| Conditions | 31 |
| Total Lines | 186 |
| Code Lines | 135 |
| Lines | 30 |
| Ratio | 16.13 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.calculate_dlr.DLR_Regions() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 174 | def DLR_Regions(weather_year, regions_shape_path): |
||
| 175 | """Calculate DLR values for the given regions |
||
| 176 | |||
| 177 | Parameters |
||
| 178 | ---------- |
||
| 179 | weather_info_path: str, mandatory |
||
| 180 | path of the weather data downloaded from ERA5 |
||
| 181 | regions_shape_path: str, mandatory |
||
| 182 | path to the shape file with the shape of the regions to analyze |
||
| 183 | |||
| 184 | """ |
||
| 185 | # load, index and sort shapefile with the 9 regions defined by NEP 2020 |
||
| 186 | regions = gpd.read_file(regions_shape_path) |
||
| 187 | regions = regions.set_index(["Region"]) |
||
| 188 | regions = regions.sort_values(by=["Region"]) |
||
| 189 | |||
| 190 | # The data downloaded using Atlite is loaded in 'weather_data_raw'. |
||
| 191 | file_name = f"germany-{weather_year}-era5.nc" |
||
| 192 | weather_info_path = Path(".") / "cutouts" / file_name |
||
| 193 | weather_data_raw = xr.open_mfdataset(str(weather_info_path)) |
||
|
|
|||
| 194 | weather_data_raw = weather_data_raw.rio.write_crs(4326) |
||
| 195 | weather_data_raw = weather_data_raw.rio.clip_box( |
||
| 196 | minx=5.5, miny=47, maxx=15.5, maxy=55.5 |
||
| 197 | ) |
||
| 198 | |||
| 199 | wind_speed_raw = weather_data_raw.wnd100m.values |
||
| 200 | temperature_raw = weather_data_raw.temperature.values |
||
| 201 | roughness_raw = weather_data_raw.roughness.values |
||
| 202 | index = weather_data_raw.indexes._indexes |
||
| 203 | # The info in 'weather_data_raw' has 3 dimensions. In 'weather_data' will be |
||
| 204 | # stored all the relevant data in a 2 dimensions array. |
||
| 205 | weather_data = np.zeros(shape=(wind_speed_raw.size, 5)) |
||
| 206 | count = 0 |
||
| 207 | for hour in range(index["time"].size): |
||
| 208 | for row in range(index["y"].size): |
||
| 209 | for column in range(index["x"].size): |
||
| 210 | rough = roughness_raw[hour, row, column] |
||
| 211 | ws_100m = wind_speed_raw[hour, row, column] |
||
| 212 | # Use Log Law to calculate wind speed at 50m height |
||
| 213 | ws_50m = ws_100m * (np.log(50 / rough) / np.log(100 / rough)) |
||
| 214 | weather_data[count, 0] = hour |
||
| 215 | weather_data[count, 1] = index["y"][row] |
||
| 216 | weather_data[count, 2] = index["x"][column] |
||
| 217 | weather_data[count, 3] = ws_50m |
||
| 218 | weather_data[count, 4] = ( |
||
| 219 | temperature_raw[hour, row, column] - 273.15 |
||
| 220 | ) |
||
| 221 | count += 1 |
||
| 222 | |||
| 223 | weather_data = pd.DataFrame( |
||
| 224 | weather_data, columns=["hour", "lat", "lon", "wind_s", "temp"] |
