1
|
|
|
"""The central module containing all code dealing with importing Zensus data. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
from pathlib import Path |
5
|
|
|
from urllib.request import urlretrieve |
6
|
|
|
import csv |
7
|
|
|
import json |
8
|
|
|
import os |
9
|
|
|
import zipfile |
10
|
|
|
|
11
|
|
|
from shapely.geometry import Point, shape |
12
|
|
|
from shapely.prepared import prep |
13
|
|
|
import pandas as pd |
14
|
|
|
|
15
|
|
|
from egon.data import db, subprocess |
16
|
|
|
from egon.data.config import settings |
17
|
|
|
from egon.data.datasets import Dataset |
18
|
|
|
import egon.data.config |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
class ZensusPopulation(Dataset): |
22
|
|
|
def __init__(self, dependencies): |
23
|
|
|
super().__init__( |
24
|
|
|
name="ZensusPopulation", |
25
|
|
|
version="0.0.0", |
26
|
|
|
dependencies=dependencies, |
27
|
|
|
tasks=( |
28
|
|
|
download_zensus_pop, |
29
|
|
|
create_zensus_pop_table, |
30
|
|
|
population_to_postgres, |
31
|
|
|
), |
32
|
|
|
) |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class ZensusMiscellaneous(Dataset): |
36
|
|
|
def __init__(self, dependencies): |
37
|
|
|
super().__init__( |
38
|
|
|
name="ZensusMiscellaneous", |
39
|
|
|
version="0.0.0", |
40
|
|
|
dependencies=dependencies, |
41
|
|
|
tasks=( |
42
|
|
|
download_zensus_misc, |
43
|
|
|
create_zensus_misc_tables, |
44
|
|
|
zensus_misc_to_postgres, |
45
|
|
|
), |
46
|
|
|
) |
47
|
|
|
|
48
|
|
|
|
49
|
|
View Code Duplication |
def download_zensus_pop(): |
|
|
|
|
50
|
|
|
"""Download Zensus csv file on population per hectar grid cell.""" |
51
|
|
|
data_config = egon.data.config.datasets() |
52
|
|
|
zensus_population_config = data_config["zensus_population"][ |
53
|
|
|
"original_data" |
54
|
|
|
] |
55
|
|
|
download_directory = Path(".") / "zensus_population" |
56
|
|
|
# Create the folder, if it does not exists already |
57
|
|
|
if not os.path.exists(download_directory): |
58
|
|
|
os.mkdir(download_directory) |
59
|
|
|
|
60
|
|
|
target_file = ( |
61
|
|
|
download_directory / zensus_population_config["target"]["file"] |
62
|
|
|
) |
63
|
|
|
|
64
|
|
|
if not os.path.isfile(target_file): |
65
|
|
|
urlretrieve(zensus_population_config["source"]["url"], target_file) |
66
|
|
|
|
67
|
|
|
|
68
|
|
|
def download_zensus_misc(): |
69
|
|
|
"""Download Zensus csv files on data per hectar grid cell.""" |
70
|
|
|
|
71
|
|
|
def download_and_check(target_file_misc, max_iteration=5): |
72
|
|
|
"""Download file if doesnt exist and check afterwards. If badzip |
73
|
|
|
remove file and re-download. Repeat until file is fine or reached |
74
|
|
|
maximum iterations.""" |
75
|
|
|
bad_file = True |
76
|
|
|
count = 0 |
77
|
|
|
while bad_file: |
78
|
|
|
|
79
|
|
|
if not os.path.isfile(target_file_misc): |
80
|
|
|
urlretrieve(url, target_file_misc) |
81
|
|
|
|
82
|
|
|
# check zipfile |
83
|
|
|
try: |
84
|
|
|
_ = zipfile.ZipFile(target_file_misc) |
85
|
|
|
print(f"Zip file {target_file_misc} is good.") |
86
|
|
|
bad_file = False |
87
|
|
|
except zipfile.BadZipFile: |
88
|
|
|
os.remove(target_file_misc) |
89
|
|
|
count += 1 |
90
|
|
|
if count > max_iteration: |
91
|
|
|
raise zipfile.BadZipFile( |
92
|
|
|
f"{target_file_misc} is" f" not a zip file" |
93
|
|
|
) |
94
|
|
|
pass |
95
|
|
|
|
96
|
|
|
# Get data config |
97
|
|
|
data_config = egon.data.config.datasets() |
98
|
|
