|
@@ 1483-1556 (lines=74) @@
|
| 1480 |
|
log.info(f"Peak load for {scenario} exported to DB!") |
| 1481 |
|
|
| 1482 |
|
|
| 1483 |
|
def get_cts_heat_peak_load(): |
| 1484 |
|
""" |
| 1485 |
|
Get heat peak load of all CTS buildings for both scenarios and store in DB. |
| 1486 |
|
""" |
| 1487 |
|
log.info("Start logging!") |
| 1488 |
|
|
| 1489 |
|
BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
| 1490 |
|
|
| 1491 |
|
# Delete rows with cts demand |
| 1492 |
|
with db.session_scope() as session: |
| 1493 |
|
session.query(BuildingHeatPeakLoads).filter( |
| 1494 |
|
BuildingHeatPeakLoads.sector == "cts" |
| 1495 |
|
).delete() |
| 1496 |
|
log.info("Cts heat peak load removed from DB!") |
| 1497 |
|
|
| 1498 |
|
for scenario in ["eGon2035", "eGon100RE"]: |
| 1499 |
|
|
| 1500 |
|
with db.session_scope() as session: |
| 1501 |
|
cells_query = session.query( |
| 1502 |
|
EgonCtsElectricityDemandBuildingShare |
| 1503 |
|
).filter( |
| 1504 |
|
EgonCtsElectricityDemandBuildingShare.scenario == scenario |
| 1505 |
|
) |
| 1506 |
|
|
| 1507 |
|
df_demand_share = pd.read_sql( |
| 1508 |
|
cells_query.statement, cells_query.session.bind, index_col=None |
| 1509 |
|
) |
| 1510 |
|
log.info(f"Retrieved demand share for scenario: {scenario}") |
| 1511 |
|
|
| 1512 |
|
with db.session_scope() as session: |
| 1513 |
|
cells_query = session.query(EgonEtragoHeatCts).filter( |
| 1514 |
|
EgonEtragoHeatCts.scn_name == scenario |
| 1515 |
|
) |
| 1516 |
|
|
| 1517 |
|
df_cts_profiles = pd.read_sql( |
| 1518 |
|
cells_query.statement, |
| 1519 |
|
cells_query.session.bind, |
| 1520 |
|
) |
| 1521 |
|
log.info(f"Retrieved substation profiles for scenario: {scenario}") |
| 1522 |
|
|
| 1523 |
|
df_cts_profiles = pd.DataFrame.from_dict( |
| 1524 |
|
df_cts_profiles.set_index("bus_id")["p_set"].to_dict(), |
| 1525 |
|
orient="columns", |
| 1526 |
|
) |
| 1527 |
|
|
| 1528 |
|
df_peak_load = pd.merge( |
| 1529 |
|
left=df_cts_profiles.max().astype(float).rename("max"), |
| 1530 |
|
right=df_demand_share, |
| 1531 |
|
left_index=True, |
| 1532 |
|
right_on="bus_id", |
| 1533 |
|
) |
| 1534 |
|
|
| 1535 |
|
# Convert unit from MWh to W |
| 1536 |
|
df_peak_load["max"] = df_peak_load["max"] * 1e6 |
| 1537 |
|
df_peak_load["peak_load_in_w"] = ( |
| 1538 |
|
df_peak_load["max"] * df_peak_load["profile_share"] |
| 1539 |
|
) |
| 1540 |
|
log.info(f"Peak load for {scenario} determined!") |
| 1541 |
|
|
| 1542 |
|
# TODO remove after #772 |
| 1543 |
|
df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
| 1544 |
|
df_peak_load["sector"] = "cts" |
| 1545 |
|
|
| 1546 |
|
# # Write peak loads into db |
| 1547 |
|
write_table_to_postgres( |
| 1548 |
|
df_peak_load, |
| 1549 |
|
BuildingHeatPeakLoads, |
| 1550 |
|
engine=engine, |
| 1551 |
|
drop=False, |
| 1552 |
|
index=False, |
| 1553 |
|
if_exists="append", |
| 1554 |
|
) |
| 1555 |
|
|
| 1556 |
|
log.info(f"Peak load for {scenario} exported to DB!") |
