@@ 571-606 (lines=36) @@ | ||
568 | return dsm |
|
569 | ||
570 | ||
571 | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
572 | """ |
|
573 | Import industry sites necessary to identify DSM-potential. |
|
574 | ||
575 | Parameters |
|
576 | ---------- |
|
577 | ind_vent_share: float |
|
578 | Share of considered application in industry demand |
|
579 | wz: int |
|
580 | Wirtschaftszweig to be considered within industry sites |
|
581 | """ |
|
582 | ||
583 | # import load data |
|
584 | ||
585 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
586 | "ind_sites_loadcurves_individual" |
|
587 | ] |
|
588 | ||
589 | dsm = db.select_dataframe( |
|
590 | f""" |
|
591 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
|
592 | {sources['schema']}.{sources['table']} |
|
593 | WHERE wz = {wz} |
|
594 | """ |
|
595 | ) |
|
596 | ||
597 | # calculate share of timeseries for ventilation |
|
598 | ||
599 | timeseries = dsm["p_set"].copy() |
|
600 | ||
601 | for index, liste in timeseries.items(): |
|
602 | share = [float(item) * ind_vent_share for item in liste] |
|
603 | timeseries.loc[index] = share |
|
604 | ||
605 | dsm["p_set"] = timeseries.copy() |
|
606 | ||
607 | return dsm |
|
608 | ||
609 | ||
@@ 532-566 (lines=35) @@ | ||
529 | return dsm |
|
530 | ||
531 | ||
532 | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
533 | """ |
|
534 | Import industry sites necessary to identify DSM-potential. |
|
535 | ||
536 | Parameters |
|
537 | ---------- |
|
538 | ind_vent_share: float |
|
539 | Share of considered application in industry demand |
|
540 | wz: int |
|
541 | Wirtschaftszweig to be considered within industry sites |
|
542 | """ |
|
543 | ||
544 | # import load data |
|
545 | ||
546 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
547 | "ind_sites_loadcurves" |
|
548 | ] |
|
549 | ||
550 | dsm = db.select_dataframe( |
|
551 | f""" |
|
552 | SELECT bus, scn_name, p_set FROM |
|
553 | {sources['schema']}.{sources['table']} |
|
554 | WHERE wz = {wz} |
|
555 | """ |
|
556 | ) |
|
557 | ||
558 | # calculate share of timeseries for ventilation |
|
559 | ||
560 | timeseries = dsm["p_set"].copy() |
|
561 | ||
562 | for index, liste in timeseries.items(): |
|
563 | share = [float(item) * ind_vent_share for item in liste] |
|
564 | timeseries.loc[index] = share |
|
565 | ||
566 | dsm["p_set"] = timeseries.copy() |
|
567 | ||
568 | return dsm |
|
569 |