|
@@ 489-523 (lines=35) @@
|
| 486 |
|
return dsm |
| 487 |
|
|
| 488 |
|
|
| 489 |
|
def ind_osm_data_import_individual(ind_vent_cool_share): |
| 490 |
|
""" |
| 491 |
|
Import industry data per osm-area necessary to identify DSM-potential. |
| 492 |
|
---------- |
| 493 |
|
ind_share: float |
| 494 |
|
Share of considered application in industry demand |
| 495 |
|
""" |
| 496 |
|
|
| 497 |
|
# import load data |
| 498 |
|
|
| 499 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 500 |
|
"ind_osm_loadcurves_individual" |
| 501 |
|
] |
| 502 |
|
|
| 503 |
|
dsm = db.select_dataframe( |
| 504 |
|
f""" |
| 505 |
|
SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
| 506 |
|
{sources['schema']}.{sources['table']} |