1
|
|
|
"""The module containing all parameters for the scenario table |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
import pandas as pd |
5
|
|
|
|
6
|
|
|
import egon.data.config |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
def read_csv(year): |
10
|
|
|
|
11
|
|
|
source = egon.data.config.datasets()["pypsa-technology-data"]["targets"][ |
12
|
|
|
"data_dir" |
13
|
|
|
] |
14
|
|
|
|
15
|
|
|
return pd.read_csv(f"{source}costs_{year}.csv") |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
def read_costs(df, technology, parameter, value_only=True): |
19
|
|
|
|
20
|
|
|
result = df.loc[ |
21
|
|
|
(df.technology == technology) & (df.parameter == parameter) |
22
|
|
|
].squeeze() |
23
|
|
|
|
24
|
|
|
# Rescale costs to EUR/MW |
25
|
|
|
if "EUR/kW" in result.unit: |
26
|
|
|
result.value *= 1e3 |
27
|
|
|
result.unit = result.unit.replace("kW", "MW") |
28
|
|
|
|
29
|
|
|
if value_only: |
30
|
|
|
return result.value |
31
|
|
|
else: |
32
|
|
|
return result |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
def annualize_capital_costs(overnight_costs, lifetime, p): |
36
|
|
|
""" |
37
|
|
|
|
38
|
|
|
Parameters |
39
|
|
|
---------- |
40
|
|
|
overnight_costs : float |
41
|
|
|
Overnight investment costs in EUR/MW or EUR/MW/km |
42
|
|
|
lifetime : int |
43
|
|
|
Number of years in which payments will be made |
44
|
|
|
p : float |
45
|
|
|
Interest rate in p.u. |
46
|
|
|
|
47
|
|
|
Returns |
48
|
|
|
------- |
49
|
|
|
float |
50
|
|
|
Annualized capital costs in EUR/MW/a or EUR/MW/km/a |
51
|
|
|
|
52
|
|
|
""" |
53
|
|
|
|
54
|
|
|
# Calculate present value of an annuity (PVA) |
55
|
|
|
PVA = (1 / p) - (1 / (p * (1 + p) ** lifetime)) |
56
|
|
|
|
57
|
|
|
return overnight_costs / PVA |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
def global_settings(scenario): |
61
|
|
|
"""Returns global paramaters for the selected scenario. |
62
|
|
|
|
63
|
|
|
Parameters |
64
|
|
|
---------- |
65
|
|
|
scenario : str |
66
|
|
|
Name of the scenario. |
67
|
|
|
|
68
|
|
|
Returns |
69
|
|
|
------- |
70
|
|
|
parameters : dict |
71
|
|
|
List of global parameters |
72
|
|
|
|
73
|
|
|
""" |
74
|
|
|
|
75
|
|
|
if scenario == "eGon2035": |
76
|
|
|
parameters = { |
77
|
|
|
"weather_year": 2011, |
78
|
|
|
"population_year": 2035, |
79
|
|
|
"fuel_costs": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 39, table 6 |
80
|
|
|
"oil": 73.8, # [EUR/MWh] |
81
|
|
|
"gas": 25.6, # [EUR/MWh] |
82
|
|
|
"coal": 20.2, # [EUR/MWh] |
83
|
|
|
"lignite": 4.0, # [EUR/MWh] |
84
|
|
|
"nuclear": 1.7, # [EUR/MWh] |
85
|
|
|
"biomass": 40, # Dummyvalue, ToDo: Find a suitable source |
86
|
|
|
}, |
87
|
|
|
"co2_costs": 76.5, # [EUR/t_CO2] |
88
|
|
|
"co2_emissions": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 40, table 8 |
89
|
|
|
"waste": 0.165, # [t_CO2/MW_th] |
90
|
|
|
"lignite": 0.393, # [t_CO2/MW_th] |
91
|
|
|
"gas": 0.201, # [t_CO2/MW_th] |
92
|
|
|
"nuclear": 0.0, # [t_CO2/MW_th] |
93
|
|
|
"oil": 0.288, # [t_CO2/MW_th] |
94
|
|
|
"coal": 0.335, # [t_CO2/MW_th] |
95
|
|
|
"other_non_renewable": 0.268, # [t_CO2/MW_th] |
96
|
|
|
}, |
97
|
|
|
"interest_rate": 0.05, # [p.u.] |
98
|
|
|
} |
99
|
|
|
|
100
|
|
|
elif scenario == "eGon100RE": |
101
|
|
|
parameters = { |
102
|
|
|
"weather_year": 2011, |
103
|
|
|
"population_year": 2050, |
104
|
|
|
"fuel_costs": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 39, table 6 |
105
|
|
|
"oil": 73.8, # [EUR/MWh] |
106
|
|
|
"gas": 25.6, # [EUR/MWh] |
107
|
|
|
"coal": 20.2, # [EUR/MWh] |
108
|
|
|
"lignite": 4.0, # [EUR/MWh] |
109
|
|
|
"nuclear": 1.7, # [EUR/MWh] |
110
|
|
|
}, |
111
|
|
|
"co2_costs": 76.5, # [EUR/t_CO2] |
112
|
|
|
"co2_emissions": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 40, table 8 |
113
|
|
|
"waste": 0.165, # [t_CO2/MW_th] |
114
|
|
|
"lignite": 0.393, # [t_CO2/MW_th] |
115
|
|
|
"gas": 0.201, # [t_CO2/MW_th] |
116
|
|
|
"nuclear": 0.0, # [t_CO2/MW_th] |
117
|
|
|
