1
|
|
|
""" |
2
|
|
|
Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate new |
3
|
|
|
PV rooftop generators for scenarios eGon2035 and eGon100RE. |
4
|
|
|
Data cleaning: Drop duplicates and entries with missing critical data. Determine most |
5
|
|
|
plausible capacity from multiple values given in MaStR data. Drop generators which don't |
6
|
|
|
have any plausible capacity data (23.5MW > P > 0.1). Randomly and weighted add a |
7
|
|
|
start-up date if it is missing. Extract zip and municipality from 'Standort' given in |
8
|
|
|
MaStR data. Geocode unique zip and municipality combinations with Nominatim (1sec |
9
|
|
|
delay). Drop generators for which geocoding failed or which are located outside the |
10
|
|
|
municipalities of Germany. Add some visual sanity checks for cleaned data. |
11
|
|
|
Allocation of MaStR data: Allocate each generator to an existing building from OSM. |
12
|
|
|
Determine the quantile each generator and building is in depending on the capacity of |
13
|
|
|
the generator and the area of the polygon of the building. Randomly distribute |
14
|
|
|
generators within each municipality preferably within the same building area quantile as |
15
|
|
|
the generators are capacity wise. If not enough buildings exists within a municipality |
16
|
|
|
and quantile additional buildings from other quantiles are chosen randomly. |
17
|
|
|
Desegregation of pv rooftop scenarios: The scenario data per federal state is linear |
18
|
|
|
distributed to the mv grid districts according to the pv rooftop potential per mv grid |
19
|
|
|
district. The rooftop potential is estimated from the building area given from the OSM |
20
|
|
|
buildings. Grid districts, which are located in several federal states, are allocated PV |
21
|
|
|
capacity according to their respective roof potential in the individual federal states. |
22
|
|
|
The desegregation of PV plants within a grid districts respects existing plants from |
23
|
|
|
MaStR, which did not reach their end of life. New PV plants are randomly and weighted |
24
|
|
|
generated using a breakdown of MaStR data as generator basis. Plant metadata (e.g. plant |
25
|
|
|
orientation) is also added random and weighted from MaStR data as basis. |
26
|
|
|
""" |
27
|
|
|
from __future__ import annotations |
28
|
|
|
|
29
|
|
|
from collections import Counter |
30
|
|
|
from functools import wraps |
31
|
|
|
from pathlib import Path |
32
|
|
|
from time import perf_counter |
33
|
|
|
from typing import Any |
34
|
|
|
|
35
|
|
|
from geoalchemy2 import Geometry |
36
|
|
|
from geopy.extra.rate_limiter import RateLimiter |
37
|
|
|
from geopy.geocoders import Nominatim |
38
|
|
|
from loguru import logger |
39
|
|
|
from numpy.random import RandomState, default_rng |
40
|
|
|
from pyproj.crs.crs import CRS |
41
|
|
|
from sqlalchemy import BigInteger, Column, Float, Integer, String |
42
|
|
|
from sqlalchemy.dialects.postgresql import HSTORE |
43
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
44
|
|
|
import geopandas as gpd |
45
|
|
|
import numpy as np |
46
|
|
|
import pandas as pd |
47
|
|
|
|
48
|
|
|
from egon.data import config, db |
49
|
|
|
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
50
|
|
|
OsmBuildingsSynthetic, |
51
|
|
|
) |
52
|
|
|
from egon.data.datasets.scenario_capacities import EgonScenarioCapacities |
53
|
|
|
from egon.data.datasets.zensus_vg250 import Vg250Gem |
54
|
|
|
|
55
|
|
|
engine = db.engine() |
56
|
|
|
Base = declarative_base() |
57
|
|
|
SEED = int(config.settings()["egon-data"]["--random-seed"]) |
58
|
|
|
|
59
|
|
|
# TODO: move to yml |
60
|
|
|
# mastr data |
61
|
|
|
MASTR_RELEVANT_COLS = [ |
62
|
|
|
"EinheitMastrNummer", |
63
|
|
|
"Bruttoleistung", |
64
|
|
|
"StatisikFlag", |
65
|
|
|
"Bruttoleistung_extended", |
66
|
|
|
"Nettonennleistung", |
67
|
|
|
"InstallierteLeistung", |
68
|
|
|
"zugeordneteWirkleistungWechselrichter", |
69
|
|
|
"EinheitBetriebsstatus", |
70
|
|
|
"Standort", |
71
|
|
|
"Bundesland", |
72
|
|
|
"Land", |
73
|
|
|
"Landkreis", |
74
|
|
|
"Gemeinde", |
75
|
|
|
"Postleitzahl", |
76
|
|
|
"Ort", |
77
|
|
|
"GeplantesInbetriebnahmedatum", |
78
|
|
|
"Inbetriebnahmedatum", |
79
|
|
|
"GemeinsamerWechselrichterMitSpeicher", |
80
|
|
|
"Lage", |
81
|
|
|
"Leistungsbegrenzung", |
82
|
|
|
"EinheitlicheAusrichtungUndNeigungswinkel", |
83
|
|
|
"Hauptausrichtung", |
84
|
|
|
"HauptausrichtungNeigungswinkel", |
85
|
|
|
"Nebenausrichtung", |
86
|
|
|
] |
87
|
|
|
|
88
|
|
|
MASTR_DTYPES = { |
89
|
|
|
"EinheitMastrNummer": str, |
90
|
|
|
"Bruttoleistung": float, |
91
|
|
|
"StatisikFlag": str, |
92
|
|
|
"Bruttoleistung_extended": float, |
93
|
|
|
"Nettonennleistung": float, |
94
|
|
|
"InstallierteLeistung": float, |
95
|
|
|
"zugeordneteWirkleistungWechselrichter": float, |
96
|
|
|
"EinheitBetriebsstatus": str, |
97
|
|
|
"Standort": str, |
98
|
|
|
"Bundesland": str, |
99
|
|
|
"Land": str, |
100
|
|
|
"Landkreis": str, |
101
|
|
|
"Gemeinde": str, |
102
|
|
|
# "Postleitzahl": int, # fails because of nan values |
103
|
|
|
"Ort": str, |
104
|
|
|
"GemeinsamerWechselrichterMitSpeicher": str, |
105
|
|
|
"Lage": str, |
106
|
|
|
"Leistungsbegrenzung": str, |
107
|
|
|
# this will parse nan values as false wich is not always correct |
108
|
|
|
# "EinheitlicheAusrichtungUndNeigungswinkel": bool, |
109
|
|
|
"Hauptausrichtung": str, |
110
|
|
|
"HauptausrichtungNeigungswinkel": str, |
111
|
|
|
"Nebenausrichtung": str, |
112
|
|
|
"NebenausrichtungNeigungswinkel": str, |
113
|
|
|
} |
114
|
|
|
|
115
|
|
|
MASTR_PARSE_DATES = [ |
116
|
|
|
"GeplantesInbetriebnahmedatum", |
117
|
|
|
"Inbetriebnahmedatum", |
118
|
|
|
] |
119
|
|
|
|
120
|
|
|
MASTR_INDEX_COL = "EinheitMastrNummer" |
121
|
|
|
|
122
|
|
|
EPSG = 4326 |
123
|
|
|
SRID = 3035 |
124
|
|
|
|
125
|
|
|
# data cleaning |
126
|
|
|
MAX_REALISTIC_PV_CAP = 23500 |
127
|
|
|
MIN_REALISTIC_PV_CAP = 0.1 |
128
|
|
|
ROUNDING = 1 |
129
|
|
|
|
130
|
|
|
# geopy |
131
|
|
|
MIN_DELAY_SECONDS = 1 |
132
|
|
|
USER_AGENT = "rli_kh_geocoder" |
133
|
|
|
|
134
|
|
|
# show additional logging information |
135
|
|
|
VERBOSE = False |
136
|
|
|
|
137
|
|
|
EXPORT_DIR = Path(__name__).resolve().parent / "data" |
138
|
|
|
EXPORT_FILE = "mastr_geocoded.gpkg" |
139
|
|
|
EXPORT_PATH = EXPORT_DIR / EXPORT_FILE |
140
|
|
|
DRIVER = "GPKG" |
141
|
|
|
|
142
|
|
|
# Number of quantiles |
143
|
|
|
Q = 5 |
144
|
|
|
|
145
|
|
|
# Scenario Data |
146
|
|
|
CARRIER = "solar_rooftop" |
147
|
|
|
SCENARIOS = ["eGon2035", "eGon100RE"] |
148
|
|
|
SCENARIO_TIMESTAMP = { |
149
|
|
|
"eGon2035": pd.Timestamp("2035-01-01", tz="UTC"), |
150
|
|
|
"eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"), |
151
|
|
|
} |
152
|
|
|
PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D") |
153
|
|
|
|
154
|
|
|
# Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp |
155
|
|
|
# https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf |
156
|
|
|
MODUL_CAP = 0.4 # kWp |
157
|
|
|
MODUL_SIZE = 1.096 * 1.754 # m² |
158
|
|
|
PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE |
159
|
|
|
|
160
|
|
|
# Estimation of usable roof area |
161
|
|
|
# Factor for the conversion of building area to roof area |
162
|
|
|
# estimation mean roof pitch: 35° |
163
|
|
|
# estimation usable roof share: 80% |
164
|
|
|
# estimation that only the south side of the building is used for pv |
165
|
|
|
# see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf |
166
|
|
|
# AREA_FACTOR = 1.221 |
167
|
|
|
# USABLE_ROOF_SHARE = 0.8 |
168
|
|
|
# SOUTH_SHARE = 0.5 |
169
|
|
|
# ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE |
170
|
|
|
ROOF_FACTOR = 0.5 |
171
|
|
|
|
172
|
|
|
CAP_RANGES = [ |
173
|
|
|
(0, 30), |
174
|
|
|
(30, 100), |
175
|
|
|
(100, float("inf")), |
176
|
|
|
] |
177
|
|
|
|
178
|
|
|
MIN_BUILDING_SIZE = 10.0 |
179
|
|
|
UPPER_QUNATILE = 0.95 |
180
|
|
|
LOWER_QUANTILE = 0.05 |
181
|
|
|
|
182
|
|
|
COLS_TO_RENAME = { |
183
|
|
|
"EinheitlicheAusrichtungUndNeigungswinkel": ( |
184
|
|
|
"einheitliche_ausrichtung_und_neigungswinkel" |
185
|
|
|
), |
186
|
|
|
"Hauptausrichtung": "hauptausrichtung", |
187
|
|
|
"HauptausrichtungNeigungswinkel": "hauptausrichtung_neigungswinkel", |
188
|
|
|
} |
189
|
|
|
|
190
|
|
|
COLS_TO_EXPORT = [ |
191
|
|
|
"scenario", |
192
|
|
|
"bus_id", |
193
|
|
|
"building_id", |
194
|
|
|
"gens_id", |
195
|
|
|
"capacity", |
196
|
|
|
"einheitliche_ausrichtung_und_neigungswinkel", |
197
|
|
|
"hauptausrichtung", |
198
|
|
|
"hauptausrichtung_neigungswinkel", |
199
|
|
|
"voltage_level", |
200
|
|
|
"weather_cell_id", |
201
|
|
|
] |
202
|
|
|
|
203
|
|
|
# TODO |
204
|
|
|
INCLUDE_SYNTHETIC_BUILDINGS = True |
205
|
|
|
ONLY_BUILDINGS_WITH_DEMAND = True |
206
|
|
|
TEST_RUN = False |
207
|
|
|
|
208
|
|
|
|
209
|
|
|
def timer_func(func): |
210
|
|
|
@wraps(func) |
211
|
|
|
def timeit_wrapper(*args, **kwargs): |
212
|
|
|
start_time = perf_counter() |
213
|
|
|
result = func(*args, **kwargs) |
214
|
|
|
end_time = perf_counter() |
215
|
|
|
total_time = end_time - start_time |
216
|
|
|
logger.debug( |
217
|
|
|
f"Function {func.__name__} took {total_time:.4f} seconds." |
218
|
|
|
) |
219
|
|
|
return result |
220
|
|
|
|
221
|
|
|
return timeit_wrapper |
222
|
|
|
|
223
|
|
|
|
224
|
|
|
@timer_func |
225
|
|
|
def mastr_data( |
226
|
|
|
index_col: str | int | list[str] | list[int], |
227
|
|
|
usecols: list[str], |
228
|
|
|
dtype: dict[str, Any] | None, |
229
|
|
|
parse_dates: list[str] | None, |
230
|
|
|
) -> pd.DataFrame: |
231
|
|
|
""" |
232
|
|
|
Read MaStR data from csv. |
233
|
|
|
|
234
|
|
|
Parameters |
235
|
|
|
----------- |
236
|
|
|
index_col : str, int or list of str or int |
237
|
|
|
Column(s) to use as the row labels of the DataFrame. |
238
|
|
|
usecols : list of str |
239
|
|
|
Return a subset of the columns. |
240
|
|
|
dtype : dict of column (str) -> type (any), optional |
241
|
|
|
Data type for data or columns. |
242
|
|
|
parse_dates : list of names (str), optional |
243
|
|
|
Try to parse given columns to datetime. |
244
|
|
|
Returns |
245
|
|
|
------- |
246
|
|
|
pandas.DataFrame |
247
|
|
|
DataFrame containing MaStR data. |
248
|
|
|
""" |
249
|
|
|
mastr_path = Path( |
250
|
|
|
config.datasets()["power_plants"]["sources"]["mastr_pv"] |
251
|
|
|
).resolve() |
252
|
|
|
|
253
|
|
|
mastr_df = pd.read_csv( |
254
|
|
|
mastr_path, |
255
|
|
|
index_col=index_col, |
256
|
|
|
usecols=usecols, |
257
|
|
|
dtype=dtype, |
258
|
|
|
parse_dates=parse_dates, |
259
|
|
|
) |
260
|
|
|
|
261
|
|
|
mastr_df = mastr_df.loc[ |
262
|
|
|
(mastr_df.StatisikFlag == "B") |
263
|
|
|
& (mastr_df.EinheitBetriebsstatus == "InBetrieb") |
264
|
|
|
& (mastr_df.Land == "Deutschland") |
265
|
|
|
& (mastr_df.Lage == "BaulicheAnlagen") |
266
|
|
|
] |
267
|
|
|
|
268
|
|
|
if ( |
269
|
|
|
config.settings()["egon-data"]["--dataset-boundary"] |
270
|
|
|
== "Schleswig-Holstein" |
271
|
|
|
): |
272
|
|
|
init_len = len(mastr_df) |
273
|
|
|
|
274
|
|
|
mastr_df = mastr_df.loc[mastr_df.Bundesland == "SchleswigHolstein"] |
275
|
|
|
|
276
|
|
|
logger.info( |
277
|
|
|
f"Using only MaStR data within Schleswig-Holstein. " |
278
|
|
|
f"{init_len - len(mastr_df)} of {init_len} generators are dropped." |
279
|
|
|
) |
280
|
|
|
|
281
|
|
|
logger.debug("MaStR data loaded.") |
282
|
|
|
|
283
|
|
|
return mastr_df |
284
|
|
|
|
285
|
|
|
|
286
|
|
|
@timer_func |
287
|
|
|
def clean_mastr_data( |
288
|
|
|
mastr_df: pd.DataFrame, |
289
|
|
|
max_realistic_pv_cap: int | float, |
290
|
|
|
min_realistic_pv_cap: int | float, |
291
|
|
|
rounding: int, |
292
|
|
|
seed: int, |
293
|
|
|
) -> pd.DataFrame: |
294
|
|
|
""" |
295
|
|
|
Clean the MaStR data from implausible data. |
296
|
|
|
|
297
|
|
|
* Drop MaStR ID duplicates. |
298
|
|
|
* Drop generators with implausible capacities. |
299
|
|
|
* Drop generators without any kind of start-up date. |
300
|
|
|
* Clean up Standort column and capacity. |
301
|
|
|
|
302
|
|
|
Parameters |
303
|
|
|
----------- |
304
|
|
|
mastr_df : pandas.DataFrame |
305
|
|
|
DataFrame containing MaStR data. |
306
|
|
|
max_realistic_pv_cap : int or float |
307
|
|
|
Maximum capacity, which is considered to be realistic. |
308
|
|
|
min_realistic_pv_cap : int or float |
309
|
|
|
Minimum capacity, which is considered to be realistic. |
310
|
|
|
rounding : int |
311
|
|
|
Rounding to use when cleaning up capacity. E.g. when |
312
|
|
|
rounding is 1 a capacity of 9.93 will be rounded to 9.9. |
313
|
|
|
seed : int |
314
|
|
|
