|
1
|
|
|
"""The central module containing all code dealing with heat sector in etrago |
|
2
|
|
|
""" |
|
3
|
|
|
from geoalchemy2 import Geometry |
|
4
|
|
|
import geopandas as gpd |
|
5
|
|
|
import pandas as pd |
|
6
|
|
|
|
|
7
|
|
|
from egon.data import config, db |
|
8
|
|
|
from egon.data.datasets.etrago_helpers import copy_and_modify_stores |
|
9
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
def insert_H2_overground_storage(scn_name="eGon2035"): |
|
13
|
|
|
"""Insert H2 steel tank storage for every H2 bus.""" |
|
14
|
|
|
# The targets of etrago_hydrogen also serve as source here ಠ_ಠ |
|
15
|
|
|
sources = config.datasets()["etrago_hydrogen"]["sources"] |
|
16
|
|
|
targets = config.datasets()["etrago_hydrogen"]["targets"] |
|
17
|
|
|
|
|
18
|
|
|
# Place storage at every H2 bus |
|
19
|
|
|
storages = db.select_geodataframe( |
|
20
|
|
|
f""" |
|
21
|
|
|
SELECT bus_id, scn_name, geom |
|
22
|
|
|
FROM {sources['buses']['schema']}. |
|
23
|
|
|
{sources['buses']['table']} WHERE carrier = 'H2_grid' |
|
24
|
|
|
AND scn_name = '{scn_name}' AND country = 'DE'""", |
|
25
|
|
|
index_col="bus_id", |
|
26
|
|
|
) |
|
27
|
|
|
|
|
28
|
|
|
carrier = "H2_overground" |
|
29
|
|
|
# Add missing column |
|
30
|
|
|
storages["bus"] = storages.index |
|
31
|
|
|
storages["carrier"] = carrier |
|
32
|
|
|
|
|
33
|
|
|
# Does e_nom_extenable = True render e_nom useless? |
|
34
|
|
|
storages["e_nom"] = 0 |
|
35
|
|
|
storages["e_nom_extendable"] = True |
|
36
|
|
|
|
|
37
|
|
|
# read carrier information from scnario parameter data |
|
38
|
|
|
scn_params = get_sector_parameters("gas", scn_name) |
|
39
|
|
|
storages["capital_cost"] = scn_params["capital_cost"][carrier] |
|
40
|
|
|
storages["lifetime"] = scn_params["lifetime"][carrier] |
|
41
|
|
|
|
|
42
|
|
|
# Remove useless columns |
|
43
|
|
|
storages.drop(columns=["geom"], inplace=True) |
|
44
|
|
|
|
|
45
|
|
|
# Clean table |
|
46
|
|
|
db.execute_sql( |
|
47
|
|
|
f""" |
|
48
|
|
|
DELETE FROM grid.egon_etrago_store WHERE carrier = '{carrier}' AND |
|
49
|
|
|
scn_name = '{scn_name}' AND bus not IN ( |
|
50
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
51
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE' |
|
52
|
|
|
); |
|
53
|
|
|
""" |
|
54
|
|
|
) |
|
55
|
|
|
|
|
56
|
|
|
# Select next id value |
|
57
|
|
|
new_id = db.next_etrago_id("store") |
|
58
|
|
|
storages["store_id"] = range(new_id, new_id + len(storages)) |
|
59
|
|
|
storages = storages.reset_index(drop=True) |
|
60
|
|
|
|
|
61
|
|
|
# Insert data to db |
|
62
|
|
|
storages.to_sql( |
|
63
|
|
|
targets["hydrogen_stores"]["table"], |
|
64
|
|
|
db.engine(), |
|
65
|
|
|
schema=targets["hydrogen_stores"]["schema"], |
|
66
|
|
|
index=False, |
|
67
|
|
|
if_exists="append", |
|
68
|
|
|
) |
|
69
|
|
|
|
|
70
|
|
|
|
|
71
|
|
|
def insert_H2_saltcavern_storage(scn_name="eGon2035"): |
|
72
|
|
|
"""Insert H2 saltcavern storage for every H2_saltcavern bus in the table.""" |
|
73
|
|
|
|
|
74
|
|
|
# Datatables sources and targets |
|
75
|
|
|
sources = config.datasets()["etrago_hydrogen"]["sources"] |