"oil": 0.288, # [t_CO2/MW_th] |
118
|
|
|
"coal": 0.335, # [t_CO2/MW_th] |
119
|
|
|
"other_non_renewable": 0.268, # [t_CO2/MW_th] |
120
|
|
|
}, |
121
|
|
|
} |
122
|
|
|
|
123
|
|
|
else: |
124
|
|
|
print(f"Scenario name {scenario} is not valid.") |
125
|
|
|
|
126
|
|
|
return parameters |
|
|
|
|
127
|
|
|
|
128
|
|
|
|
129
|
|
|
def electricity(scenario): |
130
|
|
|
"""Returns paramaters of the electricity sector for the selected scenario. |
131
|
|
|
|
132
|
|
|
Parameters |
133
|
|
|
---------- |
134
|
|
|
scenario : str |
135
|
|
|
Name of the scenario. |
136
|
|
|
|
137
|
|
|
Returns |
138
|
|
|
------- |
139
|
|
|
parameters : dict |
140
|
|
|
List of parameters of electricity sector |
141
|
|
|
|
142
|
|
|
""" |
143
|
|
|
|
144
|
|
|
if scenario == "eGon2035": |
145
|
|
|
|
146
|
|
|
costs = read_csv(2035) |
147
|
|
|
|
148
|
|
|
parameters = {"grid_topology": "Status Quo"} |
149
|
|
|
# Insert effciencies in p.u. |
150
|
|
|
parameters["efficiency"] = { |
151
|
|
|
"oil": read_costs(costs, "oil", "efficiency"), |
152
|
|
|
"battery": { |
153
|
|
|
"store": read_costs(costs, "battery inverter", "efficiency") |
154
|
|
|
** 0.5, |
155
|
|
|
"dispatch": read_costs(costs, "battery inverter", "efficiency") |
156
|
|
|
** 0.5, |
157
|
|
|
"standing_loss": 0, |
158
|
|
|
"max_hours": 6, |
159
|
|
|
}, |
160
|
|
|
"pumped_hydro": { |
161
|
|
|
"store": read_costs(costs, "PHS", "efficiency") ** 0.5, |
162
|
|
|
"dispatch": read_costs(costs, "PHS", "efficiency") ** 0.5, |
163
|
|
|
"standing_loss": 0, |
164
|
|
|
"max_hours": 6, |
165
|
|
|
}, |
166
|
|
|
} |
167
|
|
|
# Warning: Electrical parameters are set in osmTGmod, editing these values will not change the data! |
168
|
|
|
parameters["electrical_parameters"] = { |
169
|
|
|
"ac_line_110kV": { |
170
|
|
|
"s_nom": 260, # [MVA] |
171
|
|
|
"R": 0.109, # [Ohm/km] |
172
|
|
|
"L": 1.2, # [mH/km] |
173
|
|
|
}, |
174
|
|
|
"ac_cable_110kV": { |
175
|
|
|
"s_nom": 280, # [MVA] |
176
|
|
|
"R": 0.0177, # [Ohm/km] |
177
|
|
|
"L": 0.3, # [mH/km] |
178
|
|
|
}, |
179
|
|
|
"ac_line_220kV": { |
180
|
|
|
"s_nom": 520, # [MVA] |
181
|
|
|
"R": 0.109, # [Ohm/km] |
182
|
|
|
"L": 1.0, # [mH/km] |
183
|
|
|
}, |
184
|
|
|
"ac_cable_220kV": { |
185
|
|
|
"s_nom": 550, # [MVA] |
186
|
|
|
"R": 0.0176, # [Ohm/km] |
187
|
|
|
"L": 0.3, # [mH/km] |
188
|
|
|
}, |
189
|
|
|
"ac_line_380kV": { |
190
|
|
|
"s_nom": 1790, # [MVA] |
191
|
|
|
"R": 0.028, # [Ohm/km] |
192
|
|
|
"L": 0.8, # [mH/km] |
193
|
|
|
}, |
194
|
|
|
"ac_cable_380kV": { |
195
|
|
|
"s_nom": 925, # [MVA] |
196
|
|
|
"R": 0.0175, # [Ohm/km] |
197
|
|
|
"L": 0.3, # [mH/km] |
198
|
|
|
}, |
199
|
|
|
} |
200
|
|
|
|
201
|
|
|
# Insert overnight investment costs |
202
|
|
|
# Source for eHV grid costs: Netzentwicklungsplan Strom 2035, Version 2021, 2. Entwurf |
203
|
|
|
# Source for HV lines and cables: Dena Verteilnetzstudie 2021, p. 146 |
204
|
|
|
parameters["overnight_cost"] = { |
205
|
|
|
"ac_ehv_overhead_line": 2.5e6 |
206
|
|
|
/ ( |
207
|
|
|
2 |
208
|
|
|
* parameters["electrical_parameters"]["ac_line_380kV"]["s_nom"] |
209
|
|
|
), # [EUR/km/MW] |
210
|
|
|
"ac_ehv_cable": 11.5e6 |
211
|
|
|
/ ( |
212
|
|
|
2 |
213
|
|
|
* parameters["electrical_parameters"]["ac_cable_380kV"][ |
214
|
|
|
"s_nom" |
215
|
|
|
] |
216
|
|
|
), # [EUR/km/MW] |
217
|
|
|
"ac_hv_overhead_line": 0.06e6 |
218
|
|
|
/ parameters["electrical_parameters"]["ac_line_110kV"][ |
219
|
|
|
"s_nom" |
220
|
|
|
], # [EUR/km/MW] |
221
|
|
|
"ac_hv_cable": 0.8e6 |
222
|
|
|
/ parameters["electrical_parameters"]["ac_cable_110kV"][ |
223
|
|
|
"s_nom" |
224
|
|
|
], # [EUR/km/MW] |
225
|
|
|
"dc_overhead_line": 0.5e3, # [EUR/km/MW] |
226
|
|
|
"dc_cable": 3.25e3, # [EUR/km/MW] |
227
|
|
|
"dc_inverter": 0.3e6, # [EUR/MW] |
228
|
|
|
"transformer_380_110": 17.33e3, # [EUR/MVA] |
229
|
|
|
"transformer_380_220": 13.33e3, # [EUR/MVA] |
230
|
|
|
"transformer_220_110": 17.5e3, # [EUR/MVA] |
231
|
|
|
"battery inverter": read_costs( |