|
download_directory = Path(".") / "zensus_population" |
99
|
|
|
# Create the folder, if it does not exists already |
100
|
|
|
if not os.path.exists(download_directory): |
101
|
|
|
os.mkdir(download_directory) |
102
|
|
|
# Download remaining zensus data set on households, buildings, apartments |
103
|
|
|
|
104
|
|
|
zensus_config = data_config["zensus_misc"]["original_data"] |
105
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
106
|
|
|
zensus_url = zensus_config["source"]["url"] |
107
|
|
|
zensus_files = zensus_misc_processed["file_table_map"].keys() |
108
|
|
|
url_path_map = list(zip(zensus_url, zensus_files)) |
109
|
|
|
|
110
|
|
|
for url, path in url_path_map: |
111
|
|
|
target_file_misc = download_directory / path |
112
|
|
|
|
113
|
|
|
download_and_check(target_file_misc, max_iteration=5) |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
def create_zensus_pop_table(): |
117
|
|
|
"""Create tables for zensus data in postgres database""" |
118
|
|
|
|
119
|
|
|
# Get information from data configuration file |
120
|
|
|
data_config = egon.data.config.datasets() |
121
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
122
|
|
|
|
123
|
|
|
# Create target schema |
124
|
|
|
db.execute_sql( |
125
|
|
|
f"CREATE SCHEMA IF NOT EXISTS {zensus_population_processed['schema']};" |
126
|
|
|
) |
127
|
|
|
|
128
|
|
|
# Create table for population data |
129
|
|
|
population_table = ( |
130
|
|
|
f"{zensus_population_processed['schema']}" |
131
|
|
|
f".{zensus_population_processed['table']}" |
132
|
|
|
) |
133
|
|
|
|
134
|
|
|
db.execute_sql(f"DROP TABLE IF EXISTS {population_table} CASCADE;") |
135
|
|
|
|
136
|
|
|
db.execute_sql( |
137
|
|
|
f"CREATE TABLE {population_table}" |
138
|
|
|
f""" (id SERIAL NOT NULL, |
139
|
|
|
grid_id character varying(254) NOT NULL, |
140
|
|
|
x_mp int, |
141
|
|
|
y_mp int, |
142
|
|
|
population smallint, |
143
|
|
|
geom_point geometry(Point,3035), |
144
|
|
|
geom geometry (Polygon, 3035), |
145
|
|
|
CONSTRAINT {zensus_population_processed['table']}_pkey |
146
|
|
|
PRIMARY KEY (id) |
147
|
|
|
); |
148
|
|
|
""" |
149
|
|
|
) |
150
|
|
|
|
151
|
|
|
|
152
|
|
|
def create_zensus_misc_tables(): |
153
|
|
|
"""Create tables for zensus data in postgres database""" |
154
|
|
|
|
155
|
|
|
# Get information from data configuration file |
156
|
|
|
data_config = egon.data.config.datasets() |
157
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
158
|
|
|
|
159
|
|
|
# Create target schema |
160
|
|
|
db.execute_sql( |
161
|
|
|
f"CREATE SCHEMA IF NOT EXISTS {zensus_misc_processed['schema']};" |
162
|
|
|
) |
163
|
|
|
|
164
|
|
|
# Create tables for household, apartment and building |
165
|
|
|
for table in zensus_misc_processed["file_table_map"].values(): |
166
|
|
|
misc_table = f"{zensus_misc_processed['schema']}.{table}" |
167
|
|
|
|
168
|
|
|
db.execute_sql(f"DROP TABLE IF EXISTS {misc_table} CASCADE;") |
169
|
|
|
db.execute_sql( |
170
|
|
|
f"CREATE TABLE {misc_table}" |
171
|
|
|
f""" (id SERIAL, |
172
|
|
|
grid_id VARCHAR(50), |
173
|
|
|
grid_id_new VARCHAR (50), |
174
|
|
|
attribute VARCHAR(50), |
175
|
|
|
characteristics_code smallint, |
176
|
|
|
characteristics_text text, |
177
|
|
|
quantity smallint, |
178
|
|
|
quantity_q smallint, |
179
|
|
|
zensus_population_id int, |
180
|
|
|
CONSTRAINT {table}_pkey PRIMARY KEY (id) |
181
|
|
|
); |
182
|
|
|
""" |
183
|
|
|
) |
184
|
