@@ 684-695 (lines=12) @@ | ||
681 | ) |
|
682 | return |
|
683 | ||
684 | if scenario == "eGon100RE": |
|
685 | ec_cts_ind2 = pd.read_csv( |
|
686 | "data_bundle_powerd_data/egon_demandregio_cts_ind.csv" |
|
687 | ) |
|
688 | ec_cts_ind2.to_sql( |
|
689 | targets["cts_ind_demand"]["table"], |
|
690 | engine, |
|
691 | targets["cts_ind_demand"]["schema"], |
|
692 | if_exists="append", |
|
693 | index=False, |
|
694 | ) |
|
695 | return |
|
696 | ||
697 | for sector in ["CTS", "industry"]: |
|
698 | # get demands per nuts3 and wz of demandregio |
|
@@ 671-682 (lines=12) @@ | ||
668 | ||
669 | # Workaround: Since the disaggregator does not work anymore, data from |
|
670 | # previous runs is used for eGon2035 and eGon100RE |
|
671 | if scenario == "eGon2035": |
|
672 | ec_cts_ind2 = pd.read_csv( |
|
673 | "data_bundle_powerd_data/egon_demandregio_cts_ind_egon2035.csv" |
|
674 | ) |
|
675 | ec_cts_ind2.to_sql( |
|
676 | targets["cts_ind_demand"]["table"], |
|
677 | engine, |
|
678 | targets["cts_ind_demand"]["schema"], |
|
679 | if_exists="append", |
|
680 | index=False, |
|
681 | ) |
|
682 | return |
|
683 | ||
684 | if scenario == "eGon100RE": |
|
685 | ec_cts_ind2 = pd.read_csv( |