232
|
|
|
costs, "battery inverter", "investment" |
233
|
|
|
), |
234
|
|
|
"battery storage": read_costs( |
235
|
|
|
costs, "battery storage", "investment" |
236
|
|
|
), |
237
|
|
|
} |
238
|
|
|
|
239
|
|
|
parameters["lifetime"] = { |
240
|
|
|
"ac_ehv_overhead_line": read_costs( |
241
|
|
|
costs, "HVAC overhead", "lifetime" |
242
|
|
|
), |
243
|
|
|
"ac_ehv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
244
|
|
|
"ac_hv_overhead_line": read_costs( |
245
|
|
|
costs, "HVAC overhead", "lifetime" |
246
|
|
|
), |
247
|
|
|
"ac_hv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
248
|
|
|
"dc_overhead_line": read_costs(costs, "HVDC overhead", "lifetime"), |
249
|
|
|
"dc_cable": read_costs(costs, "HVDC overhead", "lifetime"), |
250
|
|
|
"dc_inverter": read_costs(costs, "HVDC inverter pair", "lifetime"), |
251
|
|
|
"transformer_380_110": read_costs( |
252
|
|
|
costs, "HVAC overhead", "lifetime" |
253
|
|
|
), |
254
|
|
|
"transformer_380_220": read_costs( |
255
|
|
|
costs, "HVAC overhead", "lifetime" |
256
|
|
|
), |
257
|
|
|
"transformer_220_110": read_costs( |
258
|
|
|
costs, "HVAC overhead", "lifetime" |
259
|
|
|
), |
260
|
|
|
"battery inverter": read_costs( |
261
|
|
|
costs, "battery inverter", "lifetime" |
262
|
|
|
), |
263
|
|
|
"battery storage": read_costs( |
264
|
|
|
costs, "battery storage", "lifetime" |
265
|
|
|
), |
266
|
|
|
} |
267
|
|
|
# Insert annualized capital costs |
268
|
|
|
# lines in EUR/km/MW/a |
269
|
|
|
# transfermer, inverter, battery in EUR/MW/a |
270
|
|
|
parameters["capital_cost"] = {} |
271
|
|
|
|
272
|
|
|
for comp in parameters["overnight_cost"].keys(): |
273
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
274
|
|
|
parameters["overnight_cost"][comp], |
275
|
|
|
parameters["lifetime"][comp], |
276
|
|
|
global_settings("eGon2035")["interest_rate"], |
277
|
|
|
) |
278
|
|
|
|
279
|
|
|
parameters["capital_cost"]["battery"] = ( |
280
|
|
|
parameters["capital_cost"]["battery inverter"] |
281
|
|
|
+ parameters["efficiency"]["battery"]["max_hours"] |
282
|
|
|
* parameters["capital_cost"]["battery storage"] |
283
|
|
|
) |
284
|
|
|
|
285
|
|
|
# Insert marginal_costs in EUR/MWh |
286
|
|
|
# marginal cost can include fuel, C02 and operation and maintenance costs |
287
|
|
|
parameters["marginal_cost"] = { |
288
|
|
|
"oil": global_settings(scenario)["fuel_costs"]["oil"] |
289
|
|
|
+ read_costs(costs, "oil", "VOM") |
290
|
|
|
+ global_settings(scenario)["co2_costs"] |
291
|
|
|
* global_settings(scenario)["co2_emissions"]["oil"], |
292
|
|
|
"other_non_renewable": global_settings(scenario)["fuel_costs"][ |
293
|
|
|
"gas" |
294
|
|
|
] |
295
|
|
|
+ global_settings(scenario)["co2_costs"] |
296
|
|
|
* global_settings(scenario)["co2_emissions"][ |
297
|
|
|
"other_non_renewable" |
298
|
|
|
], |
299
|
|
|
"lignite": global_settings(scenario)["fuel_costs"]["lignite"] |
300
|
|
|
+ read_costs(costs, "lignite", "VOM") |
301
|
|
|
+ global_settings(scenario)["co2_costs"] |
302
|
|
|
* global_settings(scenario)["co2_emissions"]["lignite"], |
303
|
|
|
"biomass": global_settings(scenario)["fuel_costs"]["biomass"] |
304
|
|
|
+ read_costs(costs, "biomass CHP", "VOM"), |
305
|
|
|
"wind_offshore": read_costs(costs, "offwind", "VOM"), |
306
|
|
|
"wind_onshore": read_costs(costs, "onwind", "VOM"), |
307
|
|
|
"solar": read_costs(costs, "solar", "VOM"), |
308
|
|
|
} |
309
|
|
|
|
310
|
|
|
elif scenario == "eGon100RE": |
311
|
|
|
|
312
|
|
|
costs = read_csv(2050) |
313
|
|
|
|
314
|
|
|
parameters = {"grid_topology": "Status Quo"} |
315
|
|
|
|
316
|
|
|
# Insert effciencies in p.u. |
317
|
|
|
parameters["efficiency"] = { |
318
|
|
|
"battery": { |
319
|
|
|
"store": read_costs(costs, "battery inverter", "efficiency") |
320
|
|
|
** 0.5, |
321
|
|
|
"dispatch": read_costs(costs, "battery inverter", "efficiency") |
322
|
|
|
** 0.5, |
323
|
|
|
"standing_loss": 0, |
324
|
|
|
"max_hours": 6, |
325
|
|
|
}, |
326
|
|
|