|
|
|
185
|
|
|
|
186
|
|
|
def target(source, dataset): |
187
|
|
|
"""Generate the target path corresponding to a source path. |
188
|
|
|
|
189
|
|
|
Parameters |
190
|
|
|
---------- |
191
|
|
|
dataset: str |
192
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
193
|
|
|
(`dataset='Schleswig-Holstein'`). |
194
|
|
|
In production mode, data covering entire Germany |
195
|
|
|
is used. In the test mode a subset of this data is used for testing the |
196
|
|
|
workflow. |
197
|
|
|
Returns |
198
|
|
|
------- |
199
|
|
|
Path |
200
|
|
|
Path to target csv-file |
201
|
|
|
|
202
|
|
|
""" |
203
|
|
|
return Path( |
204
|
|
|
os.path.join(Path("."), "zensus_population", source.stem) |
205
|
|
|
+ "." |
206
|
|
|
+ dataset |
207
|
|
|
+ source.suffix |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
|
211
|
|
|
def select_geom(): |
212
|
|
|
"""Select the union of the geometries of Schleswig-Holstein from the |
213
|
|
|
database, convert their projection to the one used in the CSV file, |
214
|
|
|
output the result to stdout as a GeoJSON string and read it into a |
215
|
|
|
prepared shape for filtering. |
216
|
|
|
|
217
|
|
|
""" |
218
|
|
|
docker_db_config = db.credentials() |
219
|
|
|
|
220
|
|
|
geojson = subprocess.run( |
221
|
|
|
["ogr2ogr"] |
222
|
|
|
+ ["-s_srs", "epsg:4326"] |
223
|
|
|
+ ["-t_srs", "epsg:3035"] |
224
|
|
|
+ ["-f", "GeoJSON"] |
225
|
|
|
+ ["/vsistdout/"] |
226
|
|
|
+ [ |
227
|
|
|
f"PG:host={docker_db_config['HOST']}" |
228
|
|
|
f" user='{docker_db_config['POSTGRES_USER']}'" |
229
|
|
|
f" password='{docker_db_config['POSTGRES_PASSWORD']}'" |
230
|
|
|
f" port={docker_db_config['PORT']}" |
231
|
|
|
f" dbname='{docker_db_config['POSTGRES_DB']}'" |
232
|
|
|
] |
233
|
|
|
+ ["-sql", "SELECT ST_Union(geometry) FROM boundaries.vg250_lan"], |
234
|
|
|
text=True, |
235
|
|
|
) |
236
|
|
|
features = json.loads(geojson.stdout)["features"] |
237
|
|
|
assert ( |
238
|
|
|
len(features) == 1 |
239
|
|
|
), f"Found {len(features)} geometry features, expected exactly one." |
240
|
|
|
|
241
|
|
|
return prep(shape(features[0]["geometry"])) |
242
|
|
|
|
243
|
|
|
|
244
|
|
|
def filter_zensus_population(filename, dataset): |
245
|
|
|
"""This block filters lines in the source CSV file and copies |
246
|
|
|
the appropriate ones to the destination based on geometry. |
247
|
|
|
|
248
|
|
|
|
249
|
|
|
Parameters |
250
|
|
|
---------- |
251
|
|
|
filename : str |
252
|
|
|
Path to input csv-file |
253
|
|
|
dataset: str, optional |
254
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
255
|
|
|
(`dataset='Schleswig-Holstein'`). |
256
|
|
|
In production mode, data covering entire Germany |
257
|
|
|
is used. In the test mode a subset of this data is used for testing the |
258
|
|
|
workflow. |
259
|
|
|
Returns |
260
|
|
|
------- |
261
|
|
|
str |
262
|
|
|
Path to output csv-file |
263
|
|
|
|
264
|
|
|
""" |
265
|
|
|
|
266
|
|
|
csv_file = Path(filename).resolve(strict=True) |
267
|
|
|
|
268
|
|
|
schleswig_holstein = select_geom() |
269
|
|
|
|
270
|
|
|
if not os.path.isfile(target(csv_file, dataset)): |
271
|
|
|
|
272
|
|
|
with open(csv_file, mode="r", newline="") as input_lines: |
273
|
|
|
rows = csv.DictReader(input_lines, delimiter=";") |
274
|
|
|
gitter_ids = set() |
275
|
|
|
with open( |
276
|
|
|
target(csv_file, dataset), mode="w", newline="" |
277
|
|
|
) as destination: |
278
|
|
|