| 1557 |
|
|
|
@@ 1409-1480 (lines=72) @@
|
| 1406 |
|
log.info("Profile share exported to DB!") |
| 1407 |
|
|
| 1408 |
|
|
| 1409 |
|
def get_cts_electricity_peak_load(): |
| 1410 |
|
""" |
| 1411 |
|
Get electricity peak load of all CTS buildings for both scenarios and |
| 1412 |
|
store in DB. |
| 1413 |
|
""" |
| 1414 |
|
log.info("Start logging!") |
| 1415 |
|
|
| 1416 |
|
BuildingElectricityPeakLoads.__table__.create(bind=engine, checkfirst=True) |
| 1417 |
|
|
| 1418 |
|
# Delete rows with cts demand |
| 1419 |
|
with db.session_scope() as session: |
| 1420 |
|
session.query(BuildingElectricityPeakLoads).filter( |
| 1421 |
|
BuildingElectricityPeakLoads.sector == "cts" |
| 1422 |
|
).delete() |
| 1423 |
|
log.info("Cts electricity peak load removed from DB!") |
| 1424 |
|
|
| 1425 |
|
for scenario in ["eGon2035", "eGon100RE"]: |
| 1426 |
|
|
| 1427 |
|
with db.session_scope() as session: |
| 1428 |
|
cells_query = session.query( |
| 1429 |
|
EgonCtsElectricityDemandBuildingShare |
| 1430 |
|
).filter( |
| 1431 |
|
EgonCtsElectricityDemandBuildingShare.scenario == scenario |
| 1432 |
|
) |
| 1433 |
|
|
| 1434 |
|
df_demand_share = pd.read_sql( |
| 1435 |
|
cells_query.statement, cells_query.session.bind, index_col=None |
| 1436 |
|
) |
| 1437 |
|
|
| 1438 |
|
with db.session_scope() as session: |
| 1439 |
|
cells_query = session.query(EgonEtragoElectricityCts).filter( |
| 1440 |
|
EgonEtragoElectricityCts.scn_name == scenario |
| 1441 |
|
) |
| 1442 |
|
|
| 1443 |
|
df_cts_profiles = pd.read_sql( |
| 1444 |
|
cells_query.statement, |
| 1445 |
|
cells_query.session.bind, |
| 1446 |
|
) |
| 1447 |
|
df_cts_profiles = pd.DataFrame.from_dict( |
| 1448 |
|
df_cts_profiles.set_index("bus_id")["p_set"].to_dict(), |
| 1449 |
|
orient="columns", |
| 1450 |
|
) |
| 1451 |
|
|
| 1452 |
|
df_peak_load = pd.merge( |
| 1453 |
|
left=df_cts_profiles.max().astype(float).rename("max"), |
| 1454 |
|
right=df_demand_share, |
| 1455 |
|
left_index=True, |
| 1456 |
|
right_on="bus_id", |
| 1457 |
|
) |
| 1458 |
|
|
| 1459 |
|
# Convert unit from MWh to W |
| 1460 |
|
df_peak_load["max"] = df_peak_load["max"] * 1e6 |
| 1461 |
|
df_peak_load["peak_load_in_w"] = ( |
| 1462 |
|
df_peak_load["max"] * df_peak_load["profile_share"] |
| 1463 |
|
) |
| 1464 |
|
log.info(f"Peak load for {scenario} determined!") |
| 1465 |
|
|
| 1466 |
|
# TODO remove after #772 |
| 1467 |
|
df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
| 1468 |
|
df_peak_load["sector"] = "cts" |
| 1469 |
|
|
| 1470 |
|
# # Write peak loads into db |
| 1471 |
|
write_table_to_postgres( |
| 1472 |
|
df_peak_load, |
| 1473 |
|
BuildingElectricityPeakLoads, |
| 1474 |
|
engine=engine, |
| 1475 |
|
drop=False, |
| 1476 |
|
index=False, |
| 1477 |
|
if_exists="append", |
| 1478 |
|
) |
| 1479 |
|
|
| 1480 |
|
log.info(f"Peak load for {scenario} exported to DB!") |
| 1481 |
|
|
| 1482 |
|
|
| 1483 |
|
def get_cts_heat_peak_load(): |