"pumped_hydro": { |
327
|
|
|
"store": read_costs(costs, "PHS", "efficiency") ** 0.5, |
328
|
|
|
"dispatch": read_costs(costs, "PHS", "efficiency") ** 0.5, |
329
|
|
|
"standing_loss": 0, |
330
|
|
|
"max_hours": 6, |
331
|
|
|
}, |
332
|
|
|
} |
333
|
|
|
# Warning: Electrical parameters are set in osmTGmod, editing these values will not change the data! |
334
|
|
|
parameters["electrical_parameters"] = { |
335
|
|
|
"ac_line_110kV": { |
336
|
|
|
"s_nom": 260, # [MVA] |
337
|
|
|
"R": 0.109, # [Ohm/km] |
338
|
|
|
"L": 1.2, # [mH/km] |
339
|
|
|
}, |
340
|
|
|
"ac_cable_110kV": { |
341
|
|
|
"s_nom": 280, # [MVA] |
342
|
|
|
"R": 0.0177, # [Ohm/km] |
343
|
|
|
"L": 0.3, # [mH/km] |
344
|
|
|
}, |
345
|
|
|
"ac_line_220kV": { |
346
|
|
|
"s_nom": 520, # [MVA] |
347
|
|
|
"R": 0.109, # [Ohm/km] |
348
|
|
|
"L": 1.0, # [mH/km] |
349
|
|
|
}, |
350
|
|
|
"ac_cable_220kV": { |
351
|
|
|
"s_nom": 550, # [MVA] |
352
|
|
|
"R": 0.0176, # [Ohm/km] |
353
|
|
|
"L": 0.3, # [mH/km] |
354
|
|
|
}, |
355
|
|
|
"ac_line_380kV": { |
356
|
|
|
"s_nom": 1790, # [MVA] |
357
|
|
|
"R": 0.028, # [Ohm/km] |
358
|
|
|
"L": 0.8, # [mH/km] |
359
|
|
|
}, |
360
|
|
|
"ac_cable_380kV": { |
361
|
|
|
"s_nom": 925, # [MVA] |
362
|
|
|
"R": 0.0175, # [Ohm/km] |
363
|
|
|
"L": 0.3, # [mH/km] |
364
|
|
|
}, |
365
|
|
|
} |
366
|
|
|
|
367
|
|
|
# Insert overnight investment costs |
368
|
|
|
# Source for transformer costs: Netzentwicklungsplan Strom 2035, Version 2021, 2. Entwurf |
369
|
|
|
# Source for HV lines and cables: Dena Verteilnetzstudie 2021, p. 146 |
370
|
|
|
parameters["overnight_cost"] = { |
371
|
|
|
"ac_ehv_overhead_line": read_costs( |
372
|
|
|
costs, "HVAC overhead", "investment" |
373
|
|
|
), # [EUR/km/MW] |
374
|
|
|
"ac_hv_overhead_line": 0.06e6 |
375
|
|
|
/ parameters["electrical_parameters"]["ac_line_110kV"][ |
376
|
|
|
"s_nom" |
377
|
|
|
], # [EUR/km/MW] |
378
|
|
|
"ac_hv_cable": 0.8e6 |
379
|
|
|
/ parameters["electrical_parameters"]["ac_cable_110kV"][ |
380
|
|
|
"s_nom" |
381
|
|
|
], # [EUR/km/MW] |
382
|
|
|
"dc_overhead_line": read_costs( |
383
|
|
|
costs, "HVDC overhead", "investment" |
384
|
|
|
), |
385
|
|
|
"dc_cable": read_costs(costs, "HVDC overhead", "investment"), |
386
|
|
|
"dc_inverter": read_costs( |
387
|
|
|
costs, "HVDC inverter pair", "investment" |
388
|
|
|
), |
389
|
|
|
"transformer_380_110": 17.33e3, # [EUR/MVA] |
390
|
|
|
"transformer_380_220": 13.33e3, # [EUR/MVA] |
391
|
|
|
"transformer_220_110": 17.5e3, # [EUR/MVA] |
392
|
|
|
"battery inverter": read_costs( |
393
|
|
|
costs, "battery inverter", "investment" |
394
|
|
|
), |
395
|
|
|
"battery storage": read_costs( |
396
|
|
|
costs, "battery storage", "investment" |
397
|
|
|
), |
398
|
|
|
} |
399
|
|
|
|
400
|
|
|
parameters["lifetime"] = { |
401
|
|
|
"ac_ehv_overhead_line": read_costs( |
402
|
|
|
costs, "HVAC overhead", "lifetime" |
403
|
|
|
), |
404
|
|
|
"ac_ehv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
405
|
|
|
"ac_hv_overhead_line": read_costs( |
406
|
|
|
costs, "HVAC overhead", "lifetime" |
407
|
|
|
), |
408
|
|
|
"ac_hv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
409
|
|
|
"dc_overhead_line": read_costs(costs, "HVDC overhead", "lifetime"), |
410
|
|
|
"dc_cable": read_costs(costs, "HVDC overhead", "lifetime"), |
411
|
|
|
"dc_inverter": read_costs(costs, "HVDC inverter pair", "lifetime"), |
412
|
|
|
"transformer_380_110": read_costs( |
413
|
|
|
costs, "HVAC overhead", "lifetime" |
414
|
|
|
), |
415
|
|
|
"transformer_380_220": read_costs( |
416
|
|
|
costs, "HVAC overhead", "lifetime" |
417
|
|
|
), |
418
|
|
|
"transformer_220_110": read_costs( |
419
|
|
|
costs, "HVAC overhead", "lifetime" |
420
|
|
|
), |
421
|
|
|
"battery inverter": read_costs( |
422
|
|
|
costs, "battery inverter", "lifetime" |
423
|
|
|
), |
424
|
|
|
"battery storage": read_costs( |
425
|
|
|
costs, "battery storage", "lifetime" |
426
|
|
|
), |
427
|
|
|
} |
428
|
|
|
# Insert annualized capital costs |
429
