Code Duplication    Length = 33-33 lines in 2 locations

src/egon/data/datasets/DSM_cts_ind.py 2 locations

@@ 159-191 (lines=33) @@
156
    return dsm
157
158
159
def ind_osm_data_import_individual(ind_vent_cool_share):
160
161
    """
162
    Import industry data per osm-area necessary to identify DSM-potential.
163
        ----------
164
    ind_share: float
165
        Share of considered application in industry demand
166
    """
167
168
    # import load data
169
170
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
171
        "ind_osm_loadcurves_individual"
172
    ]
173
174
    dsm = db.select_dataframe(
175
        f"""SELECT osm_id, bus_id as bus, scn_name, p_set FROM
176
        {sources['schema']}.{sources['table']}"""
177
    )
178
179
    # calculate share of timeseries for cooling and ventilation out of
180
    # industry-data
181
182
    timeseries = dsm["p_set"].copy()
183
184
    for index, liste in timeseries.iteritems():
185
        share = [float(item) * ind_vent_cool_share for item in liste]
186
187
        timeseries.loc[index] = share
188
189
    dsm["p_set"] = timeseries.copy()
190
191
    return dsm
192
193
194
def ind_sites_vent_data_import(ind_vent_share, wz):
@@ 124-156 (lines=33) @@
121
    return dsm
122
123
124
def ind_osm_data_import(ind_vent_cool_share):
125
126
    """
127
    Import industry data per osm-area necessary to identify DSM-potential.
128
        ----------
129
    ind_share: float
130
        Share of considered application in industry demand
131
    """
132
133
    # import load data
134
135
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
136
        "ind_osm_loadcurves"
137
    ]
138
139
    dsm = db.select_dataframe(
140
        f"""SELECT bus, scn_name, p_set FROM
141
        {sources['schema']}.{sources['table']}"""
142
    )
143
144
    # calculate share of timeseries for cooling and ventilation out of
145
    # industry-data
146
147
    timeseries = dsm["p_set"].copy()
148
149
    for index, liste in timeseries.iteritems():
150
        share = [float(item) * ind_vent_cool_share for item in liste]
151
152
        timeseries.loc[index] = share
153
154
    dsm["p_set"] = timeseries.copy()
155
156
    return dsm
157
158
159
def ind_osm_data_import_individual(ind_vent_cool_share):