|
@@ 321-356 (lines=36) @@
|
| 318 |
|
return dsm |
| 319 |
|
|
| 320 |
|
|
| 321 |
|
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
| 322 |
|
""" |
| 323 |
|
Import industry sites necessary to identify DSM-potential. |
| 324 |
|
---------- |
| 325 |
|
ind_vent_share: float |
| 326 |
|
Share of considered application in industry demand |
| 327 |
|
wz: int |
| 328 |
|
Wirtschaftszweig to be considered within industry sites |
| 329 |
|
""" |
| 330 |
|
|
| 331 |
|
# import load data |
| 332 |
|
|
| 333 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 334 |
|
"ind_sites_loadcurves_individual" |
| 335 |
|
] |
| 336 |
|
|
| 337 |
|
dsm = db.select_dataframe( |
| 338 |
|
f""" |
| 339 |
|
SELECT site_id, bus_id as bus, scn_name, p_set FROM |
| 340 |
|
{sources['schema']}.{sources['table']} |
| 341 |
|
WHERE wz = {wz} |
| 342 |
|
""" |
| 343 |
|
) |
| 344 |
|
|
| 345 |
|
# calculate share of timeseries for ventilation |
| 346 |
|
|
| 347 |
|
timeseries = dsm["p_set"].copy() |
| 348 |
|
|
| 349 |
|
for index, liste in timeseries.items(): |
| 350 |
|
share = [float(item) * ind_vent_share for item in liste] |
| 351 |
|
timeseries.loc[index] = share |
| 352 |
|
|
| 353 |
|
dsm["p_set"] = timeseries.copy() |
| 354 |
|
|
| 355 |
|
return dsm |
| 356 |
|
|
| 357 |
|
|
| 358 |
|
def calc_ind_site_timeseries(scenario): |
| 359 |
|
# calculate timeseries per site |
|
@@ 284-318 (lines=35) @@
|
| 281 |
|
return dsm |
| 282 |
|
|
| 283 |
|
|
| 284 |
|
def ind_sites_vent_data_import(ind_vent_share, wz): |
| 285 |
|
""" |
| 286 |
|
Import industry sites necessary to identify DSM-potential. |
| 287 |
|
---------- |
| 288 |
|
ind_vent_share: float |
| 289 |
|
Share of considered application in industry demand |
| 290 |
|
wz: int |
| 291 |
|
Wirtschaftszweig to be considered within industry sites |
| 292 |
|
""" |
| 293 |
|
|
| 294 |
|
# import load data |
| 295 |
|
|
| 296 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 297 |
|
"ind_sites_loadcurves" |
| 298 |
|
] |
| 299 |
|
|
| 300 |
|
dsm = db.select_dataframe( |
| 301 |
|
f""" |
| 302 |
|
SELECT bus, scn_name, p_set FROM |
| 303 |
|
{sources['schema']}.{sources['table']} |
| 304 |
|
WHERE wz = {wz} |
| 305 |
|
""" |
| 306 |
|
) |
| 307 |
|
|
| 308 |
|
# calculate share of timeseries for ventilation |
| 309 |
|
|
| 310 |
|
timeseries = dsm["p_set"].copy() |
| 311 |
|
|
| 312 |
|
for index, liste in timeseries.items(): |
| 313 |
|
share = [float(item) * ind_vent_share for item in liste] |
| 314 |
|
timeseries.loc[index] = share |
| 315 |
|
|
| 316 |
|
dsm["p_set"] = timeseries.copy() |
| 317 |
|
|
| 318 |
|
return dsm |
| 319 |
|
|
| 320 |
|
|
| 321 |
|
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |