@@ 489-523 (lines=35) @@ | ||
486 | return dsm |
|
487 | ||
488 | ||
489 | def ind_osm_data_import_individual(ind_vent_cool_share): |
|
490 | """ |
|
491 | Import industry data per osm-area necessary to identify DSM-potential. |
|
492 | ---------- |
|
493 | ind_share: float |
|
494 | Share of considered application in industry demand |
|
495 | """ |
|
496 | ||
497 | # import load data |
|
498 | ||
499 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
500 | "ind_osm_loadcurves_individual" |
|
501 | ] |
|
502 | ||
503 | dsm = db.select_dataframe( |
|
504 | f""" |
|
505 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
|
506 | {sources['schema']}.{sources['table']} |
|
507 | """ |
|
508 | ) |
|
509 | ||
510 | # calculate share of timeseries for cooling and ventilation out of |
|
511 | # industry-data |
|
512 | ||
513 | timeseries = dsm["p_set"].copy() |
|
514 | ||
515 | for index, liste in timeseries.items(): |
|
516 | share = [float(item) * ind_vent_cool_share for item in liste] |
|
517 | ||
518 | timeseries.loc[index] = share |
|
519 | ||
520 | dsm["p_set"] = timeseries.copy() |
|
521 | ||
522 | return dsm |
|
523 | ||
524 | ||
525 | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
526 | """ |
|
@@ 453-484 (lines=32) @@ | ||
450 | return dsm |
|
451 | ||
452 | ||
453 | def ind_osm_data_import(ind_vent_cool_share): |
|
454 | """ |
|
455 | Import industry data per osm-area necessary to identify DSM-potential. |
|
456 | ---------- |
|
457 | ind_share: float |
|
458 | Share of considered application in industry demand |
|
459 | """ |
|
460 | ||
461 | # import load data |
|
462 | ||
463 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
|
464 | "ind_osm_loadcurves" |
|
465 | ] |
|
466 | ||
467 | dsm = db.select_dataframe( |
|
468 | f""" |
|
469 | SELECT bus, scn_name, p_set FROM |
|
470 | {sources['schema']}.{sources['table']} |
|
471 | """ |
|
472 | ) |
|
473 | ||
474 | # calculate share of timeseries for cooling and ventilation out of |
|
475 | # industry-data |
|
476 | ||
477 | timeseries = dsm["p_set"].copy() |
|
478 | ||
479 | for index, liste in timeseries.items(): |
|
480 | share = [float(item) * ind_vent_cool_share for item in liste] |
|
481 | ||
482 | timeseries.loc[index] = share |
|
483 | ||
484 | dsm["p_set"] = timeseries.copy() |
|
485 | ||
486 | return dsm |
|
487 |