|
76
|
|
|
targets = config.datasets()["etrago_hydrogen"]["targets"] |
|
77
|
|
|
|
|
78
|
|
|
storage_potentials = db.select_geodataframe( |
|
79
|
|
|
f""" |
|
80
|
|
|
SELECT * |
|
81
|
|
|
FROM {sources['saltcavern_data']['schema']}. |
|
82
|
|
|
{sources['saltcavern_data']['table']}""", |
|
83
|
|
|
geom_col="geometry", |
|
84
|
|
|
) |
|
85
|
|
|
|
|
86
|
|
|
# Place storage at every H2 bus from the H2 AC saltcavern map |
|
87
|
|
|
H2_AC_bus_map = db.select_dataframe( |
|
88
|
|
|
f""" |
|
89
|
|
|
SELECT * |
|
90
|
|
|
FROM {sources['H2_AC_map']['schema']}. |
|
91
|
|
|
{sources['H2_AC_map']['table']}""", |
|
92
|
|
|
) |
|
93
|
|
|
|
|
94
|
|
|
storage_potentials["storage_potential"] = ( |
|
95
|
|
|
storage_potentials["area_fraction"] * storage_potentials["potential"] |
|
96
|
|
|
) |
|
97
|
|
|
|
|
98
|
|
|
storage_potentials[ |
|
99
|
|
|
"summed_potential_per_bus" |
|
100
|
|
|
] = storage_potentials.groupby("bus_id")["storage_potential"].transform( |
|
101
|
|
|
"sum" |
|
102
|
|
|
) |
|
103
|
|
|
|
|
104
|
|
|
storages = storage_potentials[ |
|
105
|
|
|
["summed_potential_per_bus", "bus_id"] |
|
106
|
|
|
].copy() |
|
107
|
|
|
storages.drop_duplicates("bus_id", keep="last", inplace=True) |
|
108
|
|
|
|
|
109
|
|
|
# map AC buses in potetial data to respective H2 buses |
|
110
|
|
|
storages = storages.merge( |
|
111
|
|
|
H2_AC_bus_map, left_on="bus_id", right_on="bus_AC" |
|
112
|
|
|
).reindex(columns=["bus_H2", "summed_potential_per_bus", "scn_name"]) |
|
113
|
|
|
|
|
114
|
|
|
# rename columns |
|
115
|
|
|
storages.rename( |
|
116
|
|
|
columns={"bus_H2": "bus", "summed_potential_per_bus": "e_nom_max"}, |
|
117
|
|
|
inplace=True, |
|
118
|
|
|
) |
|
119
|
|
|
|
|
120
|
|
|
# add missing columns |
|
121
|
|
|
carrier = "H2_underground" |
|
122
|
|
|
storages["carrier"] = carrier |
|
123
|
|
|
storages["e_nom"] = 0 |
|
124
|
|
|
storages["e_nom_extendable"] = True |
|
125
|
|
|
|
|
126
|
|
|
# read carrier information from scnario parameter data |
|
127
|
|
|
scn_params = get_sector_parameters("gas", scn_name) |
|
128
|
|
|
storages["capital_cost"] = scn_params["capital_cost"][carrier] |
|
129
|
|
|
storages["lifetime"] = scn_params["lifetime"][carrier] |
|
130
|
|
|
|
|
131
|
|
|
# Clean table |
|
132
|
|
|
db.execute_sql( |
|
133
|
|
|
f""" |
|
134
|
|
|
DELETE FROM grid.egon_etrago_store WHERE carrier = '{carrier}' AND |
|
135
|
|
|
scn_name = '{scn_name}' AND bus not IN ( |
|
136
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus |
|
137
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE' |
|
138
|
|
|
); |
|
139
|
|
|
""" |
|
140
|
|
|
) |
|
141
|
|
|
|
|
142
|
|
|
# Select next id value |
|
143
|
|
|
new_id = db.next_etrago_id("store") |
|
144
|
|
|
storages["store_id"] = range(new_id, new_id + len(storages)) |
|
145
|
|
|
storages = storages.reset_index(drop=True) |
|
146
|
|
|
|
|
147
|
|
|
# # Insert data to db |
|
148
|
|
|
storages.to_sql( |
|
149
|
|
|
targets["hydrogen_stores"]["table"], |
|
150
|
|
|
db.engine(), |
|
151
|
|
|
schema=targets["hydrogen_stores"]["schema"], |
