@@ 569-604 (lines=36) @@ | ||
566 | return dsm |
|
567 | ||
568 | ||
569 | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
570 | """ |
|
571 | Import industry sites necessary to identify DSM-potential. |
|
572 | ||
573 | Parameters |
|
574 | ---------- |
|
575 | ind_vent_share: float |
|
576 | Share of considered application in industry demand |
|
577 | wz: int |
|
578 | Wirtschaftszweig to be considered within industry sites |
|
579 | """ |
|
580 | ||
581 | # import load data |
|
582 | ||
583 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
584 | "ind_sites_loadcurves_individual" |
|
585 | ] |
|
586 | ||
587 | dsm = db.select_dataframe( |
|
588 | f""" |
|
589 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
|
590 | {sources['schema']}.{sources['table']} |
|
591 | WHERE wz = {wz} |
|
592 | """ |
|
593 | ) |
|
594 | ||
595 | # calculate share of timeseries for ventilation |
|
596 | ||
597 | timeseries = dsm["p_set"].copy() |
|
598 | ||
599 | for index, liste in timeseries.items(): |
|
600 | share = [float(item) * ind_vent_share for item in liste] |
|
601 | timeseries.loc[index] = share |
|
602 | ||
603 | dsm["p_set"] = timeseries.copy() |
|
604 | ||
605 | return dsm |
|
606 | ||
607 | ||
@@ 530-564 (lines=35) @@ | ||
527 | return dsm |
|
528 | ||
529 | ||
530 | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
531 | """ |
|
532 | Import industry sites necessary to identify DSM-potential. |
|
533 | ||
534 | Parameters |
|
535 | ---------- |
|
536 | ind_vent_share: float |
|
537 | Share of considered application in industry demand |
|
538 | wz: int |
|
539 | Wirtschaftszweig to be considered within industry sites |
|
540 | """ |
|
541 | ||
542 | # import load data |
|
543 | ||
544 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
545 | "ind_sites_loadcurves" |
|
546 | ] |
|
547 | ||
548 | dsm = db.select_dataframe( |
|
549 | f""" |
|
550 | SELECT bus, scn_name, p_set FROM |
|
551 | {sources['schema']}.{sources['table']} |
|
552 | WHERE wz = {wz} |
|
553 | """ |
|
554 | ) |
|
555 | ||
556 | # calculate share of timeseries for ventilation |
|
557 | ||
558 | timeseries = dsm["p_set"].copy() |
|
559 | ||
560 | for index, liste in timeseries.items(): |
|
561 | share = [float(item) * ind_vent_share for item in liste] |
|
562 | timeseries.loc[index] = share |
|
563 | ||
564 | dsm["p_set"] = timeseries.copy() |
|
565 | ||
566 | return dsm |
|
567 |