Seed to use for random operations with NumPy and pandas. |
315
|
|
|
Returns |
316
|
|
|
------- |
317
|
|
|
pandas.DataFrame |
318
|
|
|
DataFrame containing cleaned MaStR data. |
319
|
|
|
""" |
320
|
|
|
init_len = len(mastr_df) |
321
|
|
|
|
322
|
|
|
# drop duplicates |
323
|
|
|
mastr_df = mastr_df.loc[~mastr_df.index.duplicated()] |
324
|
|
|
|
325
|
|
|
# drop invalid entries in standort |
326
|
|
|
index_to_drop = mastr_df.loc[ |
327
|
|
|
(mastr_df.Standort.isna()) | (mastr_df.Standort.isnull()) |
328
|
|
|
].index |
329
|
|
|
|
330
|
|
|
mastr_df = mastr_df.loc[~mastr_df.index.isin(index_to_drop)] |
331
|
|
|
|
332
|
|
|
df = mastr_df[ |
333
|
|
|
[ |
334
|
|
|
"Bruttoleistung", |
335
|
|
|
"Bruttoleistung_extended", |
336
|
|
|
"Nettonennleistung", |
337
|
|
|
"zugeordneteWirkleistungWechselrichter", |
338
|
|
|
"InstallierteLeistung", |
339
|
|
|
] |
340
|
|
|
].round(rounding) |
341
|
|
|
|
342
|
|
|
# use only the smallest capacity rating if multiple are given |
343
|
|
|
mastr_df = mastr_df.assign( |
344
|
|
|
capacity=[ |
345
|
|
|
most_plausible(p_tub, min_realistic_pv_cap) |
346
|
|
|
for p_tub in df.itertuples(index=False) |
347
|
|
|
] |
348
|
|
|
) |
349
|
|
|
|
350
|
|
|
# drop generators without any capacity info |
351
|
|
|
# and capacity of zero |
352
|
|
|
# and if the capacity is > 23.5 MW, because |
353
|
|
|
# Germanies largest rooftop PV is 23 MW |
354
|
|
|
# https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379 |
355
|
|
|
mastr_df = mastr_df.loc[ |
356
|
|
|
(~mastr_df.capacity.isna()) |
357
|
|
|
& (mastr_df.capacity <= max_realistic_pv_cap) |
358
|
|
|
& (mastr_df.capacity > min_realistic_pv_cap) |
359
|
|
|
] |
360
|
|
|
|
361
|
|
|
# get zip and municipality |
362
|
|
|
mastr_df[["zip_and_municipality", "drop_this"]] = pd.DataFrame( |
363
|
|
|
mastr_df.Standort.astype(str) |
364
|
|
|
.apply( |
365
|
|
|
zip_and_municipality_from_standort, |
366
|
|
|
args=(VERBOSE,), |
367
|
|
|
) |
368
|
|
|
.tolist(), |
369
|
|
|
index=mastr_df.index, |
370
|
|
|
) |
371
|
|
|
|
372
|
|
|
# drop invalid entries |
373
|
|
|
mastr_df = mastr_df.loc[mastr_df.drop_this].drop(columns="drop_this") |
374
|
|
|
|
375
|
|
|
# add ", Deutschland" just in case |
376
|
|
|
mastr_df = mastr_df.assign( |
377
|
|
|
zip_and_municipality=(mastr_df.zip_and_municipality + ", Deutschland") |
378
|
|
|
) |
379
|
|
|
|
380
|
|
|
# get consistent start-up date |
381
|
|
|
mastr_df = mastr_df.assign( |
382
|
|
|
start_up_date=mastr_df.Inbetriebnahmedatum, |
383
|
|
|
) |
384
|
|
|
|
385
|
|
|
mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[ |
386
|
|
|
mastr_df.start_up_date.isna() |
387
|
|
|
].assign( |
388
|
|
|
start_up_date=mastr_df.GeplantesInbetriebnahmedatum.loc[ |
389
|
|
|
mastr_df.start_up_date.isna() |
390
|
|
|
] |
391
|
|
|
) |
392
|
|
|
|
393
|
|
|
# randomly and weighted fill missing start-up dates |
394
|
|
|
pool = mastr_df.loc[ |
395
|
|
|
~mastr_df.start_up_date.isna() |
396
|
|
|
].start_up_date.to_numpy() |
397
|
|
|
|
398
|
|
|
size = len(mastr_df) - len(pool) |
399
|
|
|
|
400
|
|
|
if size > 0: |
401
|
|
|
np.random.seed(seed) |
402
|
|
|
|
403
|
|
|
choice = np.random.choice( |
404
|
|
|
pool, |
405
|
|
|
size=size, |
406
|
|
|
replace=False, |
407
|
|
|
) |
408
|
|
|
|
409
|
|
|
mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[ |
410
|
|
|
mastr_df.start_up_date.isna() |
411
|
|
|
].assign(start_up_date=choice) |
412
|
|
|
|
413
|
|
|
logger.info( |
414
|
|
|
f"Randomly and weigthed added start-up date to {size} generators." |
415
|
|
|
) |
416
|
|
|
|
417
|
|
|
mastr_df = mastr_df.assign( |
418
|
|
|
start_up_date=pd.to_datetime(mastr_df.start_up_date, utc=True) |
419
|
|
|
) |
420
|
|
|
|
421
|
|
|
end_len = len(mastr_df) |
422
|
|
|
logger.debug( |
423
|
|
|
f"Dropped {init_len - end_len} " |
424
|
|
|
f"({((init_len - end_len) / init_len) * 100:g}%)" |
425
|
|
|
f" of {init_len} rows from MaStR DataFrame." |
426
|
|
|
) |
427
|
|
|
|
428
|
|
|
return mastr_df |
429
|
|
|
|
430
|
|
|
|
431
|
|
|
def zip_and_municipality_from_standort( |
432
|
|
|
standort: str, |
433
|
|
|
verbose: bool = False, |
434
|
|
|
) -> tuple[str, bool]: |
435
|
|
|
""" |
436
|
|
|
Get zip code and municipality from Standort string split into a list. |
437
|
|
|
Parameters |
438
|
|
|
----------- |
439
|
|
|
standort : str |
440
|
|
|
Standort as given from MaStR data. |
441
|
|
|
verbose : bool |
442
|
|
|
Logs additional info if True. |
443
|
|
|
Returns |
444
|
|
|
------- |
445
|
|
|
str |
446
|
|
|
Standort with only the zip code and municipality |
447
|
|
|
as well a ', Germany' added. |
448
|
|
|
""" |
449
|
|
|
if verbose: |
450
|
|
|
logger.debug(f"Uncleaned String: {standort}") |
451
|
|
|
|
452
|
|
|
standort_list = standort.split() |
453
|
|
|
|
454
|
|
|
found = False |
455
|
|
|
count = 0 |
456
|
|
|
|
457
|
|
|
for count, elem in enumerate(standort_list): |
458
|
|
|
if len(elem) != 5: |
459
|
|
|
continue |
460
|
|
|
if not elem.isnumeric(): |
461
|
|
|
continue |
462
|
|
|
|
463
|
|
|
found = True |
464
|
|
|
|
465
|
|
|
break |
466
|
|
|
|
467
|
|
|
if found: |
468
|
|
|
cleaned_str = " ".join(standort_list[count:]) |
469
|
|
|
|
470
|
|
|
if verbose: |
471
|
|
|
logger.debug(f"Cleaned String: {cleaned_str}") |
472
|
|
|
|
473
|
|
|
return cleaned_str, found |
474
|
|
|
|
475
|
|
|
logger.warning( |
476
|
|
|
"Couldn't identify zip code. This entry will be dropped." |
477
|
|
|
f" Original standort: {standort}." |
478
|
|
|
) |
479
|
|
|
|
480
|
|
|
return standort, found |
481
|
|
|
|
482
|
|
|
|
483
|
|
|
def most_plausible( |
484
|
|
|
p_tub: tuple, |
485
|
|
|
min_realistic_pv_cap: int | float, |
486
|
|
|
) -> float: |
487
|
|
|
""" |
488
|
|
|
Try to determine the most plausible capacity. |
489
|
|
|
Try to determine the most plausible capacity from a given |
490
|
|
|
generator from MaStR data. |
491
|
|
|
Parameters |
492
|
|
|
----------- |
493
|
|
|
p_tub : tuple |
494
|
|
|
Tuple containing the different capacities given in |
495
|
|
|
the MaStR data. |
496
|
|
|
min_realistic_pv_cap : int or float |
497
|
|
|
Minimum capacity, which is considered to be realistic. |
498
|
|
|
Returns |
499
|
|
|
------- |
500
|
|
|
float |
501
|
|
|
Capacity of the generator estimated as the most realistic. |
502
|
|
|
""" |
503
|
|
|
count = Counter(p_tub).most_common(3) |
504
|
|
|
|
505
|
|
|
if len(count) == 1: |
506
|
|
|
return count[0][0] |
507
|
|
|
|
508
|
|
|
val1 = count[0][0] |
509
|
|
|
val2 = count[1][0] |
510
|
|
|
|
511
|
|
|
if len(count) == 2: |
512
|
|
|
min_val = min(val1, val2) |
513
|
|
|
max_val = max(val1, val2) |
514
|
|
|
else: |
515
|
|
|
val3 = count[2][0] |
516
|
|
|
|
517
|
|
|
min_val = min(val1, val2, val3) |
518
|
|
|
max_val = max(val1, val2, val3) |
519
|
|
|
|
520
|
|
|
if min_val < min_realistic_pv_cap: |
521
|
|
|
return max_val |
522
|
|
|
|
523
|
|
|
return min_val |
524
|
|
|
|
525
|
|
|
|
526
|
|
|
def geocoder( |
527
|
|
|
user_agent: str, |
528
|
|
|
min_delay_seconds: int, |
529
|
|
|
) -> RateLimiter: |
530
|
|
|
""" |
531
|
|
|
Setup Nominatim geocoding class. |
532
|
|
|
Parameters |
533
|
|
|
----------- |
534
|
|
|
user_agent : str |
535
|
|
|
The app name. |
536
|
|
|
min_delay_seconds : int |
537
|
|
|
Delay in seconds to use between requests to Nominatim. |
538
|
|
|
A minimum of 1 is advised. |
539
|
|
|
Returns |
540
|
|
|
------- |
541
|
|
|
geopy.extra.rate_limiter.RateLimiter |
542
|
|
|
Nominatim RateLimiter geocoding class to use for geocoding. |
543
|
|
|
""" |
544
|
|
|
locator = Nominatim(user_agent=user_agent) |
545
|
|
|
return RateLimiter( |
546
|
|
|
locator.geocode, |
547
|
|
|
min_delay_seconds=min_delay_seconds, |
548
|
|
|
) |
549
|
|
|
|
550
|
|
|
|
551
|
|
|
def geocoding_data( |
552
|
|
|
clean_mastr_df: pd.DataFrame, |
553
|
|
|
) -> pd.DataFrame: |
554
|
|
|
""" |
555
|
|
|
Setup DataFrame to geocode. |
556
|
|
|
Parameters |
557
|
|
|
----------- |
558
|
|
|
clean_mastr_df : pandas.DataFrame |
559
|
|
|
DataFrame containing cleaned MaStR data. |
560
|
|
|
Returns |
561
|
|
|
------- |
562
|
|
|
pandas.DataFrame |
563
|
|
|
DataFrame containing all unique combinations of |
564
|
|
|
zip codes with municipalities for geocoding. |
565
|
|
|
""" |
566
|
|
|
return pd.DataFrame( |
567
|
|
|
data=clean_mastr_df.zip_and_municipality.unique(), |
568
|
|
|
columns=["zip_and_municipality"], |
569
|
|
|
) |
570
|
|
|
|
571
|
|
|
|
572
|
|
|
@timer_func |
573
|
|
|
def geocode_data( |
574
|
|
|
geocoding_df: pd.DataFrame, |
575
|
|
|
ratelimiter: RateLimiter, |
576
|
|
|
epsg: int, |
577
|
|
|
) -> gpd.GeoDataFrame: |
578
|
|
|
""" |
579
|
|
|
Geocode zip code and municipality. |
580
|
|
|
Extract latitude, longitude and altitude. |
581
|
|
|
Transfrom latitude and longitude to shapely |
582
|
|
|
Point and return a geopandas GeoDataFrame. |
583
|
|
|
Parameters |
584
|
|
|
----------- |
585
|
|
|
geocoding_df : pandas.DataFrame |
586
|
|
|
DataFrame containing all unique combinations of |
587
|
|
|
zip codes with municipalities for geocoding. |
588
|
|
|
ratelimiter : geopy.extra.rate_limiter.RateLimiter |
589
|
|
|
Nominatim RateLimiter geocoding class to use for geocoding. |
590
|
|
|
epsg : int |
591
|
|
|
EPSG ID to use as CRS. |
592
|
|
|
Returns |
593
|
|
|
------- |
594
|
|
|
geopandas.GeoDataFrame |
595
|
|
|
GeoDataFrame containing all unique combinations of |
596
|
|
|
zip codes with municipalities with matching geolocation. |
597
|
|
|
""" |
598
|
|
|
logger.info(f"Geocoding {len(geocoding_df)} locations.") |
599
|
|
|
|
600
|
|
|
geocode_df = geocoding_df.assign( |
601
|
|
|
location=geocoding_df.zip_and_municipality.apply(ratelimiter) |
602
|
|
|
) |
603
|
|
|
|
604
|
|
|
geocode_df = geocode_df.assign( |
605
|
|
|
point=geocode_df.location.apply( |
606
|
|
|
lambda loc: tuple(loc.point) if loc else None |
607
|
|
|
) |
608
|
|
|
) |
609
|
|
|
|
610
|
|
|
geocode_df[["latitude", "longitude", "altitude"]] = pd.DataFrame( |
611
|
|
|
geocode_df.point.tolist(), index=geocode_df.index |
612
|
|
|
) |
613
|
|
|
|
614
|
|
|
return gpd.GeoDataFrame( |
615
|
|
|
geocode_df, |
616
|
|
|
geometry=gpd.points_from_xy(geocode_df.longitude, geocode_df.latitude), |
617
|
|
|
crs=f"EPSG:{epsg}", |
618
|
|
|
) |
619
|
|
|
|
620
|
|
|
|
621
|
|
|
def merge_geocode_with_mastr( |
622
|
|
|
clean_mastr_df: pd.DataFrame, geocode_gdf: gpd.GeoDataFrame |
623
|
|
|
) -> gpd.GeoDataFrame: |
624
|
|
|
""" |
625
|
|
|
Merge geometry to original mastr data. |
626
|
|
|
Parameters |
627
|
|
|
----------- |
628
|
|
|
clean_mastr_df : pandas.DataFrame |
629
|
|
|
DataFrame containing cleaned MaStR data. |
630
|
|
|
geocode_gdf : geopandas.GeoDataFrame |
631
|
|
|
GeoDataFrame containing all unique combinations of |
632
|
|
|
zip codes with municipalities with matching geolocation. |
633
|
|
|
Returns |
634
|
|
|
------- |
635
|
|
|
gepandas.GeoDataFrame |
636
|
|
|
GeoDataFrame containing cleaned MaStR data with |
637
|
|
|
matching geolocation from geocoding. |
638
|
|
|
""" |
639
|
|
|
return gpd.GeoDataFrame( |
640
|
|
|
clean_mastr_df.merge( |
641
|
|
|
geocode_gdf[["zip_and_municipality", "geometry"]], |
642
|
|
|
how="left", |
643
|
|
|
left_on="zip_and_municipality", |
644
|
|
|
right_on="zip_and_municipality", |
645
|
|
|
), |
646
|
|
|
crs=geocode_gdf.crs, |
647
|
|
|
).set_index(clean_mastr_df.index) |
648
|
|
|
|
649
|
|
|
|
650
|
|
|
def drop_invalid_entries_from_gdf( |
651
|
|
|
gdf: gpd.GeoDataFrame, |
652
|
|
|
) -> gpd.GeoDataFrame: |
653
|
|
|
""" |
654
|
|
|
Drop invalid entries from geopandas GeoDataFrame. |
655
|
|
|
TODO: how to omit the logging from geos here??? |
656
|
|
|
Parameters |
657
|
|
|
----------- |
658
|
|
|
gdf : geopandas.GeoDataFrame |
659
|
|
|
GeoDataFrame to be checked for validity. |
660
|
|
|
Returns |
661
|
|
|
------- |
662
|
|
|
gepandas.GeoDataFrame |
663
|
|
|
GeoDataFrame with rows with invalid geometries |
664
|
|
|
dropped. |
665
|
|
|
""" |
666
|
|
|
valid_gdf = gdf.loc[gdf.is_valid] |
667
|
|
|
|
668
|
|
|
logger.debug( |
669
|
|
|
f"{len(gdf) - len(valid_gdf)} " |
670
|
|
|
f"({(len(gdf) - len(valid_gdf)) / len(gdf) * 100:g}%) " |
671
|
|
|
f"of {len(gdf)} values were invalid and are dropped." |
672
|
|
|
) |
673
|
|
|
|
674
|
|
|
return valid_gdf |
675
|
|
|
|
676
|
|
|
|
677
|
|
|
@timer_func |
678
|
|
|
def municipality_data() -> gpd.GeoDataFrame: |
679
|
|
|
""" |
680
|
|
|
Get municipality data from eGo^n Database. |
681
|
|
|
Returns |
682
|
|
|
------- |
683
|
|
|
gepandas.GeoDataFrame |
684
|
|
|
GeoDataFrame with municipality data. |
685
|
|
|
""" |
686
|
|
|
