| Conditions | 6 | 
| Total Lines | 204 | 
| Code Lines | 79 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | """  | 
            ||
| 13 | def hts_to_etrago(scenario):  | 
            ||
| 14 | sources = config.datasets()["etrago_heat"]["sources"]  | 
            ||
| 15 | targets = config.datasets()["etrago_heat"]["targets"]  | 
            ||
| 16 | carriers = ["central_heat", "rural_heat", "rural_gas_boiler"]  | 
            ||
| 17 | |||
| 18 | if "status" in scenario:  | 
            ||
| 19 | carriers = ["central_heat", "rural_heat"]  | 
            ||
| 20 | |||
| 21 | for carrier in carriers:  | 
            ||
| 22 | if carrier == "central_heat":  | 
            ||
| 23 | # Map heat buses to district heating id and area_id  | 
            ||
| 24 | # interlinking bus_id and area_id  | 
            ||
| 25 | bus_area = db.select_dataframe(  | 
            ||
| 26 | f"""  | 
            ||
| 27 | SELECT bus_id, area_id, id FROM  | 
            ||
| 28 |                  {targets['heat_buses']['schema']}. | 
            ||
| 29 |                  {targets['heat_buses']['table']} | 
            ||
| 30 |                  JOIN {sources['district_heating_areas']['schema']}. | 
            ||
| 31 |                      {sources['district_heating_areas']['table']} | 
            ||
| 32 | ON ST_Transform(ST_Centroid(geom_polygon), 4326) = geom  | 
            ||
| 33 |                  WHERE carrier = '{carrier}' | 
            ||
| 34 |                  AND scenario='{scenario}' | 
            ||
| 35 |                  AND scn_name = '{scenario}' | 
            ||
| 36 | """,  | 
            ||
| 37 | index_col="id",  | 
            ||
| 38 | )  | 
            ||
| 39 | |||
| 40 | # district heating time series time series  | 
            ||
| 41 | disct_time_series = db.select_dataframe(  | 
            ||
| 42 | f"""  | 
            ||
| 43 | SELECT * FROM  | 
            ||
| 44 | demand.egon_timeseries_district_heating  | 
            ||
| 45 |                                 WHERE scenario ='{scenario}'                                 | 
            ||
| 46 | """  | 
            ||
| 47 | )  | 
            ||
| 48 | # bus_id connected to corresponding time series  | 
            ||
| 49 | bus_ts = pd.merge(  | 
            ||
| 50 | bus_area, disct_time_series, on="area_id", how="inner"  | 
            ||
| 51 | )  | 
            ||
| 52 | |||
| 53 | elif carrier == "rural_heat":  | 
            ||
| 54 | # interlinking heat_bus_id and mv_grid bus_id  | 
            ||
| 55 | bus_sub = db.select_dataframe(  | 
            ||
| 56 | f"""  | 
            ||
| 57 |                  SELECT {targets['heat_buses']['schema']}. | 
            ||
| 58 |                  {targets['heat_buses']['table']}.bus_id as heat_bus_id,  | 
            ||
| 59 |                  {sources['egon_mv_grid_district']['schema']}. | 
            ||
| 60 |                              {sources['egon_mv_grid_district']['table']}.bus_id as  | 
            ||
| 61 | bus_id FROM  | 
            ||
| 62 |                  {targets['heat_buses']['schema']}. | 
            ||
| 63 |                  {targets['heat_buses']['table']} | 
            ||
| 64 |                  JOIN {sources['egon_mv_grid_district']['schema']}. | 
            ||
| 65 |                              {sources['egon_mv_grid_district']['table']} | 
            ||
| 66 |                  ON ST_Transform(ST_Centroid({sources['egon_mv_grid_district']['schema']}. | 
            ||
| 67 |                              {sources['egon_mv_grid_district']['table']}.geom),  | 
            ||
| 68 |                                  4326) = {targets['heat_buses']['schema']}. | 
            ||
