1
|
|
|
""" |
2
|
|
|
Home Battery allocation to buildings |
3
|
|
|
|
4
|
|
|
Main module for allocation of home batteries onto buildings and sizing them |
5
|
|
|
depending on pv rooftop system size. |
6
|
|
|
|
7
|
|
|
**Contents of this module** |
8
|
|
|
* Creation of DB tables |
9
|
|
|
* Allocate given home battery capacity per mv grid to buildings with pv rooftop |
10
|
|
|
systems. The sizing of the home battery system depends on the size of the |
11
|
|
|
pv rooftop system and can be set within the *datasets.yml*. Default sizing is |
12
|
|
|
1:1 between the pv rooftop capacity (kWp) and the battery capacity (kWh). |
13
|
|
|
* Write results to DB |
14
|
|
|
|
15
|
|
|
**Configuration** |
16
|
|
|
|
17
|
|
|
The config of this dataset can be found in *datasets.yml* in section |
18
|
|
|
*home_batteries*. |
19
|
|
|
|
20
|
|
|
**Scenarios and variations** |
21
|
|
|
|
22
|
|
|
Assumptions can be changed within the *datasets.yml*. |
23
|
|
|
|
24
|
|
|
Only buildings with a pv rooftop systems are considered within the allocation |
25
|
|
|
process. The default sizing of home batteries is 1:1 between the pv rooftop |
26
|
|
|
capacity (kWp) and the battery capacity (kWh). Reaching the exact value of the |
27
|
|
|
allocation of battery capacities per grid area leads to slight deviations from |
28
|
|
|
this specification. |
29
|
|
|
|
30
|
|
|
## Methodology |
31
|
|
|
|
32
|
|
|
The selection of buildings is done randomly until a result is reached which is |
33
|
|
|
close to achieving the sizing specification. |
34
|
|
|
""" |
35
|
|
|
from loguru import logger |
36
|
|
|
from numpy.random import RandomState |
37
|
|
|
from sqlalchemy import Column, Float, Integer, String |
38
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
39
|
|
|
import numpy as np |
40
|
|
|
import pandas as pd |
41
|
|
|
|
42
|
|
|
from egon.data import config, db |
43
|
|
|
|
44
|
|
|
Base = declarative_base() |
45
|
|
|
|
46
|
|
|
|
47
|
|
|
def get_cbat_pbat_ratio(): |
48
|
|
|
""" |
49
|
|
|
Mean ratio between the storage capacity and the power of the pv rooftop |
50
|
|
|
system |
51
|
|
|
|
52
|
|
|
Returns |
53
|
|
|
------- |
54
|
|
|
int |
55
|
|
|
Mean ratio between the storage capacity and the power of the pv |
56
|
|
|
rooftop system |
57
|
|
|
""" |
58
|
|
|
sources = config.datasets()["home_batteries"]["sources"] |
59
|
|
|
|
60
|
|
|
sql = f""" |
61
|
|
|
SELECT max_hours |
62
|
|
|
FROM {sources["etrago_storage"]["schema"]} |
63
|
|
|
.{sources["etrago_storage"]["table"]} |
64
|
|
|
WHERE carrier = 'home_battery' |
65
|
|
|
""" |
66
|
|
|
|
67
|
|
|
return int(db.select_dataframe(sql).iat[0, 0]) |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
def allocate_home_batteries_to_buildings(): |
71
|
|
|
""" |
72
|
|
|
Allocate home battery storage systems to buildings with pv rooftop systems |
73
|
|
|
""" |
74
|
|
|
# get constants |
75
|
|
|
constants = config.datasets()["home_batteries"]["constants"] |
76
|
|
|
scenarios = constants["scenarios"] |
77
|
|
|
cbat_ppv_ratio = constants["cbat_ppv_ratio"] |
78
|
|
|
rtol = constants["rtol"] |
79
|
|
|
max_it = constants["max_it"] |
80
|
|
|
cbat_pbat_ratio = get_cbat_pbat_ratio() |
81
|
|
|
|
82
|
|
|
sources = config.datasets()["home_batteries"]["sources"] |
83
|
|
|
|
84
|
|
|
df_list = [] |
85
|
|
|
|
86
|
|
|
for scenario in scenarios: |
87
|
|
|
# get home battery capacity per mv grid id |
88
|
|
|
sql = f""" |
89
|
|
|
SELECT el_capacity as p_nom_min, bus_id as bus FROM |
90
|
|
|
{sources["storage"]["schema"]} |
91
|
|
|
.{sources["storage"]["table"]} |
92
|
|
|
WHERE carrier = 'home_battery' |
93
|
|
|
AND scenario = '{scenario}'; |
94
|
|
|
""" |
95
|
|
|
|
96
|
|
|
home_batteries_df = db.select_dataframe(sql) |
97
|
|
|
|
98
|
|
|
home_batteries_df = home_batteries_df.assign( |
99
|
|
|