with db.session_scope() as session: |
687
|
|
|
query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom")) |
688
|
|
|
|
689
|
|
|
return gpd.read_postgis( |
690
|
|
|
query.statement, query.session.bind, index_col="ags" |
691
|
|
|
) |
692
|
|
|
|
693
|
|
|
|
694
|
|
|
@timer_func |
695
|
|
|
def add_ags_to_gens( |
696
|
|
|
valid_mastr_gdf: gpd.GeoDataFrame, |
697
|
|
|
municipalities_gdf: gpd.GeoDataFrame, |
698
|
|
|
) -> gpd.GeoDataFrame: |
699
|
|
|
""" |
700
|
|
|
Add information about AGS ID to generators. |
701
|
|
|
Parameters |
702
|
|
|
----------- |
703
|
|
|
valid_mastr_gdf : geopandas.GeoDataFrame |
704
|
|
|
GeoDataFrame with valid and cleaned MaStR data. |
705
|
|
|
municipalities_gdf : geopandas.GeoDataFrame |
706
|
|
|
GeoDataFrame with municipality data. |
707
|
|
|
Returns |
708
|
|
|
------- |
709
|
|
|
gepandas.GeoDataFrame |
710
|
|
|
GeoDataFrame with valid and cleaned MaStR data |
711
|
|
|
with AGS ID added. |
712
|
|
|
""" |
713
|
|
|
return valid_mastr_gdf.sjoin( |
714
|
|
|
municipalities_gdf, |
715
|
|
|
how="left", |
716
|
|
|
predicate="intersects", |
717
|
|
|
).rename(columns={"index_right": "ags"}) |
718
|
|
|
|
719
|
|
|
|
720
|
|
|
def drop_gens_outside_muns( |
721
|
|
|
valid_mastr_gdf: gpd.GeoDataFrame, |
722
|
|
|
) -> gpd.GeoDataFrame: |
723
|
|
|
""" |
724
|
|
|
Drop all generators outside of municipalities. |
725
|
|
|
Parameters |
726
|
|
|
----------- |
727
|
|
|
valid_mastr_gdf : geopandas.GeoDataFrame |
728
|
|
|
GeoDataFrame with valid and cleaned MaStR data. |
729
|
|
|
Returns |
730
|
|
|
------- |
731
|
|
|
gepandas.GeoDataFrame |
732
|
|
|
GeoDataFrame with valid and cleaned MaStR data |
733
|
|
|
with generatos without an AGS ID dropped. |
734
|
|
|
""" |
735
|
|
|
gdf = valid_mastr_gdf.loc[~valid_mastr_gdf.ags.isna()] |
736
|
|
|
|
737
|
|
|
logger.debug( |
738
|
|
|
f"{len(valid_mastr_gdf) - len(gdf)} " |
739
|
|
|
f"({(len(valid_mastr_gdf) - len(gdf)) / len(valid_mastr_gdf) * 100:g}%) " |
740
|
|
|
f"of {len(valid_mastr_gdf)} values are outside of the municipalities" |
741
|
|
|
" and are therefore dropped." |
742
|
|
|
) |
743
|
|
|
|
744
|
|
|
return gdf |
745
|
|
|
|
746
|
|
|
|
747
|
|
|
class EgonMastrPvRoofGeocoded(Base): |
748
|
|
|
__tablename__ = "egon_mastr_pv_roof_geocoded" |
749
|
|
|
__table_args__ = {"schema": "supply"} |
750
|
|
|
|
751
|
|
|
zip_and_municipality = Column(String, primary_key=True, index=True) |
752
|
|
|
location = Column(String) |
753
|
|
|
point = Column(String) |
754
|
|
|
latitude = Column(Float) |
755
|
|
|
longitude = Column(Float) |
756
|
|
|
altitude = Column(Float) |
757
|
|
|
geometry = Column(Geometry(srid=EPSG)) |
758
|
|
|
|
759
|
|
|
|
760
|
|
|
def create_geocoded_table(geocode_gdf): |
761
|
|
|
""" |
762
|
|
|
Create geocoded table mastr pv rooftop |
763
|
|
|
Parameters |
764
|
|
|
----------- |
765
|
|
|
geocode_gdf : geopandas.GeoDataFrame |
766
|
|
|
GeoDataFrame containing geocoding information on pv rooftop locations. |
767
|
|
|
""" |
768
|
|
|
EgonMastrPvRoofGeocoded.__table__.drop(bind=engine, checkfirst=True) |
769
|
|
|
EgonMastrPvRoofGeocoded.__table__.create(bind=engine, checkfirst=True) |
770
|
|
|
|
771
|
|
|
geocode_gdf.to_postgis( |
772
|
|
|
name=EgonMastrPvRoofGeocoded.__table__.name, |
773
|
|
|
schema=EgonMastrPvRoofGeocoded.__table__.schema, |
774
|
|
|
con=db.engine(), |
775
|
|
|
if_exists="append", |
776
|
|
|
index=False, |
777
|
|
|
# dtype={} |
778
|
|
|
) |
779
|
|
|
|
780
|
|
|
|
781
|
|
|
def geocoded_data_from_db( |
782
|
|
|
epsg: str | int, |
783
|
|
|
) -> gpd.GeoDataFrame: |
784
|
|
|
""" |
785
|
|
|
Read OSM buildings data from eGo^n Database. |
786
|
|
|
Parameters |
787
|
|
|
----------- |
788
|
|
|
to_crs : pyproj.crs.crs.CRS |
789
|
|
|
CRS to transform geometries to. |
790
|
|
|
Returns |
791
|
|
|
------- |
792
|
|
|
geopandas.GeoDataFrame |
793
|
|
|
GeoDataFrame containing OSM buildings data. |
794
|
|
|
""" |
795
|
|
|
with db.session_scope() as session: |
796
|
|
|
query = session.query( |
797
|
|
|
EgonMastrPvRoofGeocoded.zip_and_municipality, |
798
|
|
|
EgonMastrPvRoofGeocoded.geometry, |
799
|
|
|
) |
800
|
|
|
|
801
|
|
|
return gpd.read_postgis( |
802
|
|
|
query.statement, query.session.bind, geom_col="geometry" |
803
|
|
|
).to_crs(f"EPSG:{epsg}") |
804
|
|
|
|
805
|
|
|
|
806
|
|
|
def load_mastr_data(): |
807
|
|
|
"""Read PV rooftop data from MaStR CSV |
808
|
|
|
Note: the source will be replaced as soon as the MaStR data is available |
809
|
|
|
in DB. |
810
|
|
|
Returns |
811
|
|
|
------- |
812
|
|
|
geopandas.GeoDataFrame |
813
|
|
|
GeoDataFrame containing MaStR data with geocoded locations. |
814
|
|
|
""" |
815
|
|
|
mastr_df = mastr_data( |
816
|
|
|
MASTR_INDEX_COL, |
817
|
|
|
MASTR_RELEVANT_COLS, |
818
|
|
|
MASTR_DTYPES, |
819
|
|
|
MASTR_PARSE_DATES, |
820
|
|
|
) |
821
|
|
|
|
822
|
|
|
clean_mastr_df = clean_mastr_data( |
823
|
|
|
mastr_df, |
824
|
|
|
max_realistic_pv_cap=MAX_REALISTIC_PV_CAP, |
825
|
|
|
min_realistic_pv_cap=MIN_REALISTIC_PV_CAP, |
826
|
|
|
seed=SEED, |
827
|
|
|
rounding=ROUNDING, |
828
|
|
|
) |
829
|
|
|
|
830
|
|
|
geocode_gdf = geocoded_data_from_db(EPSG) |
831
|
|
|
|
832
|
|
|
mastr_gdf = merge_geocode_with_mastr(clean_mastr_df, geocode_gdf) |
833
|
|
|
|
834
|
|
|
valid_mastr_gdf = drop_invalid_entries_from_gdf(mastr_gdf) |
835
|
|
|
|
836
|
|
|
municipalities_gdf = municipality_data() |
837
|
|
|
|
838
|
|
|
valid_mastr_gdf = add_ags_to_gens(valid_mastr_gdf, municipalities_gdf) |
839
|
|
|
|
840
|
|
|
return drop_gens_outside_muns(valid_mastr_gdf) |
841
|
|
|
|
842
|
|
|
|
843
|
|
|
class OsmBuildingsFiltered(Base): |
844
|
|
|
__tablename__ = "osm_buildings_filtered" |
845
|
|
|
__table_args__ = {"schema": "openstreetmap"} |
846
|
|
|
|
847
|
|
|
osm_id = Column(BigInteger) |
848
|
|
|
amenity = Column(String) |
849
|
|
|
building = Column(String) |
850
|
|
|
name = Column(String) |
851
|
|
|
geom = Column(Geometry(srid=SRID), index=True) |
852
|
|
|
area = Column(Float) |
853
|
|
|
geom_point = Column(Geometry(srid=SRID), index=True) |
854
|
|
|
tags = Column(HSTORE) |
855
|
|
|
id = Column(BigInteger, primary_key=True, index=True) |
856
|
|
|
|
857
|
|
|
|
858
|
|
|
@timer_func |
859
|
|
|
def osm_buildings( |
860
|
|
|
to_crs: CRS, |
861
|
|
|
) -> gpd.GeoDataFrame: |
862
|
|
|
""" |
863
|
|
|
Read OSM buildings data from eGo^n Database. |
864
|
|
|
Parameters |
865
|
|
|
----------- |
866
|
|
|
to_crs : pyproj.crs.crs.CRS |
867
|
|
|
CRS to transform geometries to. |
868
|
|
|
Returns |
869
|
|
|
------- |
870
|
|
|
geopandas.GeoDataFrame |
871
|
|
|
GeoDataFrame containing OSM buildings data. |
872
|
|
|
""" |
873
|
|
|
with db.session_scope() as session: |
874
|
|
|
query = session.query( |
875
|
|
|
OsmBuildingsFiltered.id, |
876
|
|
|
OsmBuildingsFiltered.area, |
877
|
|
|
OsmBuildingsFiltered.geom_point.label("geom"), |
878
|
|
|
) |
879
|
|
|
|
880
|
|
|
return gpd.read_postgis( |
881
|
|
|
query.statement, query.session.bind, index_col="id" |
882
|
|
|
).to_crs(to_crs) |
883
|
|
|
|
884
|
|
|
|
885
|
|
|
@timer_func |
886
|
|
|
def synthetic_buildings( |
887
|
|
|
to_crs: CRS, |
888
|
|
|
) -> gpd.GeoDataFrame: |
889
|
|
|
""" |
890
|
|
|
Read synthetic buildings data from eGo^n Database. |
891
|
|
|
Parameters |
892
|
|
|
----------- |
893
|
|
|
to_crs : pyproj.crs.crs.CRS |
894
|
|
|
CRS to transform geometries to. |
895
|
|
|
Returns |
896
|
|
|
------- |
897
|
|
|
geopandas.GeoDataFrame |
898
|
|
|
GeoDataFrame containing OSM buildings data. |
899
|
|
|
""" |
900
|
|
|
with db.session_scope() as session: |
901
|
|
|
query = session.query( |
902
|
|
|
OsmBuildingsSynthetic.id, |
903
|
|
|
OsmBuildingsSynthetic.area, |
904
|
|
|
OsmBuildingsSynthetic.geom_point.label("geom"), |
905
|
|
|
) |
906
|
|
|
|
907
|
|
|
return gpd.read_postgis( |
908
|
|
|
query.statement, query.session.bind, index_col="id" |
909
|
|
|
).to_crs(to_crs) |
910
|
|
|
|
911
|
|
|
|
912
|
|
|
@timer_func |
913
|
|
|
def add_ags_to_buildings( |
914
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
915
|
|
|
municipalities_gdf: gpd.GeoDataFrame, |
916
|
|
|
) -> gpd.GeoDataFrame: |
917
|
|
|
""" |
918
|
|
|
Add information about AGS ID to buildings. |
919
|
|
|
Parameters |
920
|
|
|
----------- |
921
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
922
|
|
|
GeoDataFrame containing OSM buildings data. |
923
|
|
|
municipalities_gdf : geopandas.GeoDataFrame |
924
|
|
|
GeoDataFrame with municipality data. |
925
|
|
|
Returns |
926
|
|
|
------- |
927
|
|
|
gepandas.GeoDataFrame |
928
|
|
|
GeoDataFrame containing OSM buildings data |
929
|
|
|
with AGS ID added. |
930
|
|
|
""" |
931
|
|
|
return buildings_gdf.sjoin( |
932
|
|
|
municipalities_gdf, |
933
|
|
|
how="left", |
934
|
|
|
predicate="intersects", |
935
|
|
|
).rename(columns={"index_right": "ags"}) |
936
|
|
|
|
937
|
|
|
|
938
|
|
|
def drop_buildings_outside_muns( |
939
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
940
|
|
|
) -> gpd.GeoDataFrame: |
941
|
|
|
""" |
942
|
|
|
Drop all buildings outside of municipalities. |
943
|
|
|
Parameters |
944
|
|
|
----------- |
945
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
946
|
|
|
GeoDataFrame containing OSM buildings data. |
947
|
|
|
Returns |
948
|
|
|
------- |
949
|
|
|
gepandas.GeoDataFrame |
950
|
|
|
GeoDataFrame containing OSM buildings data |
951
|
|
|
with buildings without an AGS ID dropped. |
952
|
|
|
""" |
953
|
|
|
gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()] |
954
|
|
|
|
955
|
|
|
logger.debug( |
956
|
|
|
f"{len(buildings_gdf) - len(gdf)} " |
957
|
|
|
f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
958
|
|
|
f"of {len(buildings_gdf)} values are outside of the municipalities " |
959
|
|
|
"and are therefore dropped." |
960
|
|
|
) |
961
|
|
|
|
962
|
|
|
return gdf |
963
|
|
|
|
964
|
|
|
|
965
|
|
|
def egon_building_peak_loads(): |
966
|
|
|
sql = """ |
967
|
|
|
SELECT building_id |
968
|
|
|
FROM demand.egon_building_electricity_peak_loads |
969
|
|
|
WHERE scenario = 'eGon2035' |
970
|
|
|
""" |
971
|
|
|
|
972
|
|
|
return ( |
973
|
|
|
db.select_dataframe(sql).building_id.astype(int).sort_values().unique() |
974
|
|
|
) |
975
|
|
|
|
976
|
|
|
|
977
|
|
|
@timer_func |
978
|
|
|
def load_building_data(): |
979
|
|
|
""" |
980
|
|
|
Read buildings from DB |
981
|
|
|
Tables: |
982
|
|
|
|
983
|
|
|
* `openstreetmap.osm_buildings_filtered` (from OSM) |
984
|
|
|
* `openstreetmap.osm_buildings_synthetic` (synthetic, created by us) |
985
|
|
|
|
986
|
|
|
Use column `id` for both as it is unique hence you concat both datasets. If |
987
|
|
|
INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be loaded. |
988
|
|
|
|
989
|
|
|
Returns |
990
|
|
|
------- |
991
|
|
|
gepandas.GeoDataFrame |
992
|
|
|
GeoDataFrame containing OSM buildings data with buildings without an AGS ID |
993
|
|
|
dropped. |
994
|
|
|
""" |
995
|
|
|
|
996
|
|
|
municipalities_gdf = municipality_data() |
997
|
|
|
|
998
|
|
|
osm_buildings_gdf = osm_buildings(municipalities_gdf.crs) |
999
|
|
|
|
1000
|
|
|
if INCLUDE_SYNTHETIC_BUILDINGS: |
1001
|
|
|
synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs) |
1002
|
|
|
|
1003
|
|
|
buildings_gdf = gpd.GeoDataFrame( |
1004
|
|
|
pd.concat( |
1005
|
|
|
[ |
1006
|
|
|
osm_buildings_gdf, |
1007
|
|
|
synthetic_buildings_gdf, |
1008
|
|
|
] |
1009
|
|
|
), |
1010
|
|
|
geometry="geom", |
1011
|
|
|
crs=osm_buildings_gdf.crs, |
1012
|
|
|
).rename(columns={"area": "building_area"}) |
1013
|
|
|
|
1014
|
|
|
buildings_gdf.index = buildings_gdf.index.astype(int) |
1015
|
|
|
|
1016
|
|
|
else: |
1017
|
|
|
buildings_gdf = osm_buildings_gdf.rename( |
1018
|
|
|
columns={"area": "building_area"} |
1019
|
|
|
) |
1020
|
|
|
|
1021
|
|
|
if ONLY_BUILDINGS_WITH_DEMAND: |
1022
|
|
|
building_ids = egon_building_peak_loads() |
1023
|
|
|
|
1024
|
|
|
init_len = len(building_ids) |
1025
|
|
|
|
1026
|
|
|
building_ids = np.intersect1d( |
1027
|
|
|
list(map(int, building_ids)), |
1028
|
|
|
list(map(int, buildings_gdf.index.to_numpy())), |
1029
|
|
|
) |
1030
|
|
|
|
1031
|
|
|
end_len = len(building_ids) |
1032
|
|
|
|
1033
|
|
|
logger.debug( |
1034
|
|
|
f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) of buildings have " |
1035
|
|
|
f"peak load." |
1036
|
|
|
) |
1037
|
|
|
|
1038
|
|
|
buildings_gdf = buildings_gdf.loc[building_ids] |
1039
|
|
|
|
1040
|
|
|
buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf) |
1041
|
|
|
|
1042
|
|
|
buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf) |