output = csv.DictWriter( |
279
|
|
|
destination, delimiter=";", fieldnames=rows.fieldnames |
280
|
|
|
) |
281
|
|
|
output.writeheader() |
282
|
|
|
output.writerows( |
283
|
|
|
gitter_ids.add(row["Gitter_ID_100m"]) or row |
284
|
|
|
for row in rows |
285
|
|
|
if schleswig_holstein.intersects( |
286
|
|
|
Point(float(row["x_mp_100m"]), float(row["y_mp_100m"])) |
287
|
|
|
) |
288
|
|
|
) |
289
|
|
|
return target(csv_file, dataset) |
290
|
|
|
|
291
|
|
|
|
292
|
|
|
def filter_zensus_misc(filename, dataset): |
293
|
|
|
"""This block filters lines in the source CSV file and copies |
294
|
|
|
the appropriate ones to the destination based on grid_id values. |
295
|
|
|
|
296
|
|
|
|
297
|
|
|
Parameters |
298
|
|
|
---------- |
299
|
|
|
filename : str |
300
|
|
|
Path to input csv-file |
301
|
|
|
dataset: str, optional |
302
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
303
|
|
|
(`dataset='Schleswig-Holstein'`). |
304
|
|
|
In production mode, data covering entire Germany |
305
|
|
|
is used. In the test mode a subset of this data is used for testing the |
306
|
|
|
workflow. |
307
|
|
|
Returns |
308
|
|
|
------- |
309
|
|
|
str |
310
|
|
|
Path to output csv-file |
311
|
|
|
|
312
|
|
|
""" |
313
|
|
|
csv_file = Path(filename).resolve(strict=True) |
314
|
|
|
|
315
|
|
|
gitter_ids = set( |
316
|
|
|
pd.read_sql( |
317
|
|
|
"SELECT grid_id from society.destatis_zensus_population_per_ha", |
318
|
|
|
con=db.engine(), |
319
|
|
|
).grid_id.values |
320
|
|
|
) |
321
|
|
|
|
322
|
|
|
if not os.path.isfile(target(csv_file, dataset)): |
323
|
|
|
with open( |
324
|
|
|
csv_file, mode="r", newline="", encoding="iso-8859-1" |
325
|
|
|
) as inputs: |
326
|
|
|
rows = csv.DictReader(inputs, delimiter=",") |
327
|
|
|
with open( |
328
|
|
|
target(csv_file, dataset), |
329
|
|
|
mode="w", |
330
|
|
|
newline="", |
331
|
|
|
encoding="iso-8859-1", |
332
|
|
|
) as destination: |
333
|
|
|
output = csv.DictWriter( |
334
|
|
|
destination, delimiter=",", fieldnames=rows.fieldnames |
335
|
|
|
) |
336
|
|
|
output.writeheader() |
337
|
|
|
output.writerows( |
338
|
|
|
row for row in rows if row["Gitter_ID_100m"] in gitter_ids |
339
|
|
|
) |
340
|
|
|
return target(csv_file, dataset) |
341
|
|
|
|
342
|
|
|
|
343
|
|
|
def population_to_postgres(): |
344
|
|
|
"""Import Zensus population data to postgres database""" |
345
|
|
|
# Get information from data configuration file |
346
|
|
|
data_config = egon.data.config.datasets() |
347
|
|
|
zensus_population_orig = data_config["zensus_population"]["original_data"] |
348
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
349
|
|
|
input_file = ( |
350
|
|
|
Path(".") |
351
|
|
|
/ "zensus_population" |
352
|
|
|
/ zensus_population_orig["target"]["file"] |
353
|
|
|
) |
354
|
|
|
dataset = settings()["egon-data"]["--dataset-boundary"] |
355
|
|
|
|
356
|
|
|
# Read database configuration from docker-compose.yml |
357
|
|
|
docker_db_config = db.credentials() |
358
|
|
|
|
359
|
|
|
population_table = ( |
360
|
|
|
f"{zensus_population_processed['schema']}" |
361
|
|
|
f".{zensus_population_processed['table']}" |
362
|
|
|
) |
363
|
|
|
|
364
|
|
|
with zipfile.ZipFile(input_file) as zf: |
365
|
|
|
for filename in zf.namelist(): |
366
|
|
|
|
367
|
|
|
zf.extract(filename) |
368
|
|
|
|
369
|
|
|
if dataset == "Everything": |
370
|
|
|
filename_insert = filename |
371
|
|
|
else: |
372
|
|
|