|
|
|
# lines in EUR/km/MW/a |
430
|
|
|
# transfermer, inverter, battery in EUR/MW/a |
431
|
|
|
parameters["capital_cost"] = {} |
432
|
|
|
|
433
|
|
|
for comp in parameters["overnight_cost"].keys(): |
434
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
435
|
|
|
parameters["overnight_cost"][comp], |
436
|
|
|
parameters["lifetime"][comp], |
437
|
|
|
global_settings("eGon2035")["interest_rate"], |
438
|
|
|
) |
439
|
|
|
|
440
|
|
|
parameters["capital_cost"]["battery"] = ( |
441
|
|
|
parameters["capital_cost"]["battery inverter"] |
442
|
|
|
+ parameters["efficiency"]["battery"]["max_hours"] |
443
|
|
|
* parameters["capital_cost"]["battery storage"] |
444
|
|
|
) |
445
|
|
|
|
446
|
|
|
# Insert marginal_costs in EUR/MWh |
447
|
|
|
# marginal cost can include fuel, C02 and operation and maintenance costs |
448
|
|
|
parameters["marginal_cost"] = { |
449
|
|
|
"wind_offshore": read_costs(costs, "offwind", "VOM"), |
450
|
|
|
"wind_onshore": read_costs(costs, "onwind", "VOM"), |
451
|
|
|
"solar": read_costs(costs, "solar", "VOM"), |
452
|
|
|
} |
453
|
|
|
|
454
|
|
|
else: |
455
|
|
|
print(f"Scenario name {scenario} is not valid.") |
456
|
|
|
|
457
|
|
|
return parameters |
|
|
|
|
458
|
|
|
|
459
|
|
|
|
460
|
|
|
def gas(scenario): |
461
|
|
|
"""Returns paramaters of the gas sector for the selected scenario. |
462
|
|
|
|
463
|
|
|
Parameters |
464
|
|
|
---------- |
465
|
|
|
scenario : str |
466
|
|
|
Name of the scenario. |
467
|
|
|
|
468
|
|
|
Returns |
469
|
|
|
------- |
470
|
|
|
parameters : dict |
471
|
|
|
List of parameters of gas sector |
472
|
|
|
|
473
|
|
|
""" |
474
|
|
|
|
475
|
|
|
if scenario == "eGon2035": |
476
|
|
|
|
477
|
|
|
costs = read_csv(2035) |
478
|
|
|
|
479
|
|
|
parameters = { |
480
|
|
|
"main_gas_carrier": "CH4", |
481
|
|
|
"H2_feedin_volumetric_fraction": 0.15, |
482
|
|
|
} |
483
|
|
|
# Insert effciencies in p.u. |
484
|
|
|
parameters["efficiency"] = { |
485
|
|
|
"power_to_H2": read_costs(costs, "electrolysis", "efficiency"), |
486
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "efficiency"), |
487
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "efficiency"), # CC? |
488
|
|
|
"H2_feedin": 1, |
489
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "efficiency"), |
490
|
|
|
"OCGT": read_costs(costs, "OCGT", "efficiency"), |
491
|
|
|
} |
492
|
|
|
# Insert overnight investment costs |
493
|
|
|
parameters["overnight_cost"] = { |
494
|
|
|
"power_to_H2": read_costs(costs, "electrolysis", "investment"), |
495
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "investment"), |
496
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "investment"), # CC? |
497
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "investment"), |
498
|
|
|
# what about H2 compressors? |
499
|
|
|
"H2_feedin": 0, |
500
|
|
|
"H2_underground": read_costs( |
501
|
|
|
costs, "hydrogen storage underground", "investment" |
502
|
|
|
), |
503
|
|
|
"H2_overground": read_costs( |
504
|
|
|
costs, "hydrogen storage tank incl. compressor", "investment" |
505
|
|
|
), |
506
|
|
|
"H2_pipeline": read_costs( |
507
|
|
|
costs, "H2 (g) pipeline", "investment" |
508
|
|
|
), # [EUR/MW/km] |
509
|
|
|
} |
510
|
|
|
|
511
|
|
|
# Insert lifetime |
512
|
|
|
parameters["lifetime"] = { |
513
|
|
|
"power_to_H2": read_costs(costs, "electrolysis", "lifetime"), |
514
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "lifetime"), |
515
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "lifetime"), # CC? |
516
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "lifetime"), |
517
|
|
|
# what about H2 compressors? |
518
|
|
|
"H2_underground": read_costs( |
519
|
|
|
costs, "hydrogen storage underground", "lifetime" |
520
|
|
|
), |
521
|
|
|
"H2_overground": read_costs( |
522
|
|
|
costs, "hydrogen storage tank incl. compressor", "lifetime" |
523
|
|
|
), |
524
|
|
|
"H2_pipeline": read_costs(costs, "H2 (g) pipeline", "lifetime"), |
525
|