1043
|
|
|
|
1044
|
|
|
grid_districts_gdf = grid_districts(EPSG) |
1045
|
|
|
|
1046
|
|
|
federal_state_gdf = federal_state_data(grid_districts_gdf.crs) |
1047
|
|
|
|
1048
|
|
|
grid_federal_state_gdf = overlay_grid_districts_with_counties( |
1049
|
|
|
grid_districts_gdf, |
1050
|
|
|
federal_state_gdf, |
1051
|
|
|
) |
1052
|
|
|
|
1053
|
|
|
buildings_overlay_gdf = add_overlay_id_to_buildings( |
1054
|
|
|
buildings_ags_gdf, |
1055
|
|
|
grid_federal_state_gdf, |
1056
|
|
|
) |
1057
|
|
|
|
1058
|
|
|
logger.debug("Loaded buildings.") |
1059
|
|
|
|
1060
|
|
|
buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf) |
1061
|
|
|
|
1062
|
|
|
# overwrite bus_id with data from new table |
1063
|
|
|
sql = "SELECT building_id, bus_id FROM boundaries.egon_map_zensus_mvgd_buildings" |
1064
|
|
|
map_building_bus_df = db.select_dataframe(sql) |
1065
|
|
|
|
1066
|
|
|
building_ids = np.intersect1d( |
1067
|
|
|
list(map(int, map_building_bus_df.building_id.unique())), |
1068
|
|
|
list(map(int, buildings_overlay_gdf.index.to_numpy())), |
1069
|
|
|
) |
1070
|
|
|
|
1071
|
|
|
buildings_within_gdf = buildings_overlay_gdf.loc[building_ids] |
1072
|
|
|
|
1073
|
|
|
gdf = ( |
1074
|
|
|
buildings_within_gdf.reset_index() |
1075
|
|
|
.drop(columns=["bus_id"]) |
1076
|
|
|
.merge( |
1077
|
|
|
how="left", |
1078
|
|
|
right=map_building_bus_df, |
1079
|
|
|
left_on="id", |
1080
|
|
|
right_on="building_id", |
1081
|
|
|
) |
1082
|
|
|
.drop(columns=["building_id"]) |
1083
|
|
|
.set_index("id") |
1084
|
|
|
.sort_index() |
1085
|
|
|
) |
1086
|
|
|
|
1087
|
|
|
return gdf[~gdf.index.duplicated(keep="first")] |
1088
|
|
|
|
1089
|
|
|
|
1090
|
|
|
@timer_func |
1091
|
|
|
def sort_and_qcut_df( |
1092
|
|
|
df: pd.DataFrame | gpd.GeoDataFrame, |
1093
|
|
|
col: str, |
1094
|
|
|
q: int, |
1095
|
|
|
) -> pd.DataFrame | gpd.GeoDataFrame: |
1096
|
|
|
""" |
1097
|
|
|
Determine the quantile of a given attribute in a (Geo)DataFrame. |
1098
|
|
|
Sort the (Geo)DataFrame in ascending order for the given attribute. |
1099
|
|
|
Parameters |
1100
|
|
|
----------- |
1101
|
|
|
df : pandas.DataFrame or geopandas.GeoDataFrame |
1102
|
|
|
(Geo)DataFrame to sort and qcut. |
1103
|
|
|
col : str |
1104
|
|
|
Name of the attribute to sort and qcut the (Geo)DataFrame on. |
1105
|
|
|
q : int |
1106
|
|
|
Number of quantiles. |
1107
|
|
|
Returns |
1108
|
|
|
------- |
1109
|
|
|
pandas.DataFrame or gepandas.GeoDataFrame |
1110
|
|
|
Sorted and qcut (Geo)DataFrame. |
1111
|
|
|
""" |
1112
|
|
|
df = df.sort_values(col, ascending=True) |
1113
|
|
|
|
1114
|
|
|
return df.assign( |
1115
|
|
|
quant=pd.qcut( |
1116
|
|
|
df[col], |
1117
|
|
|
q=q, |
1118
|
|
|
labels=range(q), |
1119
|
|
|
) |
1120
|
|
|
) |
1121
|
|
|
|
1122
|
|
|
|
1123
|
|
|
@timer_func |
1124
|
|
|
def allocate_pv( |
1125
|
|
|
q_mastr_gdf: gpd.GeoDataFrame, |
1126
|
|
|
q_buildings_gdf: gpd.GeoDataFrame, |
1127
|
|
|
seed: int, |
1128
|
|
|
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
1129
|
|
|
""" |
1130
|
|
|
Allocate the MaStR pv generators to the OSM buildings. |
1131
|
|
|
This will determine a building for each pv generator if there are more |
1132
|
|
|
buildings than generators within a given AGS. Primarily generators are |
1133
|
|
|
distributed with the same qunatile as the buildings. Multiple assignment |
1134
|
|
|
is excluded. |
1135
|
|
|
Parameters |
1136
|
|
|
----------- |
1137
|
|
|
q_mastr_gdf : geopandas.GeoDataFrame |
1138
|
|
|
GeoDataFrame containing geocoded and qcut MaStR data. |
1139
|
|
|
q_buildings_gdf : geopandas.GeoDataFrame |
1140
|
|
|
GeoDataFrame containing qcut OSM buildings data. |
1141
|
|
|
seed : int |
1142
|
|
|
Seed to use for random operations with NumPy and pandas. |
1143
|
|
|
Returns |
1144
|
|
|
------- |
1145
|
|
|
tuple with two geopandas.GeoDataFrame s |
1146
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
1147
|
|
|
GeoDataFrame containing building data allocated to MaStR IDs. |
1148
|
|
|
""" |
1149
|
|
|
rng = default_rng(seed=seed) |
1150
|
|
|
|
1151
|
|
|
q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan) |
1152
|
|
|
q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan) |
1153
|
|
|
|
1154
|
|
|
ags_list = q_buildings_gdf.ags.unique() |
1155
|
|
|
|
1156
|
|
|
if TEST_RUN: |
1157
|
|
|
ags_list = ags_list[:250] |
1158
|
|
|
|
1159
|
|
|
num_ags = len(ags_list) |
1160
|
|
|
|
1161
|
|
|
t0 = perf_counter() |
1162
|
|
|
|
1163
|
|
|
for count, ags in enumerate(ags_list): |
1164
|
|
|
|
1165
|
|
|
buildings = q_buildings_gdf.loc[ |
1166
|
|
|
(q_buildings_gdf.ags == ags) & (q_buildings_gdf.gens_id.isna()) |
1167
|
|
|
] |
1168
|
|
|
gens = q_mastr_gdf.loc[q_mastr_gdf.ags == ags] |
1169
|
|
|
|
1170
|
|
|
len_build = len(buildings) |
1171
|
|
|
len_gens = len(gens) |
1172
|
|
|
|
1173
|
|
|
if len_build < len_gens: |
1174
|
|
|
gens = gens.sample(len_build, random_state=RandomState(seed=seed)) |
1175
|
|
|
logger.error( |
1176
|
|
|
f"There are {len_gens} generators and only {len_build}" |
1177
|
|
|
f" buildings in AGS {ags}. {len_gens - len(gens)} " |
1178
|
|
|
"generators were truncated to match the amount of buildings." |
1179
|
|
|
) |
1180
|
|
|
|
1181
|
|
|
assert len_build == len(gens) |
1182
|
|
|
|
1183
|
|
|
for quant in gens.quant.unique(): |
1184
|
|
|
q_buildings = buildings.loc[buildings.quant == quant] |
1185
|
|
|
q_gens = gens.loc[gens.quant == quant] |
1186
|
|
|
|
1187
|
|
|
len_build = len(q_buildings) |
1188
|
|
|
len_gens = len(q_gens) |
1189
|
|
|
|
1190
|
|
|
if len_build < len_gens: |
1191
|
|
|
delta = len_gens - len_build |
1192
|
|
|
|
1193
|
|
|
logger.warning( |
1194
|
|
|
f"There are {len_gens} generators and only {len_build} " |
1195
|
|
|
f"buildings in AGS {ags} and quantile {quant}. {delta} " |
1196
|
|
|
f"buildings from AGS {ags} will be added randomly." |
1197
|
|
|
) |
1198
|
|
|
|
1199
|
|
|
add_buildings = pd.Index( |
1200
|
|
|
rng.choice( |
1201
|
|
|
buildings.loc[ |
1202
|
|
|
(buildings.quant != quant) |
1203
|
|
|
& (buildings.gens_id.isna()) |
1204
|
|
|
].index, |
1205
|
|
|
size=delta, |
1206
|
|
|
replace=False, |
1207
|
|
|
) |
1208
|
|
|
) |
1209
|
|
|
|
1210
|
|
|
q_buildings = buildings.loc[ |
1211
|
|
|
q_buildings.index.append(add_buildings) |
1212
|
|
|
] |
1213
|
|
|
|
1214
|
|
|
assert len(q_buildings) == len_gens |
1215
|
|
|
|
1216
|
|
|
chosen_buildings = pd.Index( |
1217
|
|
|
rng.choice( |
1218
|
|
|
q_buildings.index, |
1219
|
|
|
size=len_gens, |
1220
|
|
|
replace=False, |
1221
|
|
|
) |
1222
|
|
|
) |
1223
|
|
|
|
1224
|
|
|
# q_mastr_gdf.loc[q_gens.index, "building_id"] = chosen_buildings |
1225
|
|
|
q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index |
1226
|
|
|
buildings = buildings.drop(chosen_buildings) |
1227
|
|
|
|
1228
|
|
|
if count % 100 == 0: |
1229
|
|
|
logger.debug( |
1230
|
|
|
f"Allocation of {count / num_ags * 100:g} % of AGS done. It took " |
1231
|
|
|
f"{perf_counter() - t0:g} seconds." |
1232
|
|
|
) |
1233
|
|
|
|
1234
|
|
|
t0 = perf_counter() |
1235
|
|
|
|
1236
|
|
|
assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()] |
1237
|
|
|
|
1238
|
|
|
q_mastr_gdf.loc[ |
1239
|
|
|
assigned_buildings.gens_id, "building_id" |
1240
|
|
|
] = assigned_buildings.index |
1241
|
|
|
|
1242
|
|
|
assigned_gens = q_mastr_gdf.loc[~q_buildings_gdf.building_id.isna()] |
1243
|
|
|
|
1244
|
|
|
assert len(assigned_buildings) == len(assigned_gens) |
1245
|
|
|
|
1246
|
|
|
logger.debug("Allocated status quo generators to buildings.") |
1247
|
|
|
|
1248
|
|
|
return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf) |
1249
|
|
|
|
1250
|
|
|
|
1251
|
|
|
def frame_to_numeric( |
1252
|
|
|
df: pd.DataFrame | gpd.GeoDataFrame, |
1253
|
|
|
) -> pd.DataFrame | gpd.GeoDataFrame: |
1254
|
|
|
""" |
1255
|
|
|
Try to convert all columns of a DataFrame to numeric ignoring errors. |
1256
|
|
|
Parameters |
1257
|
|
|
---------- |
1258
|
|
|
df : pandas.DataFrame or geopandas.GeoDataFrame |
1259
|
|
|
Returns |
1260
|
|
|
------- |
1261
|
|
|
pandas.DataFrame or geopandas.GeoDataFrame |
1262
|
|
|
""" |
1263
|
|
|
if str(df.index.dtype) == "object": |
1264
|
|
|
df.index = pd.to_numeric(df.index, errors="ignore") |
1265
|
|
|
|
1266
|
|
|
for col in df.columns: |
1267
|
|
|
if str(df[col].dtype) == "object": |
1268
|
|
|
df[col] = pd.to_numeric(df[col], errors="ignore") |
1269
|
|
|
|
1270
|
|
|
return df |
1271
|
|
|
|
1272
|
|
|
|
1273
|
|
|
def validate_output( |
1274
|
|
|
desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame, |
1275
|
|
|
desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame, |
1276
|
|
|
) -> None: |
1277
|
|
|
""" |
1278
|
|
|
Validate output. |
1279
|
|
|
|
1280
|
|
|
* Validate that there are exactly as many buildings with a pv system as there are |
1281
|
|
|
pv systems with a building |
1282
|
|
|
* Validate that the building IDs with a pv system are the same building IDs as |
1283
|
|
|
assigned to the pv systems |
1284
|
|
|
* Validate that the pv system IDs with a building are the same pv system IDs as |
1285
|
|
|
assigned to the buildings |
1286
|
|
|
|
1287
|
|
|
Parameters |
1288
|
|
|
----------- |
1289
|
|
|
desagg_mastr_gdf : geopandas.GeoDataFrame |
1290
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
1291
|
|
|
desagg_buildings_gdf : geopandas.GeoDataFrame |
1292
|
|
|
GeoDataFrame containing building data allocated to MaStR IDs. |
1293
|
|
|
""" |
1294
|
|
|
assert len( |
1295
|
|
|
desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()] |
1296
|
|
|
) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()]) |
1297
|
|
|
assert ( |
1298
|
|
|
np.sort( |
1299
|
|
|
desagg_mastr_gdf.loc[ |
1300
|
|
|
~desagg_mastr_gdf.building_id.isna() |
1301
|
|
|
].building_id.unique() |
1302
|
|
|
) |
1303
|
|
|
== np.sort( |
1304
|
|
|
desagg_buildings_gdf.loc[ |
1305
|
|
|
~desagg_buildings_gdf.gens_id.isna() |
1306
|
|
|
].index.unique() |
1307
|
|
|
) |
1308
|
|
|
).all() |
1309
|
|
|
assert ( |
1310
|
|
|
np.sort( |
1311
|
|
|
desagg_mastr_gdf.loc[ |
1312
|
|
|
~desagg_mastr_gdf.building_id.isna() |
1313
|
|
|
].index.unique() |
1314
|
|
|
) |
1315
|
|
|
== np.sort( |
1316
|
|
|
desagg_buildings_gdf.loc[ |
1317
|
|
|
~desagg_buildings_gdf.gens_id.isna() |
1318
|
|
|
].gens_id.unique() |
1319
|
|
|
) |
1320
|
|
|
).all() |
1321
|
|
|
|
1322
|
|
|
logger.debug("Validated output.") |
1323
|
|
|
|
1324
|
|
|
|
1325
|
|
|
def drop_unallocated_gens( |
1326
|
|
|
gdf: gpd.GeoDataFrame, |
1327
|
|
|
) -> gpd.GeoDataFrame: |
1328
|
|
|
""" |
1329
|
|
|
Drop generators which did not get allocated. |
1330
|
|
|
|
1331
|
|
|
Parameters |
1332
|
|
|
----------- |
1333
|
|
|
gdf : geopandas.GeoDataFrame |
1334
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
1335
|
|
|
Returns |
1336
|
|
|
------- |
1337
|
|
|
geopandas.GeoDataFrame |
1338
|
|
|
GeoDataFrame containing MaStR data with generators dropped which did not get |
1339
|
|
|
allocated. |
1340
|
|
|
""" |
1341
|
|
|
init_len = len(gdf) |
1342
|
|
|
gdf = gdf.loc[~gdf.building_id.isna()] |
1343
|
|
|
end_len = len(gdf) |
1344
|
|
|
|
1345
|
|
|
logger.debug( |
1346
|
|
|
f"Dropped {init_len - end_len} " |
1347
|
|
|
f"({((init_len - end_len) / init_len) * 100:g}%)" |
1348
|
|
|
f" of {init_len} unallocated rows from MaStR DataFrame." |
1349
|
|
|
) |
1350
|
|
|
|
1351
|
|
|
return gdf |
1352
|
|
|
|
1353
|
|
|
|
1354
|
|
|
@timer_func |
1355
|
|
|
def allocate_to_buildings( |
1356
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1357
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
1358
|
|
|
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
1359
|
|
|
""" |
1360
|
|
|
Allocate status quo pv rooftop generators to buildings. |
1361
|
|
|
Parameters |
1362
|
|
|
----------- |
1363
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1364
|
|
|
GeoDataFrame containing MaStR data with geocoded locations. |
1365
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
1366
|
|
|
GeoDataFrame containing OSM buildings data with buildings without an AGS ID |
1367
|
|
|
dropped. |
1368
|
|
|
Returns |
1369
|
|
|
------- |
1370
|
|
|
tuple with two geopandas.GeoDataFrame s |
1371
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
1372
|
|
|
GeoDataFrame containing building data allocated to MaStR IDs. |
1373
|
|
|
""" |
1374
|
|
|
logger.debug("Starting allocation of status quo.") |
1375
|
|
|
|
1376
|
|
|
q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q) |
1377
|
|
|
q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q) |
1378
|
|
|
|
1379
|
|
|
desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv( |
1380
|
|
|
q_mastr_gdf, q_buildings_gdf, SEED |
1381
|
|
|
) |
1382
|
|
|
|
1383
|
|
|
validate_output(desagg_mastr_gdf, desagg_buildings_gdf) |
1384
|
|
|
|
1385
|
|
|
return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf |
1386
|
|
|
|
1387
|
|
|
|
1388
|
|
|
@timer_func |
1389
|
|
|
def grid_districts( |
1390
|
|
|
epsg: int, |
1391
|
|
|
) -> gpd.GeoDataFrame: |
1392
|
|
|
""" |
1393
|
|
|
Load mv grid district geo data from eGo^n Database as |
1394
|
|
|
geopandas.GeoDataFrame. |
1395
|
|
|
Parameters |
1396
|
|
|
----------- |
1397
|
|
|
epsg : int |
1398
|
|
|
EPSG ID to use as CRS. |
1399
|
|
|
Returns |
1400
|
|
|
------- |
1401
|
|
|
geopandas.GeoDataFrame |
1402
|
|
|
GeoDataFrame containing mv grid district ID and geo shapes data. |
1403
|
|
|
""" |
1404
|
|
|
gdf = db.select_geodataframe( |
1405
|
|
|
""" |
1406
|
|
|
SELECT bus_id, geom |
1407
|
|
|
FROM grid.egon_mv_grid_district |
1408
|
|
|
ORDER BY bus_id |
1409
|
|
|
""", |
1410
|
|
|
index_col="bus_id", |
1411
|
|
|
geom_col="geom", |
1412
|
|
|
epsg=epsg, |
1413
|
|
|
) |
1414
|
|
|
|
1415
|
|
|
gdf.index = gdf.index.astype(int) |
1416
|
|
|
|
1417
|
|
|
logger.debug("Grid districts loaded.") |
1418
|
|
|
|
1419
|
|
|
return gdf |
1420
|
|
|
|
1421
|
|
|
|
1422
|
|
|
def scenario_data( |
1423
|
|
|
carrier: str = "solar_rooftop", |
1424
|
|
|
scenario: str = "eGon2035", |
1425
|
|
|
) -> pd.DataFrame: |
1426
|
|
|
""" |
1427
|
|
|
Get scenario capacity data from eGo^n Database. |
1428
|
|
|
Parameters |
1429
|
|
|
----------- |
1430
|
|
|
carrier : str |
1431
|
|
|
Carrier type to filter table by. |
1432
|
|
|
scenario : str |
1433
|
|
|
Scenario to filter table by. |
1434
|
|
|
Returns |
1435
|
|
|
------- |
1436
|
|
|
geopandas.GeoDataFrame |
1437
|
|
|
GeoDataFrame with scenario capacity data in GW. |
1438
|
|
|
""" |
1439
|
|
|
with db.session_scope() as session: |
1440
|
|
|
query = session.query(EgonScenarioCapacities).filter( |
1441
|
|
|
EgonScenarioCapacities.carrier == carrier, |
1442
|
|
|
EgonScenarioCapacities.scenario_name == scenario, |
1443
|
|
|
) |
1444
|
|
|
|
1445
|
|
|
df = pd.read_sql( |
1446
|
|
|
query.statement, query.session.bind, index_col="index" |
1447
|
|
|
).sort_index() |
1448
|
|
|
|
1449
|
|
|
logger.debug("Scenario capacity data loaded.") |
1450
|
|
|
|
1451
|
|
|
return df |
1452
|
|
|
|
1453
|
|
|
|
1454
|
|
View Code Duplication |
class Vg250Lan(Base): |
|
|
|
|
1455
|
|
|
__tablename__ = "vg250_lan" |
1456
|
|
|
__table_args__ = {"schema": "boundaries"} |
1457
|
|
|
|
1458
|
|
|
id = Column(BigInteger, primary_key=True, index=True) |
1459
|
|
|
ade = Column(BigInteger) |
1460
|
|
|
gf = Column(BigInteger) |
1461
|
|
|
bsg = Column(BigInteger) |
1462
|
|
|
ars = Column(String) |
1463
|
|
|
ags = Column(String) |
1464
|
|
|
sdv_ars = Column(String) |
1465
|
|
|
gen = Column(String) |
1466
|
|
|
bez = Column(String) |
1467
|
|
|
ibz = Column(BigInteger) |
1468
|
|
|
bem = Column(String) |
1469
|
|
|
nbd = Column(String) |
1470
|
|
|
sn_l = Column(String) |
1471
|
|
|
sn_r = Column(String) |
1472
|
|
|
sn_k = Column(String) |
1473
|
|
|
sn_v1 = Column(String) |
1474
|
|
|
sn_v2 = Column(String) |
1475
|
|
|
sn_g = Column(String) |
1476
|
|
|
fk_s3 = Column(String) |
1477
|
|
|
nuts = Column(String) |
1478
|
|
|
ars_0 = Column(String) |
1479
|
|
|
ags_0 = Column(String) |
1480
|
|
|
wsk = Column(String) |
1481
|
|
|
debkg_id = Column(String) |
1482
|
|
|
rs = Column(String) |
1483
|
|
|
sdv_rs = Column(String) |
1484
|
|
|
rs_0 = Column(String) |
1485
|
|
|
geometry = Column(Geometry(srid=EPSG), index=True) |
1486
|
|
|
|
1487
|
|
|
|
1488
|
|
|
def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame: |
1489
|
|
|
""" |
1490
|
|
|
Get feder state data from eGo^n Database. |
1491
|
|
|
Parameters |
1492
|
|
|
----------- |
1493
|
|
|
to_crs : pyproj.crs.crs.CRS |
1494
|
|
|
CRS to transform geometries to. |
1495
|
|
|
Returns |
1496
|
|
|
------- |
1497
|
|
|
geopandas.GeoDataFrame |
1498
|
|
|
GeoDataFrame with federal state data. |
1499
|
|
|
""" |
1500
|
|
|
with db.session_scope() as session: |
1501
|
|
|
query = session.query( |
1502
|
|
|
Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom") |
1503
|
|
|
) |
1504
|
|
|
|
1505
|
|
|
gdf = gpd.read_postgis( |
1506
|
|
|
query.statement, session.connection(), index_col="id" |
1507
|
|
|
).to_crs(to_crs) |
1508
|
|
|
|
1509
|
|
|
logger.debug("Federal State data loaded.") |
1510
|
|
|
|
1511
|
|
|
return gdf |
1512
|
|
|
|
1513
|
|
|
|
1514
|
|
|
@timer_func |
1515
|
|
|
def overlay_grid_districts_with_counties( |
1516
|
|
|
mv_grid_district_gdf: gpd.GeoDataFrame, |
1517
|
|
|
federal_state_gdf: gpd.GeoDataFrame, |
1518
|
|
|
) -> gpd.GeoDataFrame: |
1519
|
|
|
""" |
1520
|
|
|
Calculate the intersections of mv grid districts and counties. |
1521
|
|
|
Parameters |
1522
|
|
|
----------- |
1523
|
|
|
mv_grid_district_gdf : gpd.GeoDataFrame |
1524
|
|
|
GeoDataFrame containing mv grid district ID and geo shapes data. |
1525
|
|
|
federal_state_gdf : gpd.GeoDataFrame |
1526
|
|
|
GeoDataFrame with federal state data. |
1527
|
|
|
Returns |
1528
|
|
|
------- |
1529
|
|
|
geopandas.GeoDataFrame |
1530
|
|
|
GeoDataFrame containing OSM buildings data. |
1531
|
|
|
""" |
1532
|
|
|
logger.debug( |
1533
|
|
|
"Calculating intersection overlay between mv grid districts and " |
1534
|
|
|
"counties. This may take a while..." |
1535
|
|
|
) |
1536
|
|
|
|
1537
|
|
|
gdf = gpd.overlay( |
1538
|
|
|
federal_state_gdf.to_crs(mv_grid_district_gdf.crs), |
1539
|
|
|
mv_grid_district_gdf.reset_index(), |
1540
|
|
|
how="intersection", |
1541
|
|
|
keep_geom_type=True, |
1542
|
|
|
) |
1543
|
|
|
|
1544
|
|
|
logger.debug("Done!") |
1545
|
|
|
|
1546
|
|
|
return gdf |
1547
|
|
|
|
1548
|
|
|
|
1549
|
|
|
@timer_func |
1550
|
|
|
def add_overlay_id_to_buildings( |
1551
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
1552
|
|
|
grid_federal_state_gdf: gpd.GeoDataFrame, |
1553
|
|
|
) -> gpd.GeoDataFrame: |
1554
|
|
|
""" |
1555
|
|
|
Add information about overlay ID to buildings. |
1556
|
|
|
Parameters |
1557
|
|
|
----------- |
1558
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
1559
|
|
|
GeoDataFrame containing OSM buildings data. |
1560
|
|
|
grid_federal_state_gdf : geopandas.GeoDataFrame |
1561
|
|
|
GeoDataFrame with intersection shapes between counties and grid districts. |
1562
|
|
|
Returns |
1563
|
|
|
------- |
1564
|
|
|
geopandas.GeoDataFrame |
1565
|
|
|
GeoDataFrame containing OSM buildings data with overlay ID added. |
1566
|
|
|
""" |
1567
|
|
|
gdf = ( |
1568
|
|
|
buildings_gdf.to_crs(grid_federal_state_gdf.crs) |
1569
|
|
|
.sjoin( |
1570
|
|
|
grid_federal_state_gdf, |
1571
|
|
|
how="left", |
1572
|
|
|
predicate="intersects", |
1573
|
|
|
) |
1574
|
|
|
.rename(columns={"index_right": "overlay_id"}) |
1575
|
|
|
) |
1576
|
|
|
|
1577
|
|
|
logger.debug("Added overlay ID to OSM buildings.") |
1578
|
|
|
|
1579
|
|
|
return gdf |
1580
|
|
|
|
1581
|
|
|
|
1582
|
|
|
def drop_buildings_outside_grids( |
1583
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
1584
|
|
|
) -> gpd.GeoDataFrame: |
1585
|
|
|
""" |
1586
|
|
|
Drop all buildings outside of grid areas. |
1587
|
|
|
Parameters |
1588
|
|
|
----------- |
1589
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
1590
|
|
|
GeoDataFrame containing OSM buildings data. |
1591
|
|
|
Returns |
1592
|
|
|
------- |
1593
|
|
|
gepandas.GeoDataFrame |
1594
|
|
|
GeoDataFrame containing OSM buildings data |
1595
|
|
|
with buildings without an bus ID dropped. |
1596
|
|
|
""" |
1597
|
|
|
gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()] |
1598
|
|
|
|
1599
|
|
|
logger.debug( |
1600
|
|
|
f"{len(buildings_gdf) - len(gdf)} " |
1601
|
|
|
f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
1602
|
|
|
f"of {len(buildings_gdf)} values are outside of the grid areas " |
1603
|
|
|
"and are therefore dropped." |
1604
|
|
|
) |
1605
|
|
|
|
1606
|
|
|
return gdf |
1607
|
|
|
|
1608
|
|
|
|
1609
|
|
|
def cap_per_bus_id( |
1610
|
|
|
scenario: str, |
1611
|
|
|
) -> pd.DataFrame: |
1612
|
|
|
""" |
1613
|
|
|
Get table with total pv rooftop capacity per grid district. |
1614
|
|
|
|
1615
|
|
|
Parameters |
1616
|
|
|
----------- |
1617
|
|
|
scenario : str |
1618
|
|
|
Scenario name. |
1619
|
|
|
Returns |
1620
|
|
|
------- |
1621
|
|
|
pandas.DataFrame |
1622
|
|
|
DataFrame with total rooftop capacity per mv grid. |
1623
|
|
|
""" |
1624
|
|
|
targets = config.datasets()["solar_rooftop"]["targets"] |
1625
|
|
|
|
1626
|
|
|
sql = f""" |
1627
|
|
|
SELECT bus as bus_id, p_nom as capacity |
1628
|
|
|
FROM {targets['generators']['schema']}.{targets['generators']['table']} |
1629
|
|
|
WHERE carrier = 'solar_rooftop' |
1630
|
|
|
AND scn_name = '{scenario}' |
1631
|
|
|
""" |
1632
|
|
|
|
1633
|
|
|
return db.select_dataframe(sql, index_col="bus_id") |
1634
|
|
|
|
1635
|
|
|
# overlay_gdf = overlay_gdf.assign(capacity=np.nan) |
1636
|
|
|
# |
1637
|
|
|
# for cap, nuts in scenario_df[["capacity", "nuts"]].itertuples(index=False): |
1638
|
|
|
# nuts_gdf = overlay_gdf.loc[overlay_gdf.nuts == nuts] |
1639
|
|
|
# |
1640
|
|
|
# capacity = nuts_gdf.building_area.multiply( |
1641
|
|
|
# cap / nuts_gdf.building_area.sum() |
1642
|
|
|
# ) |
1643
|
|
|
# |
1644
|
|
|
# overlay_gdf.loc[nuts_gdf.index] = overlay_gdf.loc[ |
1645
|
|
|
# nuts_gdf.index |
1646
|
|
|
# ].assign(capacity=capacity.multiply(conversion).to_numpy()) |
1647
|
|
|
# |
1648
|
|
|
# return overlay_gdf[["bus_id", "capacity"]].groupby("bus_id").sum() |
1649
|
|
|
|
1650
|
|
|
|
1651
|
|
|
def determine_end_of_life_gens( |
1652
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1653
|
|
|
scenario_timestamp: pd.Timestamp, |
1654
|
|
|
pv_rooftop_lifetime: pd.Timedelta, |
1655
|
|
|
) -> gpd.GeoDataFrame: |
1656
|
|
|
""" |
1657
|
|
|
Determine if an old PV system has reached its end of life. |
1658
|
|
|
Parameters |
1659
|
|
|
----------- |
1660
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1661
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1662
|
|
|
scenario_timestamp : pandas.Timestamp |
1663
|
|
|
Timestamp at which the scenario takes place. |
1664
|
|
|
pv_rooftop_lifetime : pandas.Timedelta |
1665
|
|
|
Average expected lifetime of PV rooftop systems. |
1666
|
|
|
Returns |
1667
|
|
|
------- |
1668
|
|
|
geopandas.GeoDataFrame |
1669
|
|
|
GeoDataFrame containing geocoded MaStR data and info if the system |
1670
|
|
|
has reached its end of life. |
1671
|
|
|
""" |
1672
|
|
|
before = mastr_gdf.capacity.sum() |
1673
|
|
|
|
1674
|
|
|
mastr_gdf = mastr_gdf.assign( |
1675
|
|
|
age=scenario_timestamp - mastr_gdf.start_up_date |
1676
|
|
|
) |
1677
|
|
|
|
1678
|
|
|
mastr_gdf = mastr_gdf.assign( |
1679
|
|
|
end_of_life=pv_rooftop_lifetime < mastr_gdf.age |
1680
|
|
|
) |
1681
|
|
|
|
1682
|
|
|
after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum() |
1683
|
|
|
|
1684
|
|
|
logger.debug( |
1685
|
|
|
"Determined if pv rooftop systems reached their end of life.\nTotal capacity: " |
1686
|
|
|
f"{before}\nActive capacity: {after}" |
1687
|
|
|
) |
1688
|
|
|
|
1689
|
|
|
return mastr_gdf |
1690
|
|
|
|
1691
|
|
|
|
1692
|
|
|
def calculate_max_pv_cap_per_building( |
1693
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
1694
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1695
|
|
|
pv_cap_per_sq_m: float | int, |
1696
|
|
|
roof_factor: float | int, |
1697
|
|
|
) -> gpd.GeoDataFrame: |
1698
|
|
|
""" |
1699
|
|
|
Calculate the estimated maximum possible PV capacity per building. |
1700
|
|
|
Parameters |
1701
|
|
|
----------- |
1702
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
1703
|
|
|
GeoDataFrame containing OSM buildings data. |
1704
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1705
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1706
|
|
|
pv_cap_per_sq_m : float, int |
1707
|
|
|
Average expected, installable PV capacity per square meter. |
1708
|
|
|
roof_factor : float, int |
1709
|
|
|
Average for PV usable roof area share. |
1710
|
|
|
Returns |
1711
|
|
|
------- |
1712
|
|
|
geopandas.GeoDataFrame |
1713
|
|
|
GeoDataFrame containing OSM buildings data with estimated maximum PV |
1714
|
|
|
capacity. |
1715
|
|
|
""" |
1716
|
|
|
gdf = ( |
1717
|
|
|
buildings_gdf.reset_index() |
1718
|
|
|
.rename(columns={"index": "id"}) |
1719
|
|
|
.merge( |
1720
|
|
|
mastr_gdf[ |
1721
|
|
|
[ |
1722
|
|
|
"capacity", |
1723
|
|
|
"end_of_life", |
1724
|
|
|
