| Conditions | 11 |
| Total Lines | 222 |
| Code Lines | 133 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.power_plants.wind_offshore.insert() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from pathlib import Path |
||
| 155 | def insert(): |
||
| 156 | """ |
||
| 157 | Include the offshore wind parks in egon-data. |
||
| 158 | |||
| 159 | Parameters |
||
| 160 | ---------- |
||
| 161 | *No parameters required |
||
| 162 | """ |
||
| 163 | # Read file with all required input/output tables' names |
||
| 164 | cfg = egon.data.config.datasets()["power_plants"] |
||
| 165 | |||
| 166 | scenarios = egon.data.config.settings()["egon-data"]["--scenarios"] |
||
| 167 | |||
| 168 | for scenario in scenarios: |
||
| 169 | # Delete previous generators |
||
| 170 | db.execute_sql( |
||
| 171 | f""" |
||
| 172 | DELETE FROM {cfg['target']['schema']}.{cfg['target']['table']} |
||
| 173 | WHERE carrier = 'wind_offshore' |
||
| 174 | AND scenario = '{scenario}' |
||
| 175 | """ |
||
| 176 | ) |
||
| 177 | |||
| 178 | # load file |
||
| 179 | if scenario == "eGon2035": |
||
| 180 | offshore_path = ( |
||
| 181 | Path(".") |
||
| 182 | / "data_bundle_egon_data" |
||
| 183 | / "nep2035_version2021" |
||
| 184 | / cfg["sources"]["nep_2035"] |
||
| 185 | ) |
||
| 186 | |||
| 187 | offshore = pd.read_excel( |
||
| 188 | offshore_path, |
||
| 189 | sheet_name="WInd_Offshore_NEP", |
||
| 190 | usecols=[ |
||
| 191 | "Netzverknuepfungspunkt", |
||
| 192 | "Spannungsebene in kV", |
||
| 193 | "C 2035", |
||
| 194 | ], |
||
| 195 | ) |
||
| 196 | offshore.dropna(subset=["Netzverknuepfungspunkt"], inplace=True) |
||
| 197 | offshore.rename(columns={"C 2035": "el_capacity"}, inplace=True) |
||
| 198 | offshore = offshore[offshore["el_capacity"] > 0] |
||
| 199 | |||
| 200 | elif scenario == "eGon100RE": |
||
| 201 | offshore_path = ( |
||
| 202 | Path(".") |
||
| 203 | / "data_bundle_egon_data" |
||
| 204 | / "nep2035_version2021" |
||
| 205 | / cfg["sources"]["nep_2035"] |
||
| 206 | ) |
||
| 207 | |||
| 208 | offshore = pd.read_excel( |
||
| 209 | offshore_path, |
||
| 210 | sheet_name="WInd_Offshore_NEP", |
||
| 211 | usecols=[ |
||
| 212 | "Netzverknuepfungspunkt", |
||
| 213 | "Spannungsebene in kV", |
||
| 214 | "B 2040 ", |
||
| 215 | ], |
||
| 216 | ) |
||
| 217 | offshore.dropna(subset=["Netzverknuepfungspunkt"], inplace=True) |
||
| 218 | offshore.rename(columns={"B 2040 ": "el_capacity"}, inplace=True) |
||
| 219 | offshore = offshore[offshore["el_capacity"] > 0] |
||
| 220 | |||
| 221 | elif "status" in scenario: |
||
| 222 | year = int(scenario[-4:]) |
||
| 223 | |||
| 224 | offshore_path = ( |
||
| 225 | Path(".") |
||
| 226 | / "data_bundle_egon_data" |
||
| 227 | / "wind_offshore_status2019" |
||
| 228 | / cfg["sources"]["wind_offshore_status2019"] |
||
| 229 | ) |
||
| 230 | offshore = pd.read_excel( |
||
| 231 | offshore_path, |
||
| 232 | sheet_name="wind_offshore", |
||
| 233 | usecols=[ |
||
| 234 | "Name ONEP/NEP", |
||
| 235 | "NVP", |
||
| 236 | "Spannung [kV]", |
||
| 237 | "Inbetriebnahme", |
||
| 238 | "Kapazität Gesamtsystem [MW]", |
||
| 239 | ], |
||
| 240 | ) |
||
| 241 | offshore.dropna(subset=["Name ONEP/NEP"], inplace=True) |
||
| 242 | offshore.rename( |
||
| 243 | columns={ |
||
| 244 | "NVP": "Netzverknuepfungspunkt", |
||
| 245 | "Spannung [kV]": "Spannungsebene in kV", |
||
| 246 | "Kapazität Gesamtsystem [MW]": "el_capacity", |
||
| 247 | }, |
||
| 248 | inplace=True, |
||
| 249 | ) |
||
| 250 | offshore = offshore[offshore["Inbetriebnahme"] <= year] |
||
| 251 | |||
| 252 | else: |
||
| 253 | raise ValueError(f"{scenario=} is not valid.") |
||
| 254 | |||
| 255 | id_bus = map_id_bus(scenario) |
||
| 256 | |||
| 257 | # Match wind offshore table with the corresponding OSM_id |
||
| 258 | offshore["osm_id"] = offshore["Netzverknuepfungspunkt"].map(id_bus) |
||
| 259 | |||
| 260 | buses = db.select_geodataframe( |
||
| 261 | f""" |
||
| 262 | SELECT bus_i as bus_id, base_kv, geom as point, CAST(osm_substation_id AS text) |
||
| 263 | as osm_id FROM {cfg["sources"]["buses_data"]} |
||