||
| 225 | ) |
||
| 226 | |||
| 227 | region_selec = weather_data[0 : index["x"].size * index["y"].size].copy() |
||
| 228 | region_selec["geom"] = region_selec.apply( |
||
| 229 | lambda x: Point(x["lon"], x["lat"]), axis=1 |
||
| 230 | ) |
||
| 231 | region_selec = gpd.GeoDataFrame(region_selec) |
||
| 232 | region_selec = region_selec.set_geometry("geom") |
||
| 233 | region_selec["region"] = np.zeros(index["x"].size * index["y"].size) |
||
| 234 | |||
| 235 | # Mask weather information for each region defined by NEP 2020 |
||
| 236 | for reg in regions.index: |
||
| 237 | weather_region = gpd.clip(region_selec, regions.loc[reg][0]) |
||
| 238 | region_selec["region"][ |
||
| 239 | region_selec.isin(weather_region).any(axis=1) |
||
| 240 | ] = reg |
||
| 241 | |||
| 242 | weather_data["region"] = ( |
||
| 243 | region_selec["region"].tolist() * index["time"].size |
||
| 244 | ) |
||
| 245 | weather_data = weather_data[weather_data["region"] != 0] |
||
| 246 | |||
| 247 | # Create data frame to save results(Min wind speed, max temperature and %DLR per region along 8760h in a year) |
||
| 248 | time = pd.date_range( |
||
| 249 | f"{weather_year}-01-01", f"{weather_year}-12-31 23:00:00", freq="H" |
||
| 250 | ) |
||
| 251 | # time = time.transpose() |
||
| 252 | dlr = pd.DataFrame( |
||
| 253 | 0, |
||
| 254 | columns=[ |
||
| 255 | "R1-Wind_min", |
||
| 256 | "R1-Temp_max", |
||
| 257 | "R1-DLR", |
||
| 258 | "R2-Wind_min", |
||
| 259 | "R2-Temp_max", |
||
| 260 | "R2-DLR", |
||
| 261 | "R3-Wind_min", |
||
| 262 | "R3-Temp_max", |
||
| 263 | "R3-DLR", |
||
| 264 | "R4-Wind_min", |
||
| 265 | "R4-Temp_max", |
||
| 266 | "R4-DLR", |
||
| 267 | "R5-Wind_min", |
||
| 268 | "R5-Temp_max", |
||
| 269 | "R5-DLR", |
||
| 270 | "R6-Wind_min", |
||
| 271 | "R6-Temp_max", |
||
| 272 | "R6-DLR", |
||
| 273 | "R7-Wind_min", |
||
| 274 | "R7-Temp_max", |
||
| 275 | "R7-DLR", |
||
| 276 | "R8-Wind_min", |
||
| 277 | "R8-Temp_max", |
||
| 278 | "R8-DLR", |
||
| 279 | "R9-Wind_min", |
||
| 280 | "R9-Temp_max", |
||
| 281 | "R9-DLR", |
||
| 282 | ], |
||
| 283 | index=time, |
||
| 284 | ) |
||
| 285 | |||
| 286 | # Calculate and save min wind speed and max temperature in a dataframe. |
||
| 287 | # Since the dataframe generated by the function era5.weather_df_from_era5() is sorted by date, |
||
| 288 | # it is faster to calculate the hourly results using blocks of data defined by "step", instead of |
||
| 289 | # using a filter or a search function. |
||
| 290 | for reg, df in weather_data.groupby("region"): |
||
| 291 | for t in range(0, len(time)): |
||
| 292 | step = df.shape[0] / len(time) |
||
| 293 | low_limit = int(t * step) |
||
| 294 | up_limit = int(step * (t + 1)) |
||
| 295 | dlr.iloc[t, 0 + int(reg - 1) * 3] = min( |
||