| 69 |                                          {targets['heat_buses']['table']}.geom | 
            ||
| 70 |                  WHERE carrier = '{carrier}' | 
            ||
| 71 |                  AND scn_name = '{scenario}' | 
            ||
| 72 | """  | 
            ||
| 73 | )  | 
            ||
| 74 | ##**scenario name still needs to be adjusted in bus_sub**  | 
            ||
| 75 | |||
| 76 | # individual heating time series  | 
            ||
| 77 | ind_time_series = db.select_dataframe(  | 
            ||
| 78 | f"""  | 
            ||
| 79 | SELECT scenario, bus_id, dist_aggregated_mw FROM  | 
            ||
| 80 | demand.egon_etrago_timeseries_individual_heating  | 
            ||
| 81 |                 WHERE scenario ='{scenario}' | 
            ||
| 82 | AND carrier = 'heat_pump'  | 
            ||
| 83 | """  | 
            ||
| 84 | )  | 
            ||
| 85 | |||
| 86 | # bus_id connected to corresponding time series  | 
            ||
| 87 | bus_ts = pd.merge(  | 
            ||
| 88 | bus_sub, ind_time_series, on="bus_id", how="inner"  | 
            ||
| 89 | )  | 
            ||
| 90 | |||
| 91 | # Connect heat loads to heat buses  | 
            ||
| 92 | bus_ts.loc[:, "bus_id"] = bus_ts.loc[:, "heat_bus_id"]  | 
            ||
| 93 | |||
| 94 | else:  | 
            ||
| 95 |             efficiency_gas_boiler = get_sector_parameters("heat", scenario)[ | 
            ||
| 96 | "efficiency"  | 
            ||
| 97 | ]["rural_gas_boiler"]  | 
            ||
| 98 | |||
| 99 | # Select rural heat demand coverd by individual gas boilers  | 
            ||
| 100 | ind_time_series = db.select_dataframe(  | 
            ||
| 101 | f"""  | 
            ||
| 102 | SELECT * FROM  | 
            ||
| 103 | demand.egon_etrago_timeseries_individual_heating  | 
            ||
| 104 |                 WHERE scenario ='{scenario}' | 
            ||
| 105 | AND carrier = 'CH4'  | 
            ||
| 106 | """  | 
            ||
| 107 | )  | 
            ||
| 108 | |||
| 109 | # Select geoetry of medium voltage grid districts  | 
            ||
| 110 | mvgd_geom = db.select_geodataframe(  | 
            ||
| 111 | f"""  | 
            ||
| 112 | SELECT bus_id, ST_CENTROID(geom) as geom FROM  | 
            ||
| 113 |                 {sources['egon_mv_grid_district']['schema']}. | 
            ||
| 114 |                 {sources['egon_mv_grid_district']['table']} | 
            ||
| 115 | """  | 
            ||
| 116 | )  | 
            ||
| 117 | |||
| 118 | # Select geometry of gas (CH4) voronoi  | 
            ||
| 119 | gas_voronoi = db.select_geodataframe(  | 
            ||
| 120 | f"""  | 
            ||
| 121 | SELECT bus_id, geom FROM  | 
            ||
| 122 | grid.egon_gas_voronoi  | 
            ||
| 123 |                 WHERE scn_name = '{scenario}' | 
            ||
| 124 | AND carrier = 'CH4'  | 
            ||
| 125 | """  | 
            ||
| 126 | )  | 
            ||
| 127 | |||
| 128 | # Map centroid of mvgd to gas voronoi  | 
            ||
| 129 | join = mvgd_geom.sjoin(gas_voronoi, lsuffix="AC", rsuffix="gas")[  | 
            ||
| 130 | ["bus_id_AC", "bus_id_gas"]  | 
            ||
| 131 |             ].set_index("bus_id_AC") | 
            ||
| 132 | |||
| 133 | # Assign gas bus to each rural heat demand coverd by gas boiler  | 
            ||
| 134 | ind_time_series["gas_bus"] = join.loc[  | 
            ||
| 135 | ind_time_series.bus_id  | 
            ||
| 136 | ].values  | 
            ||
| 137 | |||
| 138 | # Initialize dataframe to store final heat demand per gas node  | 
            ||
| 139 | gas_ts = pd.DataFrame(  | 
            ||
| 140 | index=ind_time_series["gas_bus"].unique(), columns=range(8760)  | 
            ||
| 141 | )  | 
            ||
| 142 | |||
| 143 | # Group heat demand per hour in the year  | 
            ||
| 144 | for i in range(8760):  | 
            ||
| 145 | gas_ts[i] = (  | 
            ||
| 146 |                     ind_time_series.set_index("gas_bus") | 
            ||
| 147 | .dist_aggregated_mw.str[i]  | 
            ||
| 148 |                     .groupby("gas_bus") | 
            ||
| 149 | .sum()  | 
            ||
| 150 | .div(efficiency_gas_boiler)  | 
            ||
| 151 | )  | 
            ||
| 152 | |||
| 153 | # Prepare resulting DataFrame  | 
            ||
| 154 | bus_ts = pd.DataFrame(columns=["dist_aggregated_mw", "bus_id"])  | 
            ||
| 155 | |||
| 156 | # Insert values to dataframe  | 
            ||
| 157 | bus_ts.dist_aggregated_mw = gas_ts.values.tolist()  | 
            ||
| 158 | bus_ts.bus_id = gas_ts.index  | 
            ||
| 159 | |||
| 160 | # Delete existing data from database  | 
            ||
| 161 | db.execute_sql(  | 
            ||
| 162 | f"""  | 
            ||
| 163 | DELETE FROM grid.egon_etrago_load  | 
            ||
| 164 |             WHERE scn_name = '{scenario}' | 
            ||
| 165 |             AND carrier = '{carrier}' | 
            ||
| 166 | AND bus IN (  | 
            ||
| 167 | SELECT bus_id FROM grid.egon_etrago_bus  | 
            ||
| 168 | WHERE country = 'DE'  | 
            ||
| 169 |                 AND scn_name = '{scenario}' | 
            ||
| 170 | )  | 
            ||
| 171 | """  | 
            ||
| 172 | )  | 
            ||
| 173 | |||
| 174 | db.execute_sql(  | 
            ||
| 175 | f"""  | 
            ||
| 176 | DELETE FROM  | 
            ||
| 177 | grid.egon_etrago_load_timeseries  | 
            ||
| 178 |             WHERE scn_name = '{scenario}' | 
            ||
| 179 | AND load_id NOT IN (  | 
            ||
| 180 | SELECT load_id FROM  | 
            ||
| 181 | grid.egon_etrago_load  | 
            ||
| 182 |             WHERE scn_name = '{scenario}') | 
            ||
| 183 | """  | 
            ||
| 184 | )  | 
            ||
| 185 | |||
| 186 |         next_id = next_etrago_id("load") | 
            ||
| 187 | |||
| 188 | bus_ts["load_id"] = np.arange(len(bus_ts)) + next_id  | 
            ||
| 189 | |||
| 190 | etrago_load = pd.DataFrame(index=range(len(bus_ts)))  | 
            ||
| 191 | etrago_load["scn_name"] = scenario  | 
            ||
| 192 | etrago_load["load_id"] = bus_ts.load_id  | 
            ||
| 193 | etrago_load["bus"] = bus_ts.bus_id  | 
            ||
| 194 | etrago_load["carrier"] = carrier  | 
            ||
| 195 | etrago_load["sign"] = -1  | 
            ||
| 196 | |||
| 197 | etrago_load.to_sql(  | 
            ||
| 198 | "egon_etrago_load",  | 
            ||
| 199 | schema="grid",  | 
            ||
| 200 | con=db.engine(),  | 
            ||
| 201 | if_exists="append",  | 
            ||
| 202 | index=False,  | 
            ||
| 203 | )  | 
            ||
| 204 | |||
| 205 | etrago_load_timeseries = pd.DataFrame(index=range(len(bus_ts)))  | 
            ||
| 206 | etrago_load_timeseries["scn_name"] = scenario  | 
            ||
| 207 | etrago_load_timeseries["load_id"] = bus_ts.load_id  | 
            ||
| 208 | etrago_load_timeseries["temp_id"] = 1  | 
            ||
| 209 | etrago_load_timeseries["p_set"] = bus_ts.loc[:, "dist_aggregated_mw"]  | 
            ||
| 210 | |||
| 211 | etrago_load_timeseries.to_sql(  | 
            ||
| 212 | "egon_etrago_load_timeseries",  | 
            ||
| 213 | schema="grid",  | 
            ||
| 214 | con=db.engine(),  | 
            ||
| 215 | if_exists="append",  | 
            ||
| 216 | index=False,  | 
            ||
| 217 | )  | 
            ||
| 264 |