"building_id", |
1725
|
|
|
"EinheitlicheAusrichtungUndNeigungswinkel", |
1726
|
|
|
"Hauptausrichtung", |
1727
|
|
|
"HauptausrichtungNeigungswinkel", |
1728
|
|
|
] |
1729
|
|
|
], |
1730
|
|
|
how="left", |
1731
|
|
|
left_on="id", |
1732
|
|
|
right_on="building_id", |
1733
|
|
|
) |
1734
|
|
|
.set_index("id") |
1735
|
|
|
.drop(columns="building_id") |
1736
|
|
|
) |
1737
|
|
|
|
1738
|
|
|
return gdf.assign( |
1739
|
|
|
max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m), |
1740
|
|
|
end_of_life=gdf.end_of_life.fillna(True).astype(bool), |
1741
|
|
|
bus_id=gdf.bus_id.astype(int), |
1742
|
|
|
) |
1743
|
|
|
|
1744
|
|
|
|
1745
|
|
|
def calculate_building_load_factor( |
1746
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1747
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
1748
|
|
|
rounding: int = 4, |
1749
|
|
|
) -> gpd.GeoDataFrame: |
1750
|
|
|
""" |
1751
|
|
|
Calculate the roof load factor from existing PV systems. |
1752
|
|
|
Parameters |
1753
|
|
|
----------- |
1754
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1755
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1756
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
1757
|
|
|
GeoDataFrame containing OSM buildings data. |
1758
|
|
|
rounding : int |
1759
|
|
|
Rounding to use for load factor. |
1760
|
|
|
Returns |
1761
|
|
|
------- |
1762
|
|
|
geopandas.GeoDataFrame |
1763
|
|
|
GeoDataFrame containing geocoded MaStR data with calculated load factor. |
1764
|
|
|
""" |
1765
|
|
|
gdf = mastr_gdf.merge( |
1766
|
|
|
buildings_gdf[["max_cap", "building_area"]] |
1767
|
|
|
.loc[~buildings_gdf["max_cap"].isna()] |
1768
|
|
|
.reset_index(), |
1769
|
|
|
how="left", |
1770
|
|
|
left_on="building_id", |
1771
|
|
|
right_on="id", |
1772
|
|
|
).set_index("id") |
1773
|
|
|
|
1774
|
|
|
return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding)) |
1775
|
|
|
|
1776
|
|
|
|
1777
|
|
|
def get_probability_for_property( |
1778
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1779
|
|
|
cap_range: tuple[int | float, int | float], |
1780
|
|
|
prop: str, |
1781
|
|
|
) -> tuple[np.array, np.array]: |
1782
|
|
|
""" |
1783
|
|
|
Calculate the probability of the different options of a property of the |
1784
|
|
|
existing PV plants. |
1785
|
|
|
Parameters |
1786
|
|
|
----------- |
1787
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1788
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1789
|
|
|
cap_range : tuple(int, int) |
1790
|
|
|
Capacity range of PV plants to look at. |
1791
|
|
|
prop : str |
1792
|
|
|
Property to calculate probabilities for. String needs to be in columns |
1793
|
|
|
of mastr_gdf. |
1794
|
|
|
Returns |
1795
|
|
|
------- |
1796
|
|
|
tuple |
1797
|
|
|
numpy.array |
1798
|
|
|
Unique values of property. |
1799
|
|
|
numpy.array |
1800
|
|
|
Probabilties per unique value. |
1801
|
|
|
""" |
1802
|
|
|
cap_range_gdf = mastr_gdf.loc[ |
1803
|
|
|
(mastr_gdf.capacity > cap_range[0]) |
1804
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
1805
|
|
|
] |
1806
|
|
|
|
1807
|
|
|
if prop == "load_factor": |
1808
|
|
|
cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1] |
1809
|
|
|
|
1810
|
|
|
count = Counter( |
1811
|
|
|
cap_range_gdf[prop].loc[ |
1812
|
|
|
~cap_range_gdf[prop].isna() |
1813
|
|
|
& ~cap_range_gdf[prop].isnull() |
1814
|
|
|
& ~(cap_range_gdf[prop] == "None") |
1815
|
|
|
] |
1816
|
|
|
) |
1817
|
|
|
|
1818
|
|
|
values = np.array(list(count.keys())) |
1819
|
|
|
probabilities = np.fromiter(count.values(), dtype=float) |
1820
|
|
|
probabilities = probabilities / np.sum(probabilities) |
1821
|
|
|
|
1822
|
|
|
return values, probabilities |
1823
|
|
|
|
1824
|
|
|
|
1825
|
|
|
@timer_func |
1826
|
|
|
def probabilities( |
1827
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1828
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
1829
|
|
|
properties: list[str] | None = None, |
1830
|
|
|
) -> dict: |
1831
|
|
|
""" |
1832
|
|
|
Calculate the probability of the different options of properties of the |
1833
|
|
|
existing PV plants. |
1834
|
|
|
Parameters |
1835
|
|
|
----------- |
1836
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1837
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1838
|
|
|
cap_ranges : list(tuple(int, int)) |
1839
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
1840
|
|
|
start with a zero and the last one should end with infinite. |
1841
|
|
|
properties : list(str) |
1842
|
|
|
List of properties to calculate probabilities for. Strings needs to be |
1843
|
|
|
in columns of mastr_gdf. |
1844
|
|
|
Returns |
1845
|
|
|
------- |
1846
|
|
|
dict |
1847
|
|
|
Dictionary with values and probabilities per capacity range. |
1848
|
|
|
""" |
1849
|
|
|
if cap_ranges is None: |
1850
|
|
|
cap_ranges = [ |
1851
|
|
|
(0, 30), |
1852
|
|
|
(30, 100), |
1853
|
|
|
(100, float("inf")), |
1854
|
|
|
] |
1855
|
|
|
if properties is None: |
1856
|
|
|
properties = [ |
1857
|
|
|
"EinheitlicheAusrichtungUndNeigungswinkel", |
1858
|
|
|
"Hauptausrichtung", |
1859
|
|
|
"HauptausrichtungNeigungswinkel", |
1860
|
|
|
"load_factor", |
1861
|
|
|
] |
1862
|
|
|
|
1863
|
|
|
prob_dict = {} |
1864
|
|
|
|
1865
|
|
|
for cap_range in cap_ranges: |
1866
|
|
|
prob_dict[cap_range] = { |
1867
|
|
|
"values": {}, |
1868
|
|
|
"probabilities": {}, |
1869
|
|
|
} |
1870
|
|
|
|
1871
|
|
|
for prop in properties: |
1872
|
|
|
v, p = get_probability_for_property( |
1873
|
|
|
mastr_gdf, |
1874
|
|
|
cap_range, |
1875
|
|
|
prop, |
1876
|
|
|
) |
1877
|
|
|
|
1878
|
|
|
prob_dict[cap_range]["values"][prop] = v |
1879
|
|
|
prob_dict[cap_range]["probabilities"][prop] = p |
1880
|
|
|
|
1881
|
|
|
return prob_dict |
1882
|
|
|
|
1883
|
|
|
|
1884
|
|
|
def cap_share_per_cap_range( |
1885
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1886
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
1887
|
|
|
) -> dict[tuple[int | float, int | float], float]: |
1888
|
|
|
""" |
1889
|
|
|
Calculate the share of PV capacity from the total PV capacity within |
1890
|
|
|
capacity ranges. |
1891
|
|
|
Parameters |
1892
|
|
|
----------- |
1893
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1894
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1895
|
|
|
cap_ranges : list(tuple(int, int)) |
1896
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
1897
|
|
|
start with a zero and the last one should end with infinite. |
1898
|
|
|
Returns |
1899
|
|
|
------- |
1900
|
|
|
dict |
1901
|
|
|
Dictionary with share of PV capacity from the total PV capacity within |
1902
|
|
|
capacity ranges. |
1903
|
|
|
""" |
1904
|
|
|
if cap_ranges is None: |
1905
|
|
|
cap_ranges = [ |
1906
|
|
|
(0, 30), |
1907
|
|
|
(30, 100), |
1908
|
|
|
(100, float("inf")), |
1909
|
|
|
] |
1910
|
|
|
|
1911
|
|
|
cap_share_dict = {} |
1912
|
|
|
|
1913
|
|
|
total_cap = mastr_gdf.capacity.sum() |
1914
|
|
|
|
1915
|
|
|
for cap_range in cap_ranges: |
1916
|
|
|
cap_share = ( |
1917
|
|
|
mastr_gdf.loc[ |
1918
|
|
|
(mastr_gdf.capacity > cap_range[0]) |
1919
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
1920
|
|
|
].capacity.sum() |
1921
|
|
|
/ total_cap |
1922
|
|
|
) |
1923
|
|
|
|
1924
|
|
|
cap_share_dict[cap_range] = cap_share |
1925
|
|
|
|
1926
|
|
|
return cap_share_dict |
1927
|
|
|
|
1928
|
|
|
|
1929
|
|
|
def mean_load_factor_per_cap_range( |
1930
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1931
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
1932
|
|
|
) -> dict[tuple[int | float, int | float], float]: |
1933
|
|
|
""" |
1934
|
|
|
Calculate the mean roof load factor per capacity range from existing PV |
1935
|
|
|
plants. |
1936
|
|
|
Parameters |
1937
|
|
|
----------- |
1938
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1939
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1940
|
|
|
cap_ranges : list(tuple(int, int)) |
1941
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
1942
|
|
|
start with a zero and the last one should end with infinite. |
1943
|
|
|
Returns |
1944
|
|
|
------- |
1945
|
|
|
dict |
1946
|
|
|
Dictionary with mean roof load factor per capacity range. |
1947
|
|
|
""" |
1948
|
|
|
if cap_ranges is None: |
1949
|
|
|
cap_ranges = [ |
1950
|
|
|
(0, 30), |
1951
|
|
|
(30, 100), |
1952
|
|
|
(100, float("inf")), |
1953
|
|
|
] |
1954
|
|
|
|
1955
|
|
|
load_factor_dict = {} |
1956
|
|
|
|
1957
|
|
|
for cap_range in cap_ranges: |
1958
|
|
|
load_factor = mastr_gdf.loc[ |
1959
|
|
|
(mastr_gdf.load_factor <= 1) |
1960
|
|
|
& (mastr_gdf.capacity > cap_range[0]) |
1961
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
1962
|
|
|
].load_factor.mean() |
1963
|
|
|
|
1964
|
|
|
load_factor_dict[cap_range] = load_factor |
1965
|
|
|
|
1966
|
|
|
return load_factor_dict |
1967
|
|
|
|
1968
|
|
|
|
1969
|
|
|
def building_area_range_per_cap_range( |
1970
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
1971
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
1972
|
|
|
min_building_size: int | float = 10.0, |
1973
|
|
|
upper_quantile: float = 0.95, |
1974
|
|
|
lower_quantile: float = 0.05, |
1975
|
|
|
) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]: |
1976
|
|
|
""" |
1977
|
|
|
Estimate normal building area range per capacity range. |
1978
|
|
|
Calculate the mean roof load factor per capacity range from existing PV |
1979
|
|
|
plants. |
1980
|
|
|
Parameters |
1981
|
|
|
----------- |
1982
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
1983
|
|
|
GeoDataFrame containing geocoded MaStR data. |
1984
|
|
|
cap_ranges : list(tuple(int, int)) |
1985
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
1986
|
|
|
start with a zero and the last one should end with infinite. |
1987
|
|
|
min_building_size : int, float |
1988
|
|
|
Minimal building size to consider for PV plants. |
1989
|
|
|
upper_quantile : float |
1990
|
|
|
Upper quantile to estimate maximum building size per capacity range. |
1991
|
|
|
lower_quantile : float |
1992
|
|
|
Lower quantile to estimate minimum building size per capacity range. |
1993
|
|
|
Returns |
1994
|
|
|
------- |
1995
|
|
|
dict |
1996
|
|
|
Dictionary with estimated normal building area range per capacity |
1997
|
|
|
range. |
1998
|
|
|
""" |
1999
|
|
|
if cap_ranges is None: |
2000
|
|
|
cap_ranges = [ |
2001
|
|
|
(0, 30), |
2002
|
|
|
(30, 100), |
2003
|
|
|
(100, float("inf")), |
2004
|
|
|
] |
2005
|
|
|
|
2006
|
|
|
building_area_range_dict = {} |
2007
|
|
|
|
2008
|
|
|
n_ranges = len(cap_ranges) |
2009
|
|
|
|
2010
|
|
|
for count, cap_range in enumerate(cap_ranges): |
2011
|
|
|
cap_range_gdf = mastr_gdf.loc[ |
2012
|
|
|
(mastr_gdf.capacity > cap_range[0]) |
2013
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
2014
|
|
|
] |
2015
|
|
|
|
2016
|
|
|
if count == 0: |
2017
|
|
|
building_area_range_dict[cap_range] = ( |
2018
|
|
|
min_building_size, |
2019
|
|
|
cap_range_gdf.building_area.quantile(upper_quantile), |
2020
|
|
|
) |
2021
|
|
|
elif count == n_ranges - 1: |
2022
|
|
|
building_area_range_dict[cap_range] = ( |
2023
|
|
|
cap_range_gdf.building_area.quantile(lower_quantile), |
2024
|
|
|
float("inf"), |
2025
|
|
|
) |
2026
|
|
|
else: |
2027
|
|
|
building_area_range_dict[cap_range] = ( |
2028
|
|
|
cap_range_gdf.building_area.quantile(lower_quantile), |
2029
|
|
|
cap_range_gdf.building_area.quantile(upper_quantile), |
2030
|
|
|
) |
2031
|
|
|
|
2032
|
|
|
values = list(building_area_range_dict.values()) |
2033
|
|
|
|
2034
|
|
|
building_area_range_normed_dict = {} |
2035
|
|
|
|
2036
|
|
|
for count, (cap_range, (min_area, max_area)) in enumerate( |
2037
|
|
|
building_area_range_dict.items() |
2038
|
|
|
): |
2039
|
|
|
if count == 0: |
2040
|
|
|
building_area_range_normed_dict[cap_range] = ( |
2041
|
|
|
min_area, |
2042
|
|
|
np.mean((values[count + 1][0], max_area)), |
2043
|
|
|
) |
2044
|
|
|
elif count == n_ranges - 1: |
2045
|
|
|
building_area_range_normed_dict[cap_range] = ( |
2046
|
|
|
np.mean((values[count - 1][1], min_area)), |
2047
|
|
|
max_area, |
2048
|
|
|
) |
2049
|
|
|
else: |
2050
|
|
|
building_area_range_normed_dict[cap_range] = ( |
2051
|
|
|
np.mean((values[count - 1][1], min_area)), |
2052
|
|
|
np.mean((values[count + 1][0], max_area)), |
2053
|
|
|
) |
2054
|
|
|
|
2055
|
|
|
return building_area_range_normed_dict |
2056
|
|
|
|
2057
|
|
|
|
2058
|
|
|
@timer_func |
2059
|
|
|
def desaggregate_pv_in_mv_grid( |
2060
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
2061
|
|
|
pv_cap: float | int, |
2062
|
|
|
**kwargs, |
2063
|
|
|