| 296 | df.iloc[low_limit:up_limit, 3] |
||
| 297 | ) |
||
| 298 | dlr.iloc[t, 1 + int(reg - 1) * 3] = max( |
||
| 299 | df.iloc[low_limit:up_limit, 4] |
||
| 300 | ) |
||
| 301 | |||
| 302 | # The next loop use the min wind speed and max temperature calculated previously to |
||
| 303 | # define the hourly DLR for each region based on the table given by NEP 2020 pag 31 |
||
| 304 | for i in range(0, len(regions)): |
||
| 305 | for j in range(0, len(time)): |
||
| 306 | if dlr.iloc[j, 1 + i * 3] <= 5: |
||
| 307 | if dlr.iloc[j, 0 + i * 3] < 3: |
||
| 308 | dlr.iloc[j, 2 + i * 3] = 1.30 |
||
| 309 | elif dlr.iloc[j, 0 + i * 3] < 4: |
||
| 310 | dlr.iloc[j, 2 + i * 3] = 1.35 |
||
| 311 | elif dlr.iloc[j, 0 + i * 3] < 5: |
||
| 312 | dlr.iloc[j, 2 + i * 3] = 1.45 |
||
| 313 | else: |
||
| 314 | dlr.iloc[j, 2 + i * 3] = 1.50 |
||
| 315 | elif dlr.iloc[j, 1 + i * 3] <= 15: |
||
| 316 | View Code Duplication | if dlr.iloc[j, 0 + i * 3] < 3: |
|
| 317 | dlr.iloc[j, 2 + i * 3] = 1.20 |
||
| 318 | elif dlr.iloc[j, 0 + i * 3] < 4: |
||
| 319 | dlr.iloc[j, 2 + i * 3] = 1.25 |
||
| 320 | elif dlr.iloc[j, 0 + i * 3] < 5: |
||
| 321 | dlr.iloc[j, 2 + i * 3] = 1.35 |
||
| 322 | elif dlr.iloc[j, 0 + i * 3] < 6: |
||
| 323 | dlr.iloc[j, 2 + i * 3] = 1.45 |
||
| 324 | else: |
||
| 325 | dlr.iloc[j, 2 + i * 3] = 1.50 |
||
| 326 | elif dlr.iloc[j, 1 + i * 3] <= 25: |
||
| 327 | View Code Duplication | if dlr.iloc[j, 0 + i * 3] < 3: |
|
| 328 | dlr.iloc[j, 2 + i * 3] = 1.10 |
||
| 329 | elif dlr.iloc[j, 0 + i * 3] < 4: |
||
| 330 | dlr.iloc[j, 2 + i * 3] = 1.15 |
||
| 331 | elif dlr.iloc[j, 0 + i * 3] < 5: |
||
| 332 | dlr.iloc[j, 2 + i * 3] = 1.20 |
||
| 333 | elif dlr.iloc[j, 0 + i * 3] < 6: |
||
| 334 | dlr.iloc[j, 2 + i * 3] = 1.30 |
||
| 335 | else: |
||
| 336 | dlr.iloc[j, 2 + i * 3] = 1.40 |
||
| 337 | elif dlr.iloc[j, 1 + i * 3] <= 35: |
||
| 338 | View Code Duplication | if dlr.iloc[j, 0 + i * 3] < 3: |
|
| 339 | dlr.iloc[j, 2 + i * 3] = 1.00 |
||
| 340 | elif dlr.iloc[j, 0 + i * 3] < 4: |
||
| 341 | dlr.iloc[j, 2 + i * 3] = 1.05 |
||
| 342 | elif dlr.iloc[j, 0 + i * 3] < 5: |
||
| 343 | dlr.iloc[j, 2 + i * 3] = 1.10 |
||
| 344 | elif dlr.iloc[j, 0 + i * 3] < 6: |
||
| 345 | dlr.iloc[j, 2 + i * 3] = 1.15 |
||
| 346 | else: |
||
| 347 | dlr.iloc[j, 2 + i * 3] = 1.25 |
||
| 348 | else: |
||
| 349 | dlr.iloc[j, 2 + i * 3] = 1.00 |
||
| 350 | |||
| 351 | DLR_hourly_df_dic = {} |
||
| 352 | for i in dlr.columns[range(2, 29, 3)]: # columns with DLR values |
||
| 353 | DLR_hourly_df_dic[i] = dlr[i].values |
||
| 354 | |||
| 355 | dlr_hourly = pd.DataFrame(index=time) |
||
| 356 | for i in range(len(regions)): |
||
| 357 | dlr_hourly["Reg_" + str(i + 1)] = dlr.iloc[:, 3 * i + 2] |
||
| 358 | |||
| 359 | return DLR_hourly_df_dic, dlr_hourly |
||
| 360 |