|
@@ 380-432 (lines=53) @@
|
| 377 |
|
]
|
| 378 |
|
|
| 379 |
|
|
| 380 |
|
def import_ch4_demandTS():
|
| 381 |
|
"""Import from the PyPSA-eur-sec run the timeseries of
|
| 382 |
|
residential rural heat per neighbor country.
|
| 383 |
|
This timeserie is used to calculate:
|
| 384 |
|
- the global (yearly) heat demand of Norway (that will be supplied by CH4)
|
| 385 |
|
- the normalized CH4 hourly resolved demand profile
|
| 386 |
|
|
| 387 |
|
Parameters
|
| 388 |
|
----------
|
| 389 |
|
None.
|
| 390 |
|
|
| 391 |
|
Returns
|
| 392 |
|
-------
|
| 393 |
|
Norway_global_demand: Float
|
| 394 |
|
Yearly heat demand of Norway in MWh
|
| 395 |
|
neighbor_loads_t: pandas.DataFrame
|
| 396 |
|
Normalized CH4 hourly resolved demand profiles per neighbor country
|
| 397 |
|
|
| 398 |
|
"""
|
| 399 |
|
|
| 400 |
|
cwd = Path(".")
|
| 401 |
|
target_file = (
|
| 402 |
|
cwd
|
| 403 |
|
/ "data_bundle_egon_data"
|
| 404 |
|
/ "pypsa_eur_sec"
|
| 405 |
|
/ "2022-07-26-egondata-integration"
|
| 406 |
|
/ "postnetworks"
|
| 407 |
|
/ "elec_s_37_lv2.0__Co2L0-1H-T-H-B-I-dist1_2050.nc"
|
| 408 |
|
)
|
| 409 |
|
|
| 410 |
|
network = pypsa.Network(str(target_file))
|
| 411 |
|
|
| 412 |
|
# Set country tag for all buses
|
| 413 |
|
network.buses.country = network.buses.index.str[:2]
|
| 414 |
|
neighbors = network.buses[network.buses.country != "DE"]
|
| 415 |
|
neighbors = neighbors[
|
| 416 |
|
(neighbors["country"].isin(countries))
|
| 417 |
|
& (neighbors["carrier"] == "residential rural heat")
|
| 418 |
|
].drop_duplicates(subset="country")
|
| 419 |
|
|
| 420 |
|
neighbor_loads = network.loads[network.loads.bus.isin(neighbors.index)]
|
| 421 |
|
neighbor_loads_t_index = neighbor_loads.index[
|
| 422 |
|
neighbor_loads.index.isin(network.loads_t.p_set.columns)
|
| 423 |
|
]
|
| 424 |
|
neighbor_loads_t = network.loads_t["p_set"][neighbor_loads_t_index]
|
| 425 |
|
Norway_global_demand = neighbor_loads_t[
|
| 426 |
|
"NO3 0 residential rural heat"
|
| 427 |
|
].sum()
|
| 428 |
|
|
| 429 |
|
for i in neighbor_loads_t.columns:
|
| 430 |
|
neighbor_loads_t[i] = neighbor_loads_t[i] / neighbor_loads_t[i].sum()
|
| 431 |
|
|
| 432 |
|
return Norway_global_demand, neighbor_loads_t
|
| 433 |
|
|
| 434 |
|
|
| 435 |
|
def import_power_to_h2_demandTS():
|
|
@@ 435-482 (lines=48) @@
|
| 432 |
|
return Norway_global_demand, neighbor_loads_t
|
| 433 |
|
|
| 434 |
|
|
| 435 |
|
def import_power_to_h2_demandTS():
|
| 436 |
|
"""Import from the PyPSA-eur-sec run the timeseries of
|
| 437 |
|
industry demand heat per neighbor country and normalize it
|
| 438 |
|
in order to model the power-to-H2 hourly resolved demand profile.
|
| 439 |
|
|
| 440 |
|
Parameters
|
| 441 |
|
----------
|
| 442 |
|
None.
|
| 443 |
|
|
| 444 |
|
Returns
|
| 445 |
|
-------
|
| 446 |
|
neighbor_loads_t: pandas.DataFrame
|
| 447 |
|
Normalized CH4 hourly resolved demand profiles per neighbor country
|
| 448 |
|
|
| 449 |
|
"""
|
| 450 |
|
|
| 451 |
|
cwd = Path(".")
|
| 452 |
|
target_file = (
|
| 453 |
|
cwd
|
| 454 |
|
/ "data_bundle_egon_data"
|
| 455 |
|
/ "pypsa_eur_sec"
|
| 456 |
|
/ "2022-07-26-egondata-integration"
|
| 457 |
|
/ "postnetworks"
|
| 458 |
|
/ "elec_s_37_lv2.0__Co2L0-1H-T-H-B-I-dist1_2050.nc"
|
| 459 |
|
)
|
| 460 |
|
|
| 461 |
|
network = pypsa.Network(str(target_file))
|
| 462 |
|
|
| 463 |
|
# Set country tag for all buses
|
| 464 |
|
network.buses.country = network.buses.index.str[:2]
|
| 465 |
|
neighbors = network.buses[network.buses.country != "DE"]
|
| 466 |
|
neighbors = neighbors[
|
| 467 |
|
(neighbors["country"].isin(countries))
|
| 468 |
|
& (
|
| 469 |
|
neighbors["carrier"] == "residential rural heat"
|
| 470 |
|
) # no available industry profile for now, using another timeserie
|
| 471 |
|
] # .drop_duplicates(subset="country")
|
| 472 |
|
|
| 473 |
|
neighbor_loads = network.loads[network.loads.bus.isin(neighbors.index)]
|
| 474 |
|
neighbor_loads_t_index = neighbor_loads.index[
|
| 475 |
|
neighbor_loads.index.isin(network.loads_t.p_set.columns)
|
| 476 |
|
]
|
| 477 |
|
neighbor_loads_t = network.loads_t["p_set"][neighbor_loads_t_index]
|
| 478 |
|
|
| 479 |
|
for i in neighbor_loads_t.columns:
|
| 480 |
|
neighbor_loads_t[i] = neighbor_loads_t[i] / neighbor_loads_t[i].sum()
|
| 481 |
|
|
| 482 |
|
return neighbor_loads_t
|
| 483 |
|
|
| 484 |
|
|
| 485 |
|
def insert_ch4_demand(global_demand, normalized_ch4_demandTS):
|