|
152
|
|
|
index=False, |
|
153
|
|
|
if_exists="append", |
|
154
|
|
|
) |
|
155
|
|
|
|
|
156
|
|
|
|
|
157
|
|
|
def calculate_and_map_saltcavern_storage_potential(): |
|
158
|
|
|
"""Calculate site specific storage potential based on InSpEE-DS report.""" |
|
159
|
|
|
|
|
160
|
|
|
# select onshore vg250 data |
|
161
|
|
|
sources = config.datasets()["bgr"]["sources"] |
|
162
|
|
|
vg250_data = db.select_geodataframe( |
|
163
|
|
|
f"""SELECT * FROM |
|
164
|
|
|
{sources['vg250_federal_states']['schema']}. |
|
165
|
|
|
{sources['vg250_federal_states']['table']} |
|
166
|
|
|
WHERE gf = '4'""", |
|
167
|
|
|
index_col="id", |
|
168
|
|
|
geom_col="geometry", |
|
169
|
|
|
) |
|
170
|
|
|
|
|
171
|
|
|
# get saltcavern shapes |
|
172
|
|
|
saltcavern_data = db.select_geodataframe( |
|
173
|
|
|
f"""SELECT * FROM |
|
174
|
|
|
{sources['saltcaverns']['schema']}. |
|
175
|
|
|
{sources['saltcaverns']['table']} |
|
176
|
|
|
""", |
|
177
|
|
|
geom_col="geometry", |
|
178
|
|
|
) |
|
179
|
|
|
|
|
180
|
|
|
# hydrogen storage potential data from InSpEE-DS report |
|
181
|
|
|
hydrogen_storage_potential = pd.DataFrame(columns=["INSPEEDS", "INSPEE"]) |
|
182
|
|
|
|
|
183
|
|
|
# values in MWh, modified to fit the saltstructure data |
|
184
|
|
|
hydrogen_storage_potential.loc["Brandenburg"] = [353e6, 159e6] |
|
185
|
|
|
hydrogen_storage_potential.loc["Mecklenburg-Vorpommern"] = [25e6, 193e6] |
|
186
|
|
|
hydrogen_storage_potential.loc["Nordrhein-Westfalen"] = [168e6, 0] |
|
187
|
|
|
hydrogen_storage_potential.loc["Sachsen-Anhalt"] = [318e6, 147e6] |
|
188
|
|
|
hydrogen_storage_potential.loc["Thüringen"] = [595e6, 0] |
|
189
|
|
|
|
|
190
|
|
|
# distribute SH/HH and NDS/HB potentials by area |
|
191
|
|
|
# overlay saltstructures with federal state, calculate respective area |
|
192
|
|
|
# map storage potential per federal state to area fraction of summed area |
|
193
|
|
|
# potential_i = area_i / area_tot * potential_tot |
|
194
|
|
|
|
|
195
|
|
|
potential_data_dict = { |
|
196
|
|
|
0: { |
|
197
|
|
|
"federal_states": ["Schleswig-Holstein", "Hamburg"], |
|
198
|
|
|
"INSPEEDS": 0, |
|
199
|
|
|
"INSPEE": 413e6, |
|
200
|
|
|
}, |
|
201
|
|
|
1: { |
|
202
|
|
|
"federal_states": ["Niedersachsen", "Bremen"], |
|
203
|
|
|
"INSPEEDS": 253e6, |
|
204
|
|
|
"INSPEE": 702e6, |
|
205
|
|
|
}, |
|
206
|
|
|
} |
|
207
|
|
|
|
|
208
|
|
|
# iterate over aggregated state data for SH/HH and NDS/HB |
|
209
|
|
|
for data in potential_data_dict.values(): |
|
210
|
|
|
individual_areas = {} |
|
211
|
|
|
# individual state areas |
|
212
|
|
|
for federal_state in data["federal_states"]: |
|
213
|
|
|
try: |
|
214
|
|
|
individual_areas[federal_state] = ( |
|
215
|
|
|
saltcavern_data.overlay( |
|
216
|
|
|
vg250_data[vg250_data["gen"] == federal_state], |
|
217
|
|
|
how="intersection", |
|
218
|
|
|
) |
|
219
|
|
|
.to_crs(epsg=25832) |
|
220
|
|
|
.area.sum() |
|
221
|
|
|
) |
|
222
|
|
|
except ValueError: |
|
223
|
|
|
individual_areas[federal_state] = 0 |
|
224
|
|
|
|
|
225
|
|
|
