Code Duplication    Length = 32-35 lines in 2 locations

src/egon/data/datasets/DSM_cts_ind.py 2 locations

@@ 492-526 (lines=35) @@
489
    return dsm
490
491
492
def ind_osm_data_import_individual(ind_vent_cool_share):
493
    """
494
    Import industry data per osm-area necessary to identify DSM-potential.
495
496
    Parameters
497
    ----------
498
    ind_share: float
499
        Share of considered application in industry demand
500
    """
501
502
    # import load data
503
504
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
505
        "ind_osm_loadcurves_individual"
506
    ]
507
508
    dsm = db.select_dataframe(
509
        f"""
510
        SELECT osm_id, bus_id as bus, scn_name, p_set FROM
511
        {sources['schema']}.{sources['table']}
512
        """
513
    )
514
515
    # calculate share of timeseries for cooling and ventilation out of
516
    # industry-data
517
518
    timeseries = dsm["p_set"].copy()
519
520
    for index, liste in timeseries.items():
521
        share = [float(item) * ind_vent_cool_share for item in liste]
522
523
        timeseries.loc[index] = share
524
525
    dsm["p_set"] = timeseries.copy()
526
527
    return dsm
528
529
@@ 454-485 (lines=32) @@
451
    return dsm
452
453
454
def ind_osm_data_import(ind_vent_cool_share):
455
    """
456
    Import industry data per osm-area necessary to identify DSM-potential.
457
458
    Parameters
459
    ----------
460
    ind_share: float
461
        Share of considered application in industry demand
462
    """
463
464
    # import load data
465
466
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
467
        "ind_osm_loadcurves"
468
    ]
469
470
    dsm = db.select_dataframe(
471
        f"""
472
        SELECT bus, scn_name, p_set FROM
473
        {sources['schema']}.{sources['table']}
474
        """
475
    )
476
477
    # calculate share of timeseries for cooling and ventilation out of
478
    # industry-data
479
480
    timeseries = dsm["p_set"].copy()
481
482
    for index, liste in timeseries.items():
483
        share = [float(item) * ind_vent_cool_share for item in liste]
484
485
        timeseries.loc[index] = share
486
487
    dsm["p_set"] = timeseries.copy()
488