|
|
"H2_feedin": read_costs(costs, "CH4 (g) pipeline", "lifetime"), |
526
|
|
|
} |
527
|
|
|
|
528
|
|
|
# Insert annualized capital costs |
529
|
|
|
parameters["capital_cost"] = {} |
530
|
|
|
|
531
|
|
|
for comp in parameters["overnight_cost"].keys(): |
532
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
533
|
|
|
parameters["overnight_cost"][comp], |
534
|
|
|
parameters["lifetime"][comp], |
535
|
|
|
global_settings("eGon2035")["interest_rate"], |
536
|
|
|
) |
537
|
|
|
|
538
|
|
|
parameters["marginal_cost"] = { |
539
|
|
|
"CH4": global_settings(scenario)["fuel_costs"]["gas"] |
540
|
|
|
+ global_settings(scenario)["co2_costs"] |
541
|
|
|
* global_settings(scenario)["co2_emissions"]["gas"], |
542
|
|
|
"OCGT": read_costs(costs, "OCGT", "VOM"), |
543
|
|
|
"biogas": global_settings(scenario)["fuel_costs"]["gas"], |
544
|
|
|
"chp_gas": read_costs(costs, "central gas CHP", "VOM"), |
545
|
|
|
} |
546
|
|
|
|
547
|
|
|
# Insert max gas production (generator) over the year |
548
|
|
|
parameters["max_gas_generation_overtheyear"] = { |
549
|
|
|
"CH4": 36000000, # [MWh] Netzentwicklungsplan Gas 2020–2030 |
550
|
|
|
"biogas": 10000000, # [MWh] Netzentwicklungsplan Gas 2020–2030 |
551
|
|
|
} |
552
|
|
|
|
553
|
|
|
elif scenario == "eGon100RE": |
554
|
|
|
|
555
|
|
|
costs = read_csv(2050) |
556
|
|
|
|
557
|
|
|
parameters = { |
558
|
|
|
"main_gas_carrier": "H2", |
559
|
|
|
"retrofitted_CH4pipeline-to-H2pipeline_share": 0.75, |
560
|
|
|
# The H2 network will be based on 75% of converted natural gas pipelines. |
561
|
|
|
# https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf |
562
|
|
|
# This value is used temporary, later on we will use the result of p-e-s |
563
|
|
|
"retrofitted_capacity_share": 0.8, |
564
|
|
|
# The volumetric energy density of pure H2 at 50 bar vs. pure CH4 at |
565
|
|
|
# 50 bar is at about 30 %, however due to less friction volumetric flow can |
566
|
|
|
# be increased for pure H2 leading to higher capacities |
567
|
|
|
# https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf p.10 |
568
|
|
|
} |
569
|
|
|
# Insert effciencies in p.u. |
570
|
|
|
parameters["efficiency"] = { |
571
|
|
|
"power_to_H2": read_costs(costs, "electrolysis", "efficiency"), |
572
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "efficiency"), |
573
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "efficiency"), # CC? |
574
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "efficiency"), |
575
|
|
|
"OCGT": read_costs(costs, "OCGT", "efficiency"), |
576
|
|
|
} |
577
|
|
|
# Insert overnight investment costs |
578
|
|
|
parameters["overnight_cost"] = { |
579
|
|
|
"power_to_H2": read_costs(costs, "electrolysis", "investment"), |
580
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "investment"), |
581
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "investment"), # CC? |
582
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "investment"), |
583
|
|
|
# what about H2 compressors? |
584
|
|
|
"H2_underground": read_costs( |
585
|
|
|
costs, "hydrogen storage underground", "investment" |
586
|
|
|
), |
587
|
|
|
"H2_overground": read_costs( |
588
|
|
|
costs, "hydrogen storage tank incl. compressor", "investment" |
589
|
|
|
), |
590
|
|
|
"H2_pipeline": read_costs( |
591
|
|
|
costs, "H2 (g) pipeline", "investment" |
592
|
|
|
), # [EUR/MW/km] |
593
|
|
|
"H2_pipeline_retrofit": read_costs( |
594
|
|
|
costs, "H2 (g) pipeline repurposed", "investment" |
595
|
|
|
), # [EUR/MW/km] |
596
|
|
|
} |
597
|
|
|
|
598
|
|
|
# Insert lifetime |
599
|
|
|
parameters["lifetime"] = { |
600
|
|
|
"power_to_H2": read_costs(costs, "electrolysis", "lifetime"), |
601
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "lifetime"), |
602
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "lifetime"), # CC? |
603
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "lifetime"), |
604
|
|
|
# what about H2 compressors? |
605
|
|
|
"H2_underground": read_costs( |
