|
@@ 562-597 (lines=36) @@
|
| 559 |
|
return dsm |
| 560 |
|
|
| 561 |
|
|
| 562 |
|
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
| 563 |
|
""" |
| 564 |
|
Import industry sites necessary to identify DSM-potential. |
| 565 |
|
---------- |
| 566 |
|
ind_vent_share: float |
| 567 |
|
Share of considered application in industry demand |
| 568 |
|
wz: int |
| 569 |
|
Wirtschaftszweig to be considered within industry sites |
| 570 |
|
""" |
| 571 |
|
|
| 572 |
|
# import load data |
| 573 |
|
|
| 574 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 575 |
|
"ind_sites_loadcurves_individual" |
| 576 |
|
] |
| 577 |
|
|
| 578 |
|
dsm = db.select_dataframe( |
| 579 |
|
f""" |
| 580 |
|
SELECT site_id, bus_id as bus, scn_name, p_set FROM |
| 581 |
|
{sources['schema']}.{sources['table']} |
| 582 |
|
WHERE wz = {wz} |
| 583 |
|
""" |
| 584 |
|
) |
| 585 |
|
|
| 586 |
|
# calculate share of timeseries for ventilation |
| 587 |
|
|
| 588 |
|
timeseries = dsm["p_set"].copy() |
| 589 |
|
|
| 590 |
|
for index, liste in timeseries.items(): |
| 591 |
|
share = [float(item) * ind_vent_share for item in liste] |
| 592 |
|
timeseries.loc[index] = share |
| 593 |
|
|
| 594 |
|
dsm["p_set"] = timeseries.copy() |
| 595 |
|
|
| 596 |
|
return dsm |
| 597 |
|
|
| 598 |
|
|
| 599 |
|
def calc_ind_site_timeseries(scenario): |
| 600 |
|
# calculate timeseries per site |
|
@@ 525-559 (lines=35) @@
|
| 522 |
|
return dsm |
| 523 |
|
|
| 524 |
|
|
| 525 |
|
def ind_sites_vent_data_import(ind_vent_share, wz): |
| 526 |
|
""" |
| 527 |
|
Import industry sites necessary to identify DSM-potential. |
| 528 |
|
---------- |
| 529 |
|
ind_vent_share: float |
| 530 |
|
Share of considered application in industry demand |
| 531 |
|
wz: int |
| 532 |
|
Wirtschaftszweig to be considered within industry sites |
| 533 |
|
""" |
| 534 |
|
|
| 535 |
|
# import load data |
| 536 |
|
|
| 537 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 538 |
|
"ind_sites_loadcurves" |
| 539 |
|
] |
| 540 |
|
|
| 541 |
|
dsm = db.select_dataframe( |
| 542 |
|
f""" |
| 543 |
|
SELECT bus, scn_name, p_set FROM |
| 544 |
|
{sources['schema']}.{sources['table']} |
| 545 |
|
WHERE wz = {wz} |
| 546 |
|
""" |
| 547 |
|
) |
| 548 |
|
|
| 549 |
|
# calculate share of timeseries for ventilation |
| 550 |
|
|
| 551 |
|
timeseries = dsm["p_set"].copy() |
| 552 |
|
|
| 553 |
|
for index, liste in timeseries.items(): |
| 554 |
|
share = [float(item) * ind_vent_share for item in liste] |
| 555 |
|
timeseries.loc[index] = share |
| 556 |
|
|
| 557 |
|
dsm["p_set"] = timeseries.copy() |
| 558 |
|
|
| 559 |
|
return dsm |
| 560 |
|
|
| 561 |
|
|
| 562 |
|
def ind_sites_vent_data_import_individual(ind_vent_share, wz): |