) -> gpd.GeoDataFrame: |
2064
|
|
|
""" |
2065
|
|
|
Desaggregate PV capacity on buildings within a given grid district. |
2066
|
|
|
Parameters |
2067
|
|
|
----------- |
2068
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
2069
|
|
|
GeoDataFrame containing buildings within the grid district. |
2070
|
|
|
pv_cap : float, int |
2071
|
|
|
PV capacity to desaggregate. |
2072
|
|
|
Other Parameters |
2073
|
|
|
----------- |
2074
|
|
|
prob_dict : dict |
2075
|
|
|
Dictionary with values and probabilities per capacity range. |
2076
|
|
|
cap_share_dict : dict |
2077
|
|
|
Dictionary with share of PV capacity from the total PV capacity within |
2078
|
|
|
capacity ranges. |
2079
|
|
|
building_area_range_dict : dict |
2080
|
|
|
Dictionary with estimated normal building area range per capacity |
2081
|
|
|
range. |
2082
|
|
|
load_factor_dict : dict |
2083
|
|
|
Dictionary with mean roof load factor per capacity range. |
2084
|
|
|
seed : int |
2085
|
|
|
Seed to use for random operations with NumPy and pandas. |
2086
|
|
|
pv_cap_per_sq_m : float, int |
2087
|
|
|
Average expected, installable PV capacity per square meter. |
2088
|
|
|
Returns |
2089
|
|
|
------- |
2090
|
|
|
geopandas.GeoDataFrame |
2091
|
|
|
GeoDataFrame containing OSM building data with desaggregated PV |
2092
|
|
|
plants. |
2093
|
|
|
""" |
2094
|
|
|
bus_id = int(buildings_gdf.bus_id.iat[0]) |
2095
|
|
|
|
2096
|
|
|
rng = default_rng(seed=kwargs["seed"]) |
2097
|
|
|
random_state = RandomState(seed=kwargs["seed"]) |
2098
|
|
|
|
2099
|
|
|
results_df = pd.DataFrame(columns=buildings_gdf.columns) |
2100
|
|
|
|
2101
|
|
|
for cap_range, share in kwargs["cap_share_dict"].items(): |
2102
|
|
|
pv_cap_range = pv_cap * share |
2103
|
|
|
|
2104
|
|
|
b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range] |
2105
|
|
|
|
2106
|
|
|
cap_range_buildings_gdf = buildings_gdf.loc[ |
2107
|
|
|
~buildings_gdf.index.isin(results_df.index) |
2108
|
|
|
& (buildings_gdf.building_area > b_area_min) |
2109
|
|
|
& (buildings_gdf.building_area <= b_area_max) |
2110
|
|
|
] |
2111
|
|
|
|
2112
|
|
|
mean_load_factor = kwargs["load_factor_dict"][cap_range] |
2113
|
|
|
cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
2114
|
|
|
mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
2115
|
|
|
load_factor=np.nan, |
2116
|
|
|
capacity=np.nan, |
2117
|
|
|
) |
2118
|
|
|
|
2119
|
|
|
total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
2120
|
|
|
|
2121
|
|
|
if total_mean_cap == 0: |
2122
|
|
|
logger.warning( |
2123
|
|
|
f"There are no matching roof for capacity range {cap_range} " |
2124
|
|
|
f"kW in grid {bus_id}. Using all buildings as fallback." |
2125
|
|
|
) |
2126
|
|
|
|
2127
|
|
|
cap_range_buildings_gdf = buildings_gdf.loc[ |
2128
|
|
|
~buildings_gdf.index.isin(results_df.index) |
2129
|
|
|
] |
2130
|
|
|
|
2131
|
|
|
if len(cap_range_buildings_gdf) == 0: |
2132
|
|
|
logger.warning( |
2133
|
|
|
"There are no roofes available for capacity range " |
2134
|
|
|
f"{cap_range} kW in grid {bus_id}. Allowing dual use." |
2135
|
|
|
) |
2136
|
|
|
cap_range_buildings_gdf = buildings_gdf.copy() |
2137
|
|
|
|
2138
|
|
|
cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
2139
|
|
|
mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
2140
|
|
|
load_factor=np.nan, |
2141
|
|
|
capacity=np.nan, |
2142
|
|
|
) |
2143
|
|
|
|
2144
|
|
|
total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
2145
|
|
|
|
2146
|
|
|
elif total_mean_cap < pv_cap_range: |
2147
|
|
|
logger.warning( |
2148
|
|
|
f"Average roof utilization of the roof area in grid {bus_id} " |
2149
|
|
|
f"and capacity range {cap_range} kW is not sufficient. The " |
2150
|
|
|
"roof utilization will be above average." |
2151
|
|
|
) |
2152
|
|
|
|
2153
|
|
|
frac = max( |
2154
|
|
|
pv_cap_range / total_mean_cap, |
2155
|
|
|
1 / len(cap_range_buildings_gdf), |
2156
|
|
|
) |
2157
|
|
|
|
2158
|
|
|
samples_gdf = cap_range_buildings_gdf.sample( |
2159
|
|
|
frac=min(1, frac), |
2160
|
|
|
random_state=random_state, |
2161
|
|
|
) |
2162
|
|
|
|
2163
|
|
|
cap_range_dict = kwargs["prob_dict"][cap_range] |
2164
|
|
|
|
2165
|
|
|
values_dict = cap_range_dict["values"] |
2166
|
|
|
p_dict = cap_range_dict["probabilities"] |
2167
|
|
|
|
2168
|
|
|
load_factors = rng.choice( |
2169
|
|
|
a=values_dict["load_factor"], |
2170
|
|
|
size=len(samples_gdf), |
2171
|
|
|
p=p_dict["load_factor"], |
2172
|
|
|
) |
2173
|
|
|
|
2174
|
|
|
samples_gdf = samples_gdf.assign( |
2175
|
|
|
load_factor=load_factors, |
2176
|
|
|
capacity=( |
2177
|
|
|
samples_gdf.building_area |
2178
|
|
|
* load_factors |
2179
|
|
|
* kwargs["pv_cap_per_sq_m"] |
2180
|
|
|
).clip(lower=0.4), |
2181
|
|
|
) |
2182
|
|
|
|
2183
|
|
|
missing_factor = pv_cap_range / samples_gdf.capacity.sum() |
2184
|
|
|
|
2185
|
|
|
samples_gdf = samples_gdf.assign( |
2186
|
|
|
capacity=(samples_gdf.capacity * missing_factor), |
2187
|
|
|
load_factor=(samples_gdf.load_factor * missing_factor), |
2188
|
|
|
) |
2189
|
|
|
|
2190
|
|
|
assert np.isclose( |
2191
|
|
|
samples_gdf.capacity.sum(), |
2192
|
|
|
pv_cap_range, |
2193
|
|
|
rtol=1e-03, |
2194
|
|
|
), f"{samples_gdf.capacity.sum()} != {pv_cap_range}" |
2195
|
|
|
|
2196
|
|
|
results_df = pd.concat( |
2197
|
|
|
[ |
2198
|
|
|
results_df, |
2199
|
|
|
samples_gdf, |
2200
|
|
|
], |
2201
|
|
|
) |
2202
|
|
|
|
2203
|
|
|
total_missing_factor = pv_cap / results_df.capacity.sum() |
2204
|
|
|
|
2205
|
|
|
results_df = results_df.assign( |
2206
|
|
|
capacity=(results_df.capacity * total_missing_factor), |
2207
|
|
|
) |
2208
|
|
|
|
2209
|
|
|
assert np.isclose( |
2210
|
|
|
results_df.capacity.sum(), |
2211
|
|
|
pv_cap, |
2212
|
|
|
rtol=1e-03, |
2213
|
|
|
), f"{results_df.capacity.sum()} != {pv_cap}" |
2214
|
|
|
|
2215
|
|
|
return gpd.GeoDataFrame( |
2216
|
|
|
results_df, |
2217
|
|
|
crs=samples_gdf.crs, |
|
|
|
|
2218
|
|
|
geometry="geom", |
2219
|
|
|
) |
2220
|
|
|
|
2221
|
|
|
|
2222
|
|
|
@timer_func |
2223
|
|
|
def desaggregate_pv( |
2224
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
2225
|
|
|
cap_df: pd.DataFrame, |
2226
|
|
|
**kwargs, |
2227
|
|
|
) -> gpd.GeoDataFrame: |
2228
|
|
|
""" |
2229
|
|
|
Desaggregate PV capacity on buildings within a given grid district. |
2230
|
|
|
Parameters |
2231
|
|
|
----------- |
2232
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
2233
|
|
|
GeoDataFrame containing OSM buildings data. |
2234
|
|
|
cap_df : pandas.DataFrame |
2235
|
|
|
DataFrame with total rooftop capacity per mv grid. |
2236
|
|
|
Other Parameters |
2237
|
|
|
----------- |
2238
|
|
|
prob_dict : dict |
2239
|
|
|
Dictionary with values and probabilities per capacity range. |
2240
|
|
|
cap_share_dict : dict |
2241
|
|
|
Dictionary with share of PV capacity from the total PV capacity within |
2242
|
|
|
capacity ranges. |
2243
|
|
|
building_area_range_dict : dict |
2244
|
|
|
Dictionary with estimated normal building area range per capacity |
2245
|
|
|
range. |
2246
|
|
|
load_factor_dict : dict |
2247
|
|
|
Dictionary with mean roof load factor per capacity range. |
2248
|
|
|
seed : int |
2249
|
|
|
Seed to use for random operations with NumPy and pandas. |
2250
|
|
|
pv_cap_per_sq_m : float, int |
2251
|
|
|
Average expected, installable PV capacity per square meter. |
2252
|
|
|
Returns |
2253
|
|
|
------- |
2254
|
|
|
geopandas.GeoDataFrame |
2255
|
|
|
GeoDataFrame containing OSM building data with desaggregated PV |
2256
|
|
|
plants. |
2257
|
|
|
""" |
2258
|
|
|
allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life] |
2259
|
|
|
|
2260
|
|
|
building_bus_ids = set(buildings_gdf.bus_id) |
2261
|
|
|
cap_bus_ids = set(cap_df.index) |
2262
|
|
|
|
2263
|
|
|
logger.debug( |
2264
|
|
|
f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from capacity: " |
2265
|
|
|
f"{len(cap_bus_ids)}" |
2266
|
|
|
) |
2267
|
|
|
|
2268
|
|
|
if len(building_bus_ids) > len(cap_bus_ids): |
2269
|
|
|
missing = building_bus_ids - cap_bus_ids |
2270
|
|
|
else: |
2271
|
|
|
missing = cap_bus_ids - building_bus_ids |
2272
|
|
|
|
2273
|
|
|
logger.debug(str(missing)) |
2274
|
|
|
|
2275
|
|
|
bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids)) |
2276
|
|
|
|
2277
|
|
|
# assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index) |
2278
|
|
|
|
2279
|
|
|
for bus_id in bus_ids: |
2280
|
|
|
buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id] |
2281
|
|
|
|
2282
|
|
|
pv_installed_gdf = buildings_grid_gdf.loc[ |
2283
|
|
|
~buildings_grid_gdf.end_of_life |
2284
|
|
|
] |
2285
|
|
|
|
2286
|
|
|
pv_installed = pv_installed_gdf.capacity.sum() |
2287
|
|
|
|
2288
|
|
|
pot_buildings_gdf = buildings_grid_gdf.drop( |
2289
|
|
|
index=pv_installed_gdf.index |
2290
|
|
|
) |
2291
|
|
|
|
2292
|
|
|
if len(pot_buildings_gdf) == 0: |
2293
|
|
|
logger.error( |
2294
|
|
|
f"In grid {bus_id} there are no potential buildings to allocate " |
2295
|
|
|
"PV capacity to. The grid is skipped. This message should only " |
2296
|
|
|
"appear doing test runs with few buildings." |
2297
|
|
|
) |
2298
|
|
|
|
2299
|
|
|
continue |
2300
|
|
|
|
2301
|
|
|
pv_target = cap_df.at[bus_id, "capacity"] * 1000 |
2302
|
|
|
|
2303
|
|
|
logger.debug(f"pv_target: {pv_target}") |
2304
|
|
|
|
2305
|
|
|
pv_missing = pv_target - pv_installed |
2306
|
|
|
|
2307
|
|
|
if pv_missing <= 0: |
2308
|
|
|
logger.info( |
2309
|
|
|
f"In grid {bus_id} there is more PV installed ({pv_installed: g}) in " |
2310
|
|
|
f"status Quo than allocated within the scenario ({pv_target: g}). No " |
2311
|
|
|
f"new generators are added." |
2312
|
|
|
) |
2313
|
|
|
|
2314
|
|
|
continue |
2315
|
|
|
|
2316
|
|
|
if pot_buildings_gdf.max_cap.sum() < pv_missing: |
2317
|
|
|
logger.error( |
2318
|
|
|
f"In grid {bus_id} there is less PV potential (" |
2319
|
|
|
f"{pot_buildings_gdf.max_cap.sum():g} kW) than allocated PV capacity " |
2320
|
|
|
f"({pv_missing:g} kW). The average roof utilization will be very high." |
2321
|
|
|
) |
2322
|
|
|
|
2323
|
|
|
gdf = desaggregate_pv_in_mv_grid( |
2324
|
|
|
buildings_gdf=pot_buildings_gdf, |
2325
|
|
|
pv_cap=pv_missing, |
2326
|
|
|
**kwargs, |
2327
|
|
|
) |
2328
|
|
|
|
2329
|
|
|
logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}") |
2330
|
|
|
logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}") |
2331
|
|
|
logger.debug( |
2332
|
|
|
f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}" |
2333
|
|
|
) |
2334
|
|
|
|
2335
|
|
|
if not np.isclose( |
2336
|
|
|
gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3 |
2337
|
|
|
): |
2338
|
|
|
logger.warning( |
2339
|
|
|
f"The desired capacity and actual capacity in grid {bus_id} differ.\n" |
2340
|
|
|
f"Desired cap: {pv_target}\nActual cap: " |
2341
|
|
|
f"{gdf.capacity.sum() + pv_installed}" |
2342
|
|
|
) |
2343
|
|
|
|
2344
|
|
|
allocated_buildings_gdf = pd.concat( |
2345
|
|
|
[ |
2346
|
|
|
allocated_buildings_gdf, |
2347
|
|
|
gdf, |
2348
|
|
|
] |
2349
|
|
|
) |
2350
|
|
|
|
2351
|
|
|
logger.debug("Desaggregated scenario.") |
2352
|
|
|
logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}") |
2353
|
|
|
logger.debug( |
2354
|
|
|
f"Generator capacity: {allocated_buildings_gdf.capacity.sum(): g}" |
2355
|
|
|
) |
2356
|
|
|
|
2357
|
|
|
return gpd.GeoDataFrame( |
2358
|
|
|
allocated_buildings_gdf, |
2359
|
|
|
crs=gdf.crs, |
|
|
|
|
2360
|
|
|
geometry="geom", |
2361
|
|
|
) |
2362
|
|
|
|
2363
|
|
|
|
2364
|
|
|
@timer_func |
2365
|
|
|
def add_buildings_meta_data( |
2366
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
2367
|
|
|
prob_dict: dict, |
2368
|
|
|
seed: int, |
2369
|
|
|
) -> gpd.GeoDataFrame: |
2370
|
|
|
""" |
2371
|
|
|
Randomly add additional metadata to desaggregated PV plants. |
2372
|
|
|
Parameters |
2373
|
|
|
----------- |
2374
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
2375
|
|
|
GeoDataFrame containing OSM buildings data with desaggregated PV |
2376
|
|
|
plants. |
2377
|
|
|
prob_dict : dict |
2378
|
|
|
Dictionary with values and probabilities per capacity range. |
2379
|
|
|
seed : int |
2380
|
|
|
Seed to use for random operations with NumPy and pandas. |
2381
|
|
|
Returns |
2382
|
|
|
------- |
2383
|
|
|
geopandas.GeoDataFrame |
2384
|
|
|
GeoDataFrame containing OSM building data with desaggregated PV |
2385
|
|
|
plants. |
2386
|
|
|
""" |
2387
|
|
|
rng = default_rng(seed=seed) |
2388
|
|
|
buildings_gdf = buildings_gdf.reset_index().rename( |
2389
|
|
|
columns={ |
2390
|
|
|
"index": "building_id", |
2391
|
|
|
} |
2392
|
|
|
) |
2393
|
|
|
|