606
|
|
|
costs, "hydrogen storage underground", "lifetime" |
607
|
|
|
), |
608
|
|
|
"H2_overground": read_costs( |
609
|
|
|
costs, "hydrogen storage tank incl. compressor", "lifetime" |
610
|
|
|
), |
611
|
|
|
"H2_pipeline": read_costs(costs, "H2 (g) pipeline", "lifetime"), |
612
|
|
|
"H2_pipeline_retrofit": read_costs( |
613
|
|
|
costs, "H2 (g) pipeline repurposed", "lifetime" |
614
|
|
|
), |
615
|
|
|
} |
616
|
|
|
|
617
|
|
|
# Insert costs |
618
|
|
|
parameters["capital_cost"] = {} |
619
|
|
|
|
620
|
|
|
for comp in parameters["overnight_cost"].keys(): |
621
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
622
|
|
|
parameters["overnight_cost"][comp], |
623
|
|
|
parameters["lifetime"][comp], |
624
|
|
|
global_settings("eGon2035")["interest_rate"], |
625
|
|
|
) |
626
|
|
|
|
627
|
|
|
parameters["marginal_cost"] = { |
628
|
|
|
# "CH4": global_settings(scenario)["fuel_costs"]["gas"] |
629
|
|
|
# + global_settings(scenario)["co2_costs"] |
630
|
|
|
# * global_settings(scenario)["co2_emissions"]["gas"], |
631
|
|
|
"OCGT": read_costs(costs, "OCGT", "VOM"), |
632
|
|
|
"biogas": global_settings(scenario)["fuel_costs"]["gas"], |
633
|
|
|
"chp_gas": read_costs(costs, "central gas CHP", "VOM"), |
634
|
|
|
} |
635
|
|
|
|
636
|
|
|
else: |
637
|
|
|
print(f"Scenario name {scenario} is not valid.") |
638
|
|
|
|
639
|
|
|
return parameters |
|
|
|
|
640
|
|
|
|
641
|
|
|
|
642
|
|
|
def mobility(scenario): |
643
|
|
|
"""Returns parameters of the mobility sector for the selected scenario. |
644
|
|
|
|
645
|
|
|
Parameters |
646
|
|
|
---------- |
647
|
|
|
scenario : str |
648
|
|
|
Name of the scenario. |
649
|
|
|
|
650
|
|
|
Returns |
651
|
|
|
------- |
652
|
|
|
parameters : dict |
653
|
|
|
List of parameters of mobility sector |
654
|
|
|
|
655
|
|
|
Notes |
656
|
|
|
----- |
657
|
|
|
For a detailed description of the parameters see module |
658
|
|
|
:mod:`egon.data.datasets.emobility.motorized_individual_travel`. |
659
|
|
|
""" |
660
|
|
|
|
661
|
|
|
if scenario == "eGon2035": |
662
|
|
|
parameters = { |
663
|
|
|
"motorized_individual_travel": { |
664
|
|
|
"NEP C 2035": { |
665
|
|
|
"ev_count": 15100000, |
666
|
|
|
"bev_mini_share": 0.1589, |
667
|
|
|
"bev_medium_share": 0.3533, |
668
|
|
|
"bev_luxury_share": 0.1053, |
669
|
|
|
"phev_mini_share": 0.0984, |
670
|
|
|
"phev_medium_share": 0.2189, |
671
|
|
|
"phev_luxury_share": 0.0652, |
672
|
|
|
"model_parameters": {}, |
673
|
|
|
} |
674
|
|
|
} |
675
|
|
|
} |
676
|
|
|
|
677
|
|
|
elif scenario == "eGon100RE": |
678
|
|
|
# eGon100RE has 3 Scenario variations |
679
|
|
|
# * allocation will always be done for all scenarios |
680
|
|
|
# * model data will be written to tables `egon_etrago_*` only |
681
|
|
|
# for the variation as speciefied in `datasets.yml` |
682
|
|
|
parameters = { |
683
|
|
|
"motorized_individual_travel": { |
684
|
|
|
"Reference 2050": { |
685
|
|
|
"ev_count": 25065000, |
686
|
|
|
"bev_mini_share": 0.1589, |
687
|
|
|
"bev_medium_share": 0.3533, |
688
|
|
|
"bev_luxury_share": 0.1053, |
689
|
|
|
"phev_mini_share": 0.0984, |
690
|
|
|
"phev_medium_share": 0.2189, |
691
|
|
|
"phev_luxury_share": 0.0652, |
692
|
|
|
"model_parameters": {}, |
693
|
|
|
}, |
694
|
|
|
"Mobility Transition 2050": { |
695
|
|
|
"ev_count": 37745000, |
696
|
|
|
"bev_mini_share": 0.1589, |
697
|
|
|
"bev_medium_share": 0.3533, |
698
|
|
|
"bev_luxury_share": 0.1053, |
699
|
|
|
"phev_mini_share": 0.0984, |
700
|
|
|
"phev_medium_share": 0.2189, |
701
|
|
|
"phev_luxury_share": 0.0652, |
702
|
|
|
"model_parameters": {}, |
703
|
|
|
}, |
704
|
|
|
"Electrification 2050": { |
705
|
|
|
"ev_count": 47700000, |
706
|
|
|
"bev_mini_share": 0.1589, |
707
|
|
|
"bev_medium_share": 0.3533, |
708
|
|
|
"bev_luxury_share": 0.1053, |
709
|
|
|
"phev_mini_share": 0.0984, |
710
|
|
|
"phev_medium_share": 0.2189, |
711
|
|
|
"phev_luxury_share": 0.0652, |
712
|
|
|
"model_parameters": {}, |
713
|
|
|
}, |
714
