Code Duplication    Length = 35-36 lines in 2 locations

src/egon/data/datasets/DSM_cts_ind.py 2 locations

@@ 562-597 (lines=36) @@
559
    return dsm
560
561
562
def ind_sites_vent_data_import_individual(ind_vent_share, wz):
563
    """
564
    Import industry sites necessary to identify DSM-potential.
565
        ----------
566
    ind_vent_share: float
567
        Share of considered application in industry demand
568
    wz: int
569
        Wirtschaftszweig to be considered within industry sites
570
    """
571
572
    # import load data
573
574
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
575
        "ind_sites_loadcurves_individual"
576
    ]
577
578
    dsm = db.select_dataframe(
579
        f"""
580
        SELECT site_id, bus_id as bus, scn_name, p_set FROM
581
        {sources['schema']}.{sources['table']}
582
        WHERE wz = {wz}
583
        """
584
    )
585
586
    # calculate share of timeseries for ventilation
587
588
    timeseries = dsm["p_set"].copy()
589
590
    for index, liste in timeseries.items():
591
        share = [float(item) * ind_vent_share for item in liste]
592
        timeseries.loc[index] = share
593
594
    dsm["p_set"] = timeseries.copy()
595
596
    return dsm
597
598
599
def calc_ind_site_timeseries(scenario):
600
    # calculate timeseries per site
@@ 525-559 (lines=35) @@
522
    return dsm
523
524
525
def ind_sites_vent_data_import(ind_vent_share, wz):
526
    """
527
    Import industry sites necessary to identify DSM-potential.
528
        ----------
529
    ind_vent_share: float
530
        Share of considered application in industry demand
531
    wz: int
532
        Wirtschaftszweig to be considered within industry sites
533
    """
534
535
    # import load data
536
537
    sources = config.datasets()["DSM_CTS_industry"]["sources"][
538
        "ind_sites_loadcurves"
539
    ]
540
541
    dsm = db.select_dataframe(
542
        f"""
543
        SELECT bus, scn_name, p_set FROM
544
        {sources['schema']}.{sources['table']}
545
        WHERE wz = {wz}
546
        """
547
    )
548
549
    # calculate share of timeseries for ventilation
550
551
    timeseries = dsm["p_set"].copy()
552
553
    for index, liste in timeseries.items():
554
        share = [float(item) * ind_vent_share for item in liste]
555
        timeseries.loc[index] = share
556
557
    dsm["p_set"] = timeseries.copy()
558
559
    return dsm
560
561
562
def ind_sites_vent_data_import_individual(ind_vent_share, wz):