weather_cell
2678
    """
2679
2680
    buildings_gdf = buildings_gdf.merge(
2681
        right=db.select_dataframe(sql),
2682
        how="left",
2683
        on="zensus_population_id",
2684
    )
2685
2686
    if buildings_gdf.weather_cell_id.isna().any():
2687
        missing = buildings_gdf.loc[
2688
            buildings_gdf.weather_cell_id.isna()
2689
        ].building_id.tolist()
2690
        raise ValueError(
2691
            f"Following buildings don't have a weather cell id: {missing}"
2692
        )
2693
2694
    return buildings_gdf
2695
2696
2697
def pv_rooftop_to_buildings():
2698
    """Main script, executed as task"""
2699
2700
    mastr_gdf = load_mastr_data()
2701
2702
    buildings_gdf = load_building_data()
2703
2704
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings(
2705
        mastr_gdf, buildings_gdf
2706
    )
2707
2708
    all_buildings_gdf = (
2709
        desagg_mastr_gdf.assign(scenario="status_quo")
2710
        .reset_index()
2711
        .rename(columns={"geometry": "geom", "EinheitMastrNummer": "gens_id"})
2712
    )
2713
2714
    scenario_buildings_gdf = all_buildings_gdf.copy()
2715
2716
    cap_per_bus_id_df = pd.DataFrame()
2717
2718
    for scenario in SCENARIOS:
2719
        logger.debug(f"Desaggregating scenario {scenario}.")
2720
        (
2721
            scenario_buildings_gdf,
2722
            cap_per_bus_id_scenario_df,
2723
        ) = allocate_scenarios(  # noqa: F841
2724
            desagg_mastr_gdf,
2725
            desagg_buildings_gdf,
2726
            scenario_buildings_gdf,
2727
            scenario,
2728
        )
2729
2730
        all_buildings_gdf = gpd.GeoDataFrame(
2731
            pd.concat(
2732
                [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True
2733
            ),
2734
            crs=scenario_buildings_gdf.crs,
2735
            geometry="geom",
2736
        )
2737
2738
        cap_per_bus_id_df = pd.concat(
2739
            [cap_per_bus_id_df, cap_per_bus_id_scenario_df]
2740
        )
2741
2742
    # add weather cell
2743
    all_buildings_gdf = add_weather_cell_id(all_buildings_gdf)
2744
2745
    # export scenario
2746
    create_scenario_table(add_voltage_level(all_buildings_gdf))
2747