| 264 | """, |
||
| 265 | epsg=4326, |
||
| 266 | geom_col="point", |
||
| 267 | ) |
||
| 268 | |||
| 269 | # Drop NANs in column osm_id |
||
| 270 | buses.dropna(subset=["osm_id"], inplace=True) |
||
| 271 | |||
| 272 | # Create columns for bus_id and geometry in the offshore df |
||
| 273 | offshore["bus_id"] = pd.NA |
||
| 274 | offshore["geom"] = Point(0, 0) |
||
| 275 | |||
| 276 | # Match bus_id |
||
| 277 | for index, wind_park in offshore.iterrows(): |
||
| 278 | if not buses[ |
||
| 279 | (buses["osm_id"] == wind_park["osm_id"]) |
||
| 280 | & (buses["base_kv"] == wind_park["Spannungsebene in kV"]) |
||
| 281 | ].empty: |
||
| 282 | bus_ind = buses[buses["osm_id"] == wind_park["osm_id"]].index[ |
||
| 283 | 0 |
||
| 284 | ] |
||
| 285 | offshore.at[index, "bus_id"] = buses.at[bus_ind, "bus_id"] |
||
| 286 | else: |
||
| 287 | print(f'Wind offshore farm not found: {wind_park["osm_id"]}') |
||
| 288 | |||
| 289 | offshore.dropna(subset=["bus_id"], inplace=True) |
||
| 290 | |||
| 291 | # Overwrite geom for status2019 parks |
||
| 292 | if scenario in ["eGon2035", "eGon100RE"]: |
||
| 293 | offshore["Name ONEP/NEP"] = offshore["Netzverknuepfungspunkt"].map( |
||
| 294 | assign_ONEP_areas() |
||
| 295 | ) |
||
| 296 | |||
| 297 | offshore["geom"] = offshore["Name ONEP/NEP"].map(map_ONEP_areas()) |
||
| 298 | offshore["weather_cell_id"] = pd.NA |
||
| 299 | |||
| 300 | offshore.drop(["Name ONEP/NEP"], axis=1, inplace=True) |
||
| 301 | |||
| 302 | if "status" in scenario: |
||
| 303 | offshore.drop(["Inbetriebnahme"], axis=1, inplace=True) |
||
| 304 | |||
| 305 | # Scale capacities for eGon100RE |
||
| 306 | if scenario == "eGon100RE": |
||
| 307 | # Import capacity targets for wind_offshore per scenario |
||
| 308 | cap_100RE = db.select_dataframe( |
||
| 309 | f""" |
||
| 310 | SELECT SUM(capacity) |
||
| 311 | FROM {cfg["sources"]["capacities"]} |
||
| 312 | WHERE scenario_name = 'eGon100RE' AND |
||
| 313 | carrier = 'wind_offshore' |
||
| 314 | """ |
||
| 315 | ).iloc[0, 0] |
||
| 316 | |||
| 317 | # Scale capacities to match target |
||
| 318 | scale_factor = cap_100RE / offshore.el_capacity.sum() |
||
| 319 | offshore["el_capacity"] *= scale_factor |
||
| 320 | |||
| 321 | # Assign voltage levels to wind offshore parks |
||
| 322 | offshore["voltage_level"] = 0 |
||
| 323 | offshore.loc[ |
||
| 324 | offshore[offshore["Spannungsebene in kV"] == 110].index, |
||
| 325 | "voltage_level", |
||
| 326 | ] = 3 |
||
| 327 | offshore.loc[ |
||
| 328 | offshore[offshore["Spannungsebene in kV"] > 110].index, |
||
| 329 | "voltage_level", |
||
| 330 | ] = 1 |
||
| 331 | |||
| 332 | # Delete unnecessary columns |
||
| 333 | offshore.drop( |
||
| 334 | [ |
||
| 335 | "Netzverknuepfungspunkt", |
||
| 336 | "Spannungsebene in kV", |
||
| 337 | "osm_id", |
||
| 338 | ], |
||
| 339 | axis=1, |
||
| 340 | inplace=True, |
||
| 341 | ) |
||
| 342 | |||
| 343 | # Set static columns |
||
| 344 | offshore["carrier"] = "wind_offshore" |
||
| 345 | offshore["scenario"] = scenario |
||
| 346 | |||
| 347 | offshore = gpd.GeoDataFrame(offshore, geometry="geom", crs=4326) |
||
| 348 | |||
| 349 | # Look for the maximum id in the table egon_power_plants |
||
| 350 | next_id = db.select_dataframe( |
||
| 351 | "SELECT MAX(id) FROM " |
||
| 352 | + cfg["target"]["schema"] |
||
| 353 | + "." |
||
| 354 | + cfg["target"]["table"] |
||
| 355 | ).iloc[0, 0] |
||
| 356 | |||
| 357 | if next_id: |
||
| 358 | next_id += 1 |
||
| 359 | else: |
||
| 360 | next_id = 1 |
||
| 361 | |||
| 362 | # Reset index |
||
| 363 | offshore.index = pd.RangeIndex( |
||
| 364 | start=next_id, stop=next_id + len(offshore), name="id" |
||
| 365 | ) |
||
| 366 | |||
| 367 | # Insert into database |
||
| 368 | offshore.reset_index().to_postgis( |
||
| 369 | cfg["target"]["table"], |
||
| 370 | schema=cfg["target"]["schema"], |
||
| 371 | con=db.engine(), |
||
| 372 | if_exists="append", |
||
| 373 | ) |
||
| 374 | |||
| 375 | logging.info( |
||
| 376 | f""" |
||
| 377 | {len(offshore)} wind_offshore generators with a total installed capacity of |
||
| 381 |