2394
|
|
|
for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items(): |
2395
|
|
|
cap_range_gdf = buildings_gdf.loc[ |
2396
|
|
|
(buildings_gdf.capacity >= min_cap) |
2397
|
|
|
& (buildings_gdf.capacity < max_cap) |
2398
|
|
|
] |
2399
|
|
|
|
2400
|
|
|
for key, values in cap_range_prob_dict["values"].items(): |
2401
|
|
|
if key == "load_factor": |
2402
|
|
|
continue |
2403
|
|
|
|
2404
|
|
|
gdf = cap_range_gdf.loc[ |
2405
|
|
|
cap_range_gdf[key].isna() |
2406
|
|
|
| cap_range_gdf[key].isnull() |
2407
|
|
|
| (cap_range_gdf[key] == "None") |
2408
|
|
|
] |
2409
|
|
|
|
2410
|
|
|
key_vals = rng.choice( |
2411
|
|
|
a=values, |
2412
|
|
|
size=len(gdf), |
2413
|
|
|
p=cap_range_prob_dict["probabilities"][key], |
2414
|
|
|
) |
2415
|
|
|
|
2416
|
|
|
buildings_gdf.loc[gdf.index, key] = key_vals |
2417
|
|
|
|
2418
|
|
|
return buildings_gdf |
2419
|
|
|
|
2420
|
|
|
|
2421
|
|
|
def add_voltage_level( |
2422
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
2423
|
|
|
) -> gpd.GeoDataFrame: |
2424
|
|
|
""" |
2425
|
|
|
Add voltage level derived from generator capacity to the power plants. |
2426
|
|
|
Parameters |
2427
|
|
|
----------- |
2428
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
2429
|
|
|
GeoDataFrame containing OSM buildings data with desaggregated PV |
2430
|
|
|
plants. |
2431
|
|
|
Returns |
2432
|
|
|
------- |
2433
|
|
|
geopandas.GeoDataFrame |
2434
|
|
|
GeoDataFrame containing OSM building data with voltage level per generator. |
2435
|
|
|
""" |
2436
|
|
|
|
2437
|
|
|
def voltage_levels(p: float) -> int: |
2438
|
|
|
if p < 100: |
2439
|
|
|
return 7 |
2440
|
|
|
elif p < 200: |
2441
|
|
|
return 6 |
2442
|
|
|
elif p < 5500: |
2443
|
|
|
return 5 |
2444
|
|
|
elif p < 20000: |
2445
|
|
|
return 4 |
2446
|
|
|
elif p < 120000: |
2447
|
|
|
return 3 |
2448
|
|
|
return 1 |
2449
|
|
|
|
2450
|
|
|
return buildings_gdf.assign( |
2451
|
|
|
voltage_level=buildings_gdf.capacity.apply(voltage_levels) |
2452
|
|
|
) |
2453
|
|
|
|
2454
|
|
|
|
2455
|
|
|
def add_start_up_date( |
2456
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
2457
|
|
|
start: pd.Timestamp, |
2458
|
|
|
end: pd.Timestamp, |
2459
|
|
|
seed: int, |
2460
|
|
|
): |
2461
|
|
|
""" |
2462
|
|
|
Randomly and linear add start-up date to new pv generators. |
2463
|
|
|
Parameters |
2464
|
|
|
---------- |
2465
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
2466
|
|
|
GeoDataFrame containing OSM buildings data with desaggregated PV |
2467
|
|
|
plants. |
2468
|
|
|
start : pandas.Timestamp |
2469
|
|
|
Minimum Timestamp to use. |
2470
|
|
|
end : pandas.Timestamp |
2471
|
|
|
Maximum Timestamp to use. |
2472
|
|
|
seed : int |
2473
|
|
|
Seed to use for random operations with NumPy and pandas. |
2474
|
|
|
Returns |
2475
|
|
|
------- |
2476
|
|
|
geopandas.GeoDataFrame |
2477
|
|
|
GeoDataFrame containing OSM buildings data with start-up date added. |
2478
|
|
|
""" |
2479
|
|
|
rng = default_rng(seed=seed) |
2480
|
|
|
|
2481
|
|
|
date_range = pd.date_range(start=start, end=end, freq="1D") |
2482
|
|
|
|
2483
|
|
|
return buildings_gdf.assign( |
2484
|
|
|
start_up_date=rng.choice(date_range, size=len(buildings_gdf)) |
2485
|
|
|
) |
2486
|
|
|
|
2487
|
|
|
|
2488
|
|
|
@timer_func |
2489
|
|
|
def allocate_scenarios( |
2490
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
2491
|
|
|
valid_buildings_gdf: gpd.GeoDataFrame, |
2492
|
|
|
last_scenario_gdf: gpd.GeoDataFrame, |
2493
|
|
|
scenario: str, |
2494
|
|
|
): |
2495
|
|
|
""" |
2496
|
|
|
Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings. |
2497
|
|
|
Parameters |
2498
|
|
|
---------- |
2499
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
2500
|
|
|
GeoDataFrame containing geocoded MaStR data. |
2501
|
|
|
valid_buildings_gdf : geopandas.GeoDataFrame |
2502
|
|
|
GeoDataFrame containing OSM buildings data. |
2503
|
|
|
last_scenario_gdf : geopandas.GeoDataFrame |
2504
|
|
|
GeoDataFrame containing OSM buildings matched with pv generators from temporal |
2505
|
|
|
preceding scenario. |
2506
|
|
|
scenario : str |
2507
|
|
|
Scenario to desaggrgate and allocate. |
2508
|
|
|
Returns |
2509
|
|
|
------- |
2510
|
|
|
tuple |
2511
|
|
|
geopandas.GeoDataFrame |
2512
|
|
|
GeoDataFrame containing OSM buildings matched with pv generators. |
2513
|
|
|
pandas.DataFrame |
2514
|
|
|
DataFrame containing pv rooftop capacity per grid id. |
2515
|
|
|
""" |
2516
|
|
|
cap_per_bus_id_df = cap_per_bus_id(scenario) |
2517
|
|
|
|
2518
|
|
|
logger.debug( |
2519
|
|
|
f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}" |
2520
|
|
|
) |
2521
|
|
|
|
2522
|
|
|
last_scenario_gdf = determine_end_of_life_gens( |
2523
|
|
|
last_scenario_gdf, |
2524
|
|
|
SCENARIO_TIMESTAMP[scenario], |
2525
|
|
|
PV_ROOFTOP_LIFETIME, |
2526
|
|
|
) |
2527
|
|
|
|
2528
|
|
|
buildings_gdf = calculate_max_pv_cap_per_building( |
2529
|
|
|
valid_buildings_gdf, |
2530
|
|
|
last_scenario_gdf, |
2531
|
|
|
PV_CAP_PER_SQ_M, |
2532
|
|
|
ROOF_FACTOR, |
2533
|
|
|
) |
2534
|
|
|
|
2535
|
|
|
mastr_gdf = calculate_building_load_factor( |
2536
|
|
|
mastr_gdf, |
2537
|
|
|
buildings_gdf, |
2538
|
|
|
) |
2539
|
|
|
|
2540
|
|
|
probabilities_dict = probabilities( |
2541
|
|
|
mastr_gdf, |
2542
|
|
|
cap_ranges=CAP_RANGES, |
2543
|
|
|
) |
2544
|
|
|
|
2545
|
|
|
cap_share_dict = cap_share_per_cap_range( |
2546
|
|
|
mastr_gdf, |
2547
|
|
|
cap_ranges=CAP_RANGES, |
2548
|
|
|
) |
2549
|
|
|
|
2550
|
|
|
load_factor_dict = mean_load_factor_per_cap_range( |
2551
|
|
|
mastr_gdf, |
2552
|
|
|
cap_ranges=CAP_RANGES, |
2553
|
|
|
) |
2554
|
|
|
|
2555
|
|
|
building_area_range_dict = building_area_range_per_cap_range( |
2556
|
|
|
mastr_gdf, |
2557
|
|
|
cap_ranges=CAP_RANGES, |
2558
|
|
|
min_building_size=MIN_BUILDING_SIZE, |
2559
|
|
|
upper_quantile=UPPER_QUNATILE, |
2560
|
|
|
lower_quantile=LOWER_QUANTILE, |
2561
|
|
|
) |
2562
|
|
|
|
2563
|
|
|
allocated_buildings_gdf = desaggregate_pv( |
2564
|
|
|
buildings_gdf=buildings_gdf, |
2565
|
|
|
cap_df=cap_per_bus_id_df, |
2566
|
|
|
prob_dict=probabilities_dict, |
2567
|
|
|
cap_share_dict=cap_share_dict, |
2568
|
|
|
building_area_range_dict=building_area_range_dict, |
2569
|
|
|
load_factor_dict=load_factor_dict, |
2570
|
|
|
seed=SEED, |
2571
|
|
|
pv_cap_per_sq_m=PV_CAP_PER_SQ_M, |
2572
|
|
|
) |
2573
|
|
|
|
2574
|
|
|
allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario) |
2575
|
|
|
|
2576
|
|
|
meta_buildings_gdf = frame_to_numeric( |
2577
|
|
|
add_buildings_meta_data( |
2578
|
|
|
allocated_buildings_gdf, |
2579
|
|
|
probabilities_dict, |
2580
|
|
|
SEED, |
2581
|
|
|
) |
2582
|
|
|
) |
2583
|
|
|
|
2584
|
|
|
return ( |
2585
|
|
|
add_start_up_date( |
2586
|
|
|
meta_buildings_gdf, |
2587
|
|
|
start=last_scenario_gdf.start_up_date.max(), |
2588
|
|
|
end=SCENARIO_TIMESTAMP[scenario], |
2589
|
|
|
seed=SEED, |
2590
|
|
|
), |
2591
|
|
|
cap_per_bus_id_df, |
2592
|
|
|
) |
2593
|
|
|
|
2594
|
|
|
|
2595
|
|
|
class EgonPowerPlantPvRoofBuildingScenario(Base): |
2596
|
|
|
__tablename__ = "egon_power_plants_pv_roof_building" |
2597
|
|
|
__table_args__ = {"schema": "supply"} |
2598
|
|
|
|
2599
|
|
|
index = Column(Integer, primary_key=True, index=True) |
2600
|
|
|
scenario = Column(String) |
2601
|
|
|
bus_id = Column(Integer, nullable=True) |
2602
|
|
|
building_id = Column(Integer) |
2603
|
|
|
gens_id = Column(String, nullable=True) |
2604
|
|
|
capacity = Column(Float) |
2605
|
|
|
einheitliche_ausrichtung_und_neigungswinkel = Column(Float) |
2606
|
|
|
hauptausrichtung = Column(String) |
2607
|
|
|
hauptausrichtung_neigungswinkel = Column(String) |
2608
|
|
|
voltage_level = Column(Integer) |
2609
|
|
|
weather_cell_id = Column(Integer) |
2610
|
|
|
|
2611
|
|
|
|
2612
|
|
|
def create_scenario_table(buildings_gdf): |
2613
|
|
|
"""Create mapping table pv_unit <-> building for scenario""" |
2614
|
|
|
EgonPowerPlantPvRoofBuildingScenario.__table__.drop( |
2615
|
|
|
bind=engine, checkfirst=True |
2616
|
|
|
) |
2617
|
|
|
EgonPowerPlantPvRoofBuildingScenario.__table__.create( |
2618
|
|
|
bind=engine, checkfirst=True |
2619
|
|
|
) |
2620
|
|
|
|
2621
|
|
|
buildings_gdf.rename(columns=COLS_TO_RENAME).assign( |
2622
|
|
|
capacity=buildings_gdf.capacity.div(10**3) # kW -> MW |
2623
|
|
|
)[COLS_TO_EXPORT].reset_index().to_sql( |
2624
|
|
|
name=EgonPowerPlantPvRoofBuildingScenario.__table__.name, |
2625
|
|
|
schema=EgonPowerPlantPvRoofBuildingScenario.__table__.schema, |
2626
|
|
|
con=db.engine(), |
2627
|
|
|
if_exists="append", |
2628
|
|
|
index=False, |
2629
|
|
|
) |
2630
|
|
|
|
2631
|
|
|
|
2632
|
|
|
def geocode_mastr_data(): |
2633
|
|
|
""" |
2634
|
|
|
Read PV rooftop data from MaStR CSV |
2635
|
|
|
TODO: the source will be replaced as soon as the MaStR data is available |
2636
|
|
|
in DB. |
2637
|
|
|
""" |
2638
|
|
|
mastr_df = mastr_data( |
2639
|
|
|
MASTR_INDEX_COL, |
2640
|
|
|
MASTR_RELEVANT_COLS, |
2641
|
|
|
MASTR_DTYPES, |
2642
|
|
|
MASTR_PARSE_DATES, |
2643
|
|
|
) |
2644
|
|
|
|
2645
|
|
|
clean_mastr_df = clean_mastr_data( |
2646
|
|
|
mastr_df, |
2647
|
|
|
max_realistic_pv_cap=MAX_REALISTIC_PV_CAP, |
2648
|
|
|
min_realistic_pv_cap=MIN_REALISTIC_PV_CAP, |
2649
|
|
|
seed=SEED, |
2650
|
|
|
rounding=ROUNDING, |
2651
|
|
|
) |
2652
|
|
|
|
2653
|
|
|
geocoding_df = geocoding_data(clean_mastr_df) |
2654
|
|
|
|
2655
|
|
|
ratelimiter = geocoder(USER_AGENT, MIN_DELAY_SECONDS) |
2656
|
|
|
|
2657
|
|
|
geocode_gdf = geocode_data(geocoding_df, ratelimiter, EPSG) |
2658
|
|
|
|
2659
|
|
|
create_geocoded_table(geocode_gdf) |
2660
|
|
|
|
2661
|
|
|
|
2662
|
|
|
def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: |
2663
|
|
|
sql = """ |
2664
|
|
|
SELECT building_id, zensus_population_id |
2665
|
|
|
FROM boundaries.egon_map_zensus_mvgd_buildings |
2666
|
|
|
""" |
2667
|
|
|
|
2668
|
|
|
buildings_gdf = buildings_gdf.merge( |
2669
|
|
|
right=db.select_dataframe(sql), |
2670
|
|
|
how="left", |
2671
|
|
|
on="building_id", |
2672
|
|
|
) |
2673
|
|
|
|
2674
|
|
|
sql = """ |
2675
|
|
|
SELECT zensus_population_id, w_id as weather_cell_id |
2676
|
|
|
FROM boundaries.egon_map_zensus_weather_cell |
2677
|
|
|
""" |
2678
|
|
|
|
2679
|
|
|
buildings_gdf = buildings_gdf.merge( |
2680
|
|
|
right=db.select_dataframe(sql), |
2681
|
|
|
how="left", |
2682
|
|
|
on="zensus_population_id", |
2683
|
|
|
) |
2684
|
|
|
|
2685
|
|
|
if buildings_gdf.weather_cell_id.isna().any(): |
2686
|
|
|
missing = buildings_gdf.loc[ |
2687
|
|
|
buildings_gdf.weather_cell_id.isna() |
2688
|
|
|
].building_id.tolist() |
2689
|
|
|
raise ValueError( |
2690
|
|
|
f"Following buildings don't have a weather cell id: {missing}" |
2691
|
|
|
) |
2692
|
|
|
|
2693
|
|
|
return buildings_gdf |
2694
|
|
|
|
2695
|
|
|
|
2696
|
|
|
def pv_rooftop_to_buildings(): |
2697
|
|
|
"""Main script, executed as task""" |
2698
|
|
|
|
2699
|
|
|
mastr_gdf = load_mastr_data() |
2700
|
|
|
|
2701
|
|
|
buildings_gdf = load_building_data() |
2702
|
|
|
|
2703
|
|
|
desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings( |
2704
|
|
|
mastr_gdf, buildings_gdf |
2705
|
|
|
) |
2706
|
|
|
|
2707
|
|
|
all_buildings_gdf = ( |
2708
|
|
|
desagg_mastr_gdf.assign(scenario="status_quo") |
2709
|
|
|
.reset_index() |
2710
|
|
|
.rename(columns={"geometry": "geom", "EinheitMastrNummer": "gens_id"}) |
2711
|
|
|
) |
2712
|
|
|
|
2713
|
|
|
scenario_buildings_gdf = all_buildings_gdf.copy() |
2714
|
|
|
|
2715
|
|
|
cap_per_bus_id_df = pd.DataFrame() |
2716
|
|
|
|
2717
|
|
|
for scenario in SCENARIOS: |
2718
|
|
|
logger.debug(f"Desaggregating scenario {scenario}.") |
2719
|
|
|
( |
2720
|
|
|
scenario_buildings_gdf, |
2721
|
|
|
cap_per_bus_id_scenario_df, |
2722
|
|
|
) = allocate_scenarios( # noqa: F841 |
2723
|
|
|
desagg_mastr_gdf, |
2724
|
|
|
desagg_buildings_gdf, |
2725
|
|
|
scenario_buildings_gdf, |
2726
|
|
|
scenario, |
2727
|
|
|
) |
2728
|
|
|
|
2729
|
|
|
all_buildings_gdf = gpd.GeoDataFrame( |
2730
|
|
|
pd.concat( |
2731
|
|
|
[all_buildings_gdf, scenario_buildings_gdf], ignore_index=True |
2732
|
|
|
), |
2733
|
|
|
crs=scenario_buildings_gdf.crs, |
2734
|
|
|
geometry="geom", |
2735
|
|
|
) |
2736
|
|
|
|
2737
|
|
|
cap_per_bus_id_df = pd.concat( |
2738
|
|
|
[cap_per_bus_id_df, cap_per_bus_id_scenario_df] |
2739
|
|
|
) |
2740
|
|
|
|
2741
|
|
|
# add weather cell |
2742
|
|
|
all_buildings_gdf = add_weather_cell_id(all_buildings_gdf) |
2743
|
|
|
|
2744
|
|
|
# export scenario |
2745
|
|
|
create_scenario_table(add_voltage_level(all_buildings_gdf)) |
2746
|
|
|
|