bat_cap=home_batteries_df.p_nom_min * cbat_pbat_ratio |
100
|
|
|
) |
101
|
|
|
|
102
|
|
|
sql = """ |
103
|
|
|
SELECT building_id, capacity |
104
|
|
|
FROM supply.egon_power_plants_pv_roof_building |
105
|
|
|
WHERE scenario = '{}' |
106
|
|
|
AND bus_id = {} |
107
|
|
|
""" |
108
|
|
|
|
109
|
|
|
for bus_id, bat_cap in home_batteries_df[ |
110
|
|
|
["bus", "bat_cap"] |
111
|
|
|
].itertuples(index=False): |
112
|
|
|
pv_df = db.select_dataframe(sql.format(scenario, bus_id)) |
113
|
|
|
|
114
|
|
|
grid_ratio = bat_cap / pv_df.capacity.sum() |
115
|
|
|
|
116
|
|
|
if grid_ratio > cbat_ppv_ratio: |
117
|
|
|
logger.warning( |
118
|
|
|
f"In Grid {bus_id} and scenario {scenario}, the ratio of " |
119
|
|
|
f"home storage capacity to pv rooftop capacity is above 1" |
120
|
|
|
f" ({grid_ratio: g}). The storage capacity of pv rooftop " |
121
|
|
|
f"systems will be high." |
122
|
|
|
) |
123
|
|
|
|
124
|
|
|
if grid_ratio < cbat_ppv_ratio: |
125
|
|
|
random_state = RandomState(seed=bus_id) |
126
|
|
|
|
127
|
|
|
n = max(int(len(pv_df) * grid_ratio), 1) |
128
|
|
|
|
129
|
|
|
best_df = pv_df.sample(n=n, random_state=random_state) |
130
|
|
|
|
131
|
|
|
i = 0 |
132
|
|
|
|
133
|
|
|
while ( |
134
|
|
|
not np.isclose(best_df.capacity.sum(), bat_cap, rtol=rtol) |
135
|
|
|
and i < max_it |
136
|
|
|
): |
137
|
|
|
sample_df = pv_df.sample(n=n, random_state=random_state) |
138
|
|
|
|
139
|
|
|
if abs(best_df.capacity.sum() - bat_cap) > abs( |
140
|
|
|
sample_df.capacity.sum() - bat_cap |
141
|
|
|
): |
142
|
|
|
best_df = sample_df.copy() |
143
|
|
|
|
144
|
|
|
i += 1 |
145
|
|
|
|
146
|
|
|
if sample_df.capacity.sum() < bat_cap: |
147
|
|
|
n = min(n + 1, len(pv_df)) |
148
|
|
|
else: |
149
|
|
|
n = max(n - 1, 1) |
150
|
|
|
|
151
|
|
|
if not np.isclose(best_df.capacity.sum(), bat_cap, rtol=rtol): |
152
|
|
|
logger.warning( |
153
|
|
|
f"No suitable generators could be found in Grid " |
154
|
|
|
f"{bus_id} and scenario {scenario} to achieve the " |
155
|
|
|
f"desired ratio between battery capacity and pv " |
156
|
|
|
f"rooftop capacity. The ratio will be " |
157
|
|
|
f"{bat_cap / best_df.capacity.sum()}." |
158
|
|
|
) |
159
|
|
|
|
160
|
|
|
pv_df = best_df.copy() |
161
|
|
|
|
162
|
|
|
bat_df = pv_df.drop(columns=["capacity"]).assign( |
163
|
|
|
capacity=pv_df.capacity / pv_df.capacity.sum() * bat_cap, |
164
|
|
|
p_nom=pv_df.capacity |
165
|
|
|
/ pv_df.capacity.sum() |
166
|
|
|
* bat_cap |
167
|
|
|
/ cbat_pbat_ratio, |
168
|
|
|
scenario=scenario, |
169
|
|
|
bus_id=bus_id, |
170
|
|
|
) |
171
|
|
|
|
172
|
|
|
df_list.append(bat_df) |
173
|
|
|
|
174
|
|
|
create_table(pd.concat(df_list, ignore_index=True)) |
175
|
|
|
|
176
|
|
|
|
177
|
|
|
class EgonHomeBatteries(Base): |
178
|
|
|
targets = config.datasets()["home_batteries"]["targets"] |
179
|
|
|
|
180
|
|
|
__tablename__ = targets["home_batteries"]["table"] |
181
|
|
|
__table_args__ = {"schema": targets["home_batteries"]["schema"]} |
182
|
|
|
|
183
|
|
|
index = Column(Integer, primary_key=True, index=True) |
184
|
|
|
scenario = Column(String) |
185
|
|
|
bus_id = Column(Integer) |
186
|
|
|
building_id = Column(Integer) |
187
|
|
|
p_nom = Column(Float) |
188
|
|
|
capacity = Column(Float) |
189
|
|
|
|
190
|
|
|
|
191
|
|
|
def create_table(df): |
192
|
|
|
"""Create mapping table home battery <-> building id""" |
193
|
|
|
engine = db.engine() |
194
|
|
|
|
195
|
|
|
EgonHomeBatteries.__table__.drop(bind=engine, checkfirst=True) |
196
|
|
|
EgonHomeBatteries.__table__.create(bind=engine, checkfirst=True) |
197
|
|
|
|
198
|
|
|
df.reset_index().to_sql( |
199
|
|
|
name=EgonHomeBatteries.__table__.name, |
200
|
|
|
schema=EgonHomeBatteries.__table__.schema, |
201
|
|
|
con=engine, |
202
|
|
|
if_exists="append", |
203
|
|
|
index=False, |
204
|
|
|
) |
205
|
|
|
|