# derives weights from fraction of individual state area to total area |
|
226
|
|
|
total_area = sum(individual_areas.values()) |
|
227
|
|
|
weights = { |
|
228
|
|
|
f: individual_areas[f] / total_area if total_area > 0 else 0 |
|
229
|
|
|
for f in data["federal_states"] |
|
230
|
|
|
} |
|
231
|
|
|
# write data into potential dataframe |
|
232
|
|
|
for federal_state in data["federal_states"]: |
|
233
|
|
|
hydrogen_storage_potential.loc[federal_state] = [ |
|
234
|
|
|
data["INSPEEDS"] * weights[federal_state], |
|
235
|
|
|
data["INSPEE"] * weights[federal_state], |
|
236
|
|
|
] |
|
237
|
|
|
|
|
238
|
|
|
# calculate total storage potential |
|
239
|
|
|
hydrogen_storage_potential["total"] = ( |
|
240
|
|
|
# currently only InSpEE saltstructure shapefiles are available |
|
241
|
|
|
hydrogen_storage_potential["INSPEEDS"] |
|
242
|
|
|
+ hydrogen_storage_potential["INSPEE"] |
|
243
|
|
|
) |
|
244
|
|
|
|
|
245
|
|
|
saltcaverns_in_fed_state = gpd.GeoDataFrame() |
|
246
|
|
|
|
|
247
|
|
|
# intersection of saltstructures with federal state |
|
248
|
|
|
for federal_state in hydrogen_storage_potential.index: |
|
249
|
|
|
federal_state_data = vg250_data[vg250_data["gen"] == federal_state] |
|
250
|
|
|
|
|
251
|
|
|
# skip if federal state not available (e.g. local testing) |
|
252
|
|
|
if federal_state_data.size > 0: |
|
253
|
|
|
saltcaverns_in_fed_state = saltcaverns_in_fed_state.append( |
|
254
|
|
|
saltcavern_data.overlay(federal_state_data, how="intersection") |
|
255
|
|
|
) |
|
256
|
|
|
# write total potential in column, will be overwritten by actual |
|
257
|
|
|
# value later |
|
258
|
|
|
saltcaverns_in_fed_state.loc[ |
|
259
|
|
|
saltcaverns_in_fed_state["gen"] == federal_state, "potential" |
|
260
|
|
|
] = hydrogen_storage_potential.loc[federal_state, "total"] |
|
261
|
|
|
|
|
262
|
|
|
# drop all federal state data columns except name of the state |
|
263
|
|
|
saltcaverns_in_fed_state.drop( |
|
264
|
|
|
columns=[ |
|
265
|
|
|
col |
|
266
|
|
|
for col in federal_state_data.columns |
|
|
|
|
|
|
267
|
|
|
if col not in ["gen", "geometry"] |
|
268
|
|
|
], |
|
269
|
|
|
inplace=True, |
|
270
|
|
|
) |
|
271
|
|
|
|
|
272
|
|
|
# this is required for the first loop as no geometry has been set |
|
273
|
|
|
# prior to this, also set crs to match original saltcavern_data crs |
|
274
|
|
|
saltcaverns_in_fed_state.set_geometry("geometry") |
|
275
|
|
|
saltcaverns_in_fed_state.set_crs(saltcavern_data.crs, inplace=True) |
|
276
|
|
|
saltcaverns_in_fed_state.to_crs(epsg=4326, inplace=True) |
|
277
|
|
|
|
|
278
|
|
|
# recalculate area in case structures have been split at federal |
|
279
|
|
|
# state borders in original data epsg |
|
280
|
|
|
# mapping of potential to individual H2 storage is in |
|
281
|
|
|
# hydrogen_etrago/storage.py |
|
282
|
|
|
saltcaverns_in_fed_state["shape_star"] = saltcaverns_in_fed_state.to_crs( |
|
283
|
|
|
epsg=25832 |
|
284
|
|
|
).area |
|
285
|
|
|
|
|
286
|
|
|
# get substation voronois |
|
287
|
|
|
substation_voronoi = ( |
|
288
|
|
|
db.select_geodataframe( |
|
289
|
|
|
f""" |
|
290
|
|
|