filename_insert = filter_zensus_population(filename, dataset) |
373
|
|
|
|
374
|
|
|
host = ["-h", f"{docker_db_config['HOST']}"] |
375
|
|
|
port = ["-p", f"{docker_db_config['PORT']}"] |
376
|
|
|
pgdb = ["-d", f"{docker_db_config['POSTGRES_DB']}"] |
377
|
|
|
user = ["-U", f"{docker_db_config['POSTGRES_USER']}"] |
378
|
|
|
command = [ |
379
|
|
|
"-c", |
380
|
|
|
rf"\copy {population_table} (grid_id, x_mp, y_mp, population)" |
381
|
|
|
rf" FROM '{filename_insert}' DELIMITER ';' CSV HEADER;", |
382
|
|
|
] |
383
|
|
|
subprocess.run( |
384
|
|
|
["psql"] + host + port + pgdb + user + command, |
385
|
|
|
env={"PGPASSWORD": docker_db_config["POSTGRES_PASSWORD"]}, |
386
|
|
|
) |
387
|
|
|
|
388
|
|
|
os.remove(filename) |
|
|
|
|
389
|
|
|
|
390
|
|
|
db.execute_sql( |
391
|
|
|
f"UPDATE {population_table} zs" |
392
|
|
|
" SET geom_point=ST_SetSRID(ST_MakePoint(zs.x_mp, zs.y_mp), 3035);" |
393
|
|
|
) |
394
|
|
|
|
395
|
|
|
db.execute_sql( |
396
|
|
|
f"UPDATE {population_table} zs" |
397
|
|
|
""" SET geom=ST_SetSRID( |
398
|
|
|
(ST_MakeEnvelope(zs.x_mp-50,zs.y_mp-50,zs.x_mp+50,zs.y_mp+50)), |
399
|
|
|
3035 |
400
|
|
|
); |
401
|
|
|
""" |
402
|
|
|
) |
403
|
|
|
|
404
|
|
|
db.execute_sql( |
405
|
|
|
f"CREATE INDEX {zensus_population_processed['table']}_geom_idx ON" |
406
|
|
|
f" {population_table} USING gist (geom);" |
407
|
|
|
) |
408
|
|
|
|
409
|
|
|
db.execute_sql( |
410
|
|
|
f"CREATE INDEX" |
411
|
|
|
f" {zensus_population_processed['table']}_geom_point_idx" |
412
|
|
|
f" ON {population_table} USING gist (geom_point);" |
413
|
|
|
) |
414
|
|
|
|
415
|
|
|
|
416
|
|
|
def zensus_misc_to_postgres(): |
417
|
|
|
"""Import data on buildings, households and apartments to postgres db""" |
418
|
|
|
|
419
|
|
|
# Get information from data configuration file |
420
|
|
|
data_config = egon.data.config.datasets() |
421
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
422
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
423
|
|
|
file_path = Path(".") / "zensus_population" |
424
|
|
|
dataset = settings()["egon-data"]["--dataset-boundary"] |
425
|
|
|
|
426
|
|
|
population_table = ( |
427
|
|
|
f"{zensus_population_processed['schema']}" |
428
|
|
|
f".{zensus_population_processed['table']}" |
429
|
|
|
) |
430
|
|
|
|
431
|
|
|
# Read database configuration from docker-compose.yml |
432
|
|
|
docker_db_config = db.credentials() |
433
|
|
|
|
434
|
|
|
for input_file, table in zensus_misc_processed["file_table_map"].items(): |
435
|
|
|
with zipfile.ZipFile(file_path / input_file) as zf: |
436
|
|
|
csvfiles = [n for n in zf.namelist() if n.lower()[-3:] == "csv"] |
437
|
|
|
for filename in csvfiles: |
438
|
|
|
zf.extract(filename) |
439
|
|
|
|
440
|
|
|
if dataset == "Everything": |
441
|
|
|
filename_insert = filename |
442
|
|
|
else: |
443
|
|
|
filename_insert = filter_zensus_misc(filename, dataset) |
444
|
|
|
|
445
|
|
|
host = ["-h", f"{docker_db_config['HOST']}"] |
446
|
|
|
port = ["-p", f"{docker_db_config['PORT']}"] |
447
|
|
|
pgdb = ["-d", f"{docker_db_config['POSTGRES_DB']}"] |
448
|
|
|
user = ["-U", f"{docker_db_config['POSTGRES_USER']}"] |
449
|
|
|
command = [ |
450
|
|
|
"-c", |
451
|
|
|
rf"\copy {zensus_population_processed['schema']}.{table}" |
452
|
|
|
f"""(grid_id, |
453
|
|
|
grid_id_new, |
454
|
|
|
attribute, |
455
|
|
|
characteristics_code, |
456
|
|
|
characteristics_text, |
457
|
|
|
quantity, |
458
|
|
|
quantity_q) |
