Code Duplication    Length = 35-36 lines in 2 locations

src/egon/data/datasets/DSM_cts_ind.py 2 locations

@@ 231-266 (lines=36) @@
228
    return dsm
229
230
231
def ind_sites_vent_data_import_individual(ind_vent_share, wz):
232
    """
233
    Import industry sites necessary to identify DSM-potential.
234
        ----------
235
    ind_vent_share: float
236
        Share of considered application in industry demand
237
    wz: int
238
        Wirtschaftszweig to be considered within industry sites
239
    """
240
241
    # import load data
242
243
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
244
        "ind_sites_loadcurves_individual"
245
    ]
246
247
    dsm = db.select_dataframe(
248
        f"""
249
        SELECT site_id, bus_id as bus, scn_name, p_set FROM
250
        {sources['schema']}.{sources['table']}
251
        WHERE scn_name IN ('eGon2035', 'eGon100RE')
252
        AND wz = '{wz}'
253
        """
254
    )
255
256
    # calculate share of timeseries for ventilation
257
258
    timeseries = dsm["p_set"].copy()
259
260
    for index, liste in timeseries.iteritems():
261
        share = [float(item) * ind_vent_share for item in liste]
262
        timeseries.loc[index] = share
263
264
    dsm["p_set"] = timeseries.copy()
265
266
    return dsm
267
268
269
def calc_ind_site_timeseries(scenario):
@@ 194-228 (lines=35) @@
191
    return dsm
192
193
194
def ind_sites_vent_data_import(ind_vent_share, wz):
195
    """
196
    Import industry sites necessary to identify DSM-potential.
197
        ----------
198
    ind_vent_share: float
199
        Share of considered application in industry demand
200
    wz: int
201
        Wirtschaftszweig to be considered within industry sites
202
    """
203
204
    # import load data
205
206
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
207
        "ind_sites_loadcurves"
208
    ]
209
210
    dsm = db.select_dataframe(
211
        f"""
212
        SELECT bus, scn_name, p_set FROM
213
        {sources['schema']}.{sources['table']}
214
        WHERE wz = '{wz}'
215
        """
216
    )
217
218
    # calculate share of timeseries for ventilation
219
220
    timeseries = dsm["p_set"].copy()
221
222
    for index, liste in timeseries.iteritems():
223
        share = [float(item) * ind_vent_share for item in liste]
224
        timeseries.loc[index] = share
225
226
    dsm["p_set"] = timeseries.copy()
227
228
    return dsm
229
230
231
def ind_sites_vent_data_import_individual(ind_vent_share, wz):