SELECT * FROM grid.egon_hvmv_substation_voronoi |
|
291
|
|
|
""", |
|
292
|
|
|
index_col="bus_id", |
|
293
|
|
|
) |
|
294
|
|
|
.to_crs(4326) |
|
295
|
|
|
.sort_index() |
|
296
|
|
|
) |
|
297
|
|
|
|
|
298
|
|
|
# get substations |
|
299
|
|
|
substations = db.select_geodataframe( |
|
300
|
|
|
f""" |
|
301
|
|
|
SELECT * FROM grid.egon_hvmv_substation""", |
|
302
|
|
|
geom_col="point", |
|
303
|
|
|
index_col="bus_id", |
|
304
|
|
|
).to_crs(4326) |
|
305
|
|
|
|
|
306
|
|
|
# create 500 m radius around substations as storage potential area |
|
307
|
|
|
# epsg for buffer in line with original saltstructre data |
|
308
|
|
|
substations_inflation = gpd.GeoDataFrame( |
|
309
|
|
|
geometry=substations.to_crs(25832).buffer(500).to_crs(4326) |
|
310
|
|
|
).sort_index() |
|
311
|
|
|
|
|
312
|
|
|
# !!row wise!! intersection between the substations inflation and the |
|
313
|
|
|
# respective voronoi (overlay only allows for intersection to all |
|
314
|
|
|
# voronois) |
|
315
|
|
|
voroni_buffer_intersect = substations_inflation["geometry"].intersection( |
|
316
|
|
|
substation_voronoi["geom"] |
|
317
|
|
|
) |
|
318
|
|
|
|
|
319
|
|
|
# make intersection a dataframe to kepp bus_id column in potential area |
|
320
|
|
|
# overlay |
|
321
|
|
|
voroni_buffer_intersect = gpd.GeoDataFrame( |
|
322
|
|
|
{ |
|
323
|
|
|
"bus_id": voroni_buffer_intersect.index.tolist(), |
|
324
|
|
|
"geometry": voroni_buffer_intersect.geometry.tolist(), |
|
325
|
|
|
} |
|
326
|
|
|
).set_crs(epsg=4326) |
|
327
|
|
|
|
|
328
|
|
|
# overlay saltstructures with substation buffer |
|
329
|
|
|
potential_areas = saltcaverns_in_fed_state.overlay( |
|
330
|
|
|
voroni_buffer_intersect, how="intersection" |
|
331
|
|
|
).set_crs(epsg=4326) |
|
332
|
|
|
|
|
333
|
|
|
# calculate area fraction of individual site over total area within |
|
334
|
|
|
# the same federal state |
|
335
|
|
|
potential_areas["area_fraction"] = potential_areas.to_crs( |
|
336
|
|
|
epsg=25832 |
|
337
|
|
|
).area / potential_areas.groupby("gen")["shape_star"].transform("sum") |
|
338
|
|
|
|
|
339
|
|
|
return potential_areas |
|
340
|
|
|
|
|
341
|
|
|
def write_saltcavern_potential(): |
|
342
|
|
|
"""Write saltcavern potentials in the database""" |
|
343
|
|
|
potential_areas = calculate_and_map_saltcavern_storage_potential() |
|
344
|
|
|
|
|
345
|
|
|
# write information to saltcavern data |
|
346
|
|
|
targets = config.datasets()["bgr"]["targets"] |
|
347
|
|
|
potential_areas.to_crs(epsg=4326).to_postgis( |
|
348
|
|
|
targets["storage_potential"]["table"], |
|
349
|
|
|
db.engine(), |
|
350
|
|
|
schema=targets["storage_potential"]["schema"], |
|
351
|
|
|
index=True, |
|
352
|
|
|
if_exists="replace", |
|
353
|
|
|
dtype={"geometry": Geometry()}, |
|
354
|
|
|
) |
|
355
|
|
|
|
|
356
|
|
|
|
|
357
|
|
|
def insert_H2_storage_eGon100RE(): |
|
358
|
|
|
"""Copy H2 storage from the eGon2035 to the eGon100RE scenario.""" |
|
359
|
|
|
copy_and_modify_stores( |
|
360
|
|
|
"eGon2035", "eGon100RE", ["H2_underground", "H2_overground"], "gas" |
|
361
|
|
|
) |
|
362
|
|
|
|