459
|
|
|
FROM '{filename_insert}' DELIMITER ',' |
460
|
|
|
CSV HEADER |
461
|
|
|
ENCODING 'iso-8859-1';""", |
462
|
|
|
] |
463
|
|
|
subprocess.run( |
464
|
|
|
["psql"] + host + port + pgdb + user + command, |
465
|
|
|
env={"PGPASSWORD": docker_db_config["POSTGRES_PASSWORD"]}, |
466
|
|
|
) |
467
|
|
|
|
468
|
|
|
os.remove(filename) |
|
|
|
|
469
|
|
|
|
470
|
|
|
db.execute_sql( |
471
|
|
|
f"""UPDATE {zensus_population_processed['schema']}.{table} as b |
472
|
|
|
SET zensus_population_id = zs.id |
473
|
|
|
FROM {population_table} zs |
474
|
|
|
WHERE b.grid_id = zs.grid_id;""" |
475
|
|
|
) |
476
|
|
|
|
477
|
|
|
db.execute_sql( |
478
|
|
|
f"""ALTER TABLE {zensus_population_processed['schema']}.{table} |
479
|
|
|
ADD CONSTRAINT {table}_fkey |
480
|
|
|
FOREIGN KEY (zensus_population_id) |
481
|
|
|
REFERENCES {population_table}(id);""" |
482
|
|
|
) |
483
|
|
|
|
484
|
|
|
# Create combined table |
485
|
|
|
create_combined_zensus_table() |
486
|
|
|
|
487
|
|
|
# Delete entries for unpopulated cells |
488
|
|
|
adjust_zensus_misc() |
489
|
|
|
|
490
|
|
|
|
491
|
|
|
def create_combined_zensus_table(): |
492
|
|
|
"""Create combined table with buildings, apartments and population per cell |
493
|
|
|
|
494
|
|
|
Only apartment and building data with acceptable data quality |
495
|
|
|
(quantity_q<2) is used, all other data is dropped. For more details on data |
496
|
|
|
quality see Zensus docs: |
497
|
|
|
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html |
498
|
|
|
|
499
|
|
|
If there's no data on buildings or apartments for a certain cell, the value |
500
|
|
|
for building_count resp. apartment_count contains NULL. |
501
|
|
|
""" |
502
|
|
|
sql_script = os.path.join( |
503
|
|
|
os.path.dirname(__file__), "create_combined_zensus_table.sql" |
504
|
|
|
) |
505
|
|
|
db.execute_sql_script(sql_script) |
506
|
|
|
|
507
|
|
|
|
508
|
|
|
def adjust_zensus_misc(): |
509
|
|
|
"""Delete unpopulated cells in zensus-households, -buildings and -apartments |
510
|
|
|
|
511
|
|
|
Some unpopulated zensus cells are listed in: |
512
|
|
|
- egon_destatis_zensus_household_per_ha |
513
|
|
|
- egon_destatis_zensus_building_per_ha |
514
|
|
|
- egon_destatis_zensus_apartment_per_ha |
515
|
|
|
|
516
|
|
|
This can be caused by missing population |
517
|
|
|
information due to privacy or other special cases (e.g. holiday homes |
518
|
|
|
are listed as buildings but are not permanently populated.) |
519
|
|
|
In the follwong tasks of egon-data, only data of populated cells is used. |
520
|
|
|
|
521
|
|
|
Returns |
522
|
|
|
------- |
523
|
|
|
None. |
524
|
|
|
|
525
|
|
|
""" |
526
|
|
|
# Get information from data configuration file |
527
|
|
|
data_config = egon.data.config.datasets() |
528
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
529
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
530
|
|
|
|
531
|
|
|
population_table = ( |
532
|
|
|
f"{zensus_population_processed['schema']}" |
533
|
|
|
f".{zensus_population_processed['table']}" |
534
|
|
|
) |
535
|
|
|
|
536
|
|
|
for input_file, table in zensus_misc_processed["file_table_map"].items(): |
537
|
|
|
db.execute_sql( |
538
|
|
|
f""" |
539
|
|
|
DELETE FROM {zensus_population_processed['schema']}.{table} as b |
540
|
|
|
WHERE b.zensus_population_id IN ( |
541
|
|
|
SELECT id FROM {population_table} |
542
|
|
|
WHERE population < 0);""" |
543
|
|
|
) |
544
|
|
|
|