|
|
|
} |
715
|
|
|
} |
716
|
|
|
|
717
|
|
|
else: |
718
|
|
|
print(f"Scenario name {scenario} is not valid.") |
719
|
|
|
parameters = dict() |
720
|
|
|
|
721
|
|
|
return parameters |
722
|
|
|
|
723
|
|
|
|
724
|
|
|
def heat(scenario): |
725
|
|
|
"""Returns paramaters of the heat sector for the selected scenario. |
726
|
|
|
|
727
|
|
|
Parameters |
728
|
|
|
---------- |
729
|
|
|
scenario : str |
730
|
|
|
Name of the scenario. |
731
|
|
|
|
732
|
|
|
Returns |
733
|
|
|
------- |
734
|
|
|
parameters : dict |
735
|
|
|
List of parameters of heat sector |
736
|
|
|
|
737
|
|
|
""" |
738
|
|
|
|
739
|
|
|
if scenario == "eGon2035": |
740
|
|
|
|
741
|
|
|
costs = read_csv(2035) |
742
|
|
|
|
743
|
|
|
parameters = { |
744
|
|
|
"DE_demand_reduction_residential": 0.854314018923104, |
745
|
|
|
"DE_demand_reduction_service": 0.498286864771128, |
746
|
|
|
"DE_district_heating_share": 0.14, |
747
|
|
|
} |
748
|
|
|
|
749
|
|
|
# Insert efficiency in p.u. |
750
|
|
|
parameters["efficiency"] = { |
751
|
|
|
"water_tank_charger": read_costs( |
752
|
|
|
costs, "water tank charger", "efficiency" |
753
|
|
|
), |
754
|
|
|
"water_tank_discharger": read_costs( |
755
|
|
|
costs, "water tank discharger", "efficiency" |
756
|
|
|
), |
757
|
|
|
"central_resistive_heater": read_costs( |
758
|
|
|
costs, "central resistive heater", "efficiency" |
759
|
|
|
), |
760
|
|
|
"central_gas_boiler": read_costs( |
761
|
|
|
costs, "central gas boiler", "efficiency" |
762
|
|
|
), |
763
|
|
|
"rural_resistive_heater": read_costs( |
764
|
|
|
costs, "decentral resistive heater", "efficiency" |
765
|
|
|
), |
766
|
|
|
"rural_gas_boiler": read_costs( |
767
|
|
|
costs, "decentral gas boiler", "efficiency" |
768
|
|
|
), |
769
|
|
|
} |
770
|
|
|
|
771
|
|
|
# Insert overnight investment costs, in EUR/MWh |
772
|
|
|
parameters["overnight_cost"] = { |
773
|
|
|
"central_water_tank": read_costs( |
774
|
|
|
costs, "central water tank storage", "investment" |
775
|
|
|
), |
776
|
|
|
"rural_water_tank": read_costs( |
777
|
|
|
costs, "decentral water tank storage", "investment" |
778
|
|
|
), |
779
|
|
|
} |
780
|
|
|
|
781
|
|
|
# Insert lifetime |
782
|
|
|
parameters["lifetime"] = { |
783
|
|
|
"central_water_tank": read_costs( |
784
|
|
|
costs, "central water tank storage", "lifetime" |
785
|
|
|
), |
786
|
|
|
"rural_water_tank": read_costs( |
787
|
|
|
costs, "decentral water tank storage", "lifetime" |
788
|
|
|
), |
789
|
|
|
} |
790
|
|
|
|
791
|
|
|
# Insert annualized capital costs |
792
|
|
|
parameters["capital_cost"] = {} |
793
|
|
|
|
794
|
|
|
for comp in parameters["overnight_cost"].keys(): |
795
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
796
|
|
|
parameters["overnight_cost"][comp], |
797
|
|
|
parameters["lifetime"][comp], |
798
|
|
|
global_settings("eGon2035")["interest_rate"], |
799
|
|
|
) |
800
|
|
|
|
801
|
|
|
# Insert marginal_costs in EUR/MWh |
802
|
|
|
# marginal cost can include fuel, C02 and operation and maintenance costs |
803
|
|
|
parameters["marginal_cost"] = { |
804
|
|
|
"central_heat_pump": read_costs( |
805
|
|
|
costs, "central air-sourced heat pump", "VOM" |
806
|
|
|
), |
807
|
|
|
"central_gas_chp": read_costs(costs, "central gas CHP", "VOM"), |
808
|
|
|
"central_gas_boiler": read_costs( |
809
|
|
|
costs, "central gas boiler", "VOM" |
810
|
|
|
), |
811
|
|
|
"central_resistive_heater": read_costs( |
812
|
|
|
costs, "central resistive heater", "VOM" |
813
|
|
|
), |
814
|
|
|
"geo_thermal": 2.9, # Danish Energy Agency |
815
|
|
|
} |
816
|
|
|
|
817
|
|
|
elif scenario == "eGon100RE": |
818
|
|
|
parameters = { |
819
|
|
|
"DE_demand_reduction_residential": 0.640720648501849, |
820
|
|
|
"DE_demand_reduction_service": 0.390895195300713, |
821
|
|
|
"DE_district_heating_share": 0.19, |
822
|
|
|
} |
823
|
|
|
|
824
|
|
|
else: |
825
|
|
|
print(f"Scenario name {scenario} is not valid.") |
826
|
|
|
|
827
|
|
|
return parameters |
|
|
|
|
828
|
|
|
|