| @@ 571-606 (lines=36) @@ | ||
| 568 | return dsm |
|
| 569 | ||
| 570 | ||
| 571 | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
| 572 | """ |
|
| 573 | Import industry sites necessary to identify DSM-potential. |
|
| 574 | ||
| 575 | Parameters |
|
| 576 | ---------- |
|
| 577 | ind_vent_share: float |
|
| 578 | Share of considered application in industry demand |
|
| 579 | wz: int |
|
| 580 | Wirtschaftszweig to be considered within industry sites |
|
| 581 | """ |
|
| 582 | ||
| 583 | # import load data |
|
| 584 | ||
| 585 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
| 586 | "ind_sites_loadcurves_individual" |
|
| 587 | ] |
|
| 588 | ||
| 589 | dsm = db.select_dataframe( |
|
| 590 | f""" |
|
| 591 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
|
| 592 | {sources['schema']}.{sources['table']} |
|
| 593 | WHERE wz = {wz} |
|
| 594 | """ |
|
| 595 | ) |
|
| 596 | ||
| 597 | # calculate share of timeseries for ventilation |
|
| 598 | ||
| 599 | timeseries = dsm["p_set"].copy() |
|
| 600 | ||
| 601 | for index, liste in timeseries.items(): |
|
| 602 | share = [float(item) * ind_vent_share for item in liste] |
|
| 603 | timeseries.loc[index] = share |
|
| 604 | ||
| 605 | dsm["p_set"] = timeseries.copy() |
|
| 606 | ||
| 607 | return dsm |
|
| 608 | ||
| 609 | ||
| @@ 532-566 (lines=35) @@ | ||
| 529 | return dsm |
|
| 530 | ||
| 531 | ||
| 532 | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
| 533 | """ |
|
| 534 | Import industry sites necessary to identify DSM-potential. |
|
| 535 | ||
| 536 | Parameters |
|
| 537 | ---------- |
|
| 538 | ind_vent_share: float |
|
| 539 | Share of considered application in industry demand |
|
| 540 | wz: int |
|
| 541 | Wirtschaftszweig to be considered within industry sites |
|
| 542 | """ |
|
| 543 | ||
| 544 | # import load data |
|
| 545 | ||
| 546 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
| 547 | "ind_sites_loadcurves" |
|
| 548 | ] |
|
| 549 | ||
| 550 | dsm = db.select_dataframe( |
|
| 551 | f""" |
|
| 552 | SELECT bus, scn_name, p_set FROM |
|
| 553 | {sources['schema']}.{sources['table']} |
|
| 554 | WHERE wz = {wz} |
|
| 555 | """ |
|
| 556 | ) |
|
| 557 | ||
| 558 | # calculate share of timeseries for ventilation |
|
| 559 | ||
| 560 | timeseries = dsm["p_set"].copy() |
|
| 561 | ||
| 562 | for index, liste in timeseries.items(): |
|
| 563 | share = [float(item) * ind_vent_share for item in liste] |
|
| 564 | timeseries.loc[index] = share |
|
| 565 | ||
| 566 | dsm["p_set"] = timeseries.copy() |
|
| 567 | ||
| 568 | return dsm |
|
| 569 | ||