|
@@ 231-266 (lines=36) @@
|
| 228 |
|
return dsm |
| 229 |
|
|
| 230 |
|
|
| 231 |
|
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
| 232 |
|
""" |
| 233 |
|
Import industry sites necessary to identify DSM-potential. |
| 234 |
|
---------- |
| 235 |
|
ind_vent_share: float |
| 236 |
|
Share of considered application in industry demand |
| 237 |
|
wz: int |
| 238 |
|
Wirtschaftszweig to be considered within industry sites |
| 239 |
|
""" |
| 240 |
|
|
| 241 |
|
# import load data |
| 242 |
|
|
| 243 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 244 |
|
"ind_sites_loadcurves_individual" |
| 245 |
|
] |
| 246 |
|
|
| 247 |
|
dsm = db.select_dataframe( |
| 248 |
|
f""" |
| 249 |
|
SELECT site_id, bus_id as bus, scn_name, p_set FROM |
| 250 |
|
{sources['schema']}.{sources['table']} |
| 251 |
|
WHERE scn_name IN ('eGon2035', 'eGon100RE') |
| 252 |
|
AND wz = '{wz}' |
| 253 |
|
""" |
| 254 |
|
) |
| 255 |
|
|
| 256 |
|
# calculate share of timeseries for ventilation |
| 257 |
|
|
| 258 |
|
timeseries = dsm["p_set"].copy() |
| 259 |
|
|
| 260 |
|
for index, liste in timeseries.iteritems(): |
| 261 |
|
share = [float(item) * ind_vent_share for item in liste] |
| 262 |
|
timeseries.loc[index] = share |
| 263 |
|
|
| 264 |
|
dsm["p_set"] = timeseries.copy() |
| 265 |
|
|
| 266 |
|
return dsm |
| 267 |
|
|
| 268 |
|
|
| 269 |
|
def calc_ind_site_timeseries(scenario): |
|
@@ 194-228 (lines=35) @@
|
| 191 |
|
return dsm |
| 192 |
|
|
| 193 |
|
|
| 194 |
|
def ind_sites_vent_data_import(ind_vent_share, wz): |
| 195 |
|
""" |
| 196 |
|
Import industry sites necessary to identify DSM-potential. |
| 197 |
|
---------- |
| 198 |
|
ind_vent_share: float |
| 199 |
|
Share of considered application in industry demand |
| 200 |
|
wz: int |
| 201 |
|
Wirtschaftszweig to be considered within industry sites |
| 202 |
|
""" |
| 203 |
|
|
| 204 |
|
# import load data |
| 205 |
|
|
| 206 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 207 |
|
"ind_sites_loadcurves" |
| 208 |
|
] |
| 209 |
|
|
| 210 |
|
dsm = db.select_dataframe( |
| 211 |
|
f""" |
| 212 |
|
SELECT bus, scn_name, p_set FROM |
| 213 |
|
{sources['schema']}.{sources['table']} |
| 214 |
|
WHERE wz = '{wz}' |
| 215 |
|
""" |
| 216 |
|
) |
| 217 |
|
|
| 218 |
|
# calculate share of timeseries for ventilation |
| 219 |
|
|
| 220 |
|
timeseries = dsm["p_set"].copy() |
| 221 |
|
|
| 222 |
|
for index, liste in timeseries.iteritems(): |
| 223 |
|
share = [float(item) * ind_vent_share for item in liste] |
| 224 |
|
timeseries.loc[index] = share |
| 225 |
|
|
| 226 |
|
dsm["p_set"] = timeseries.copy() |
| 227 |
|
|
| 228 |
|
return dsm |
| 229 |
|
|
| 230 |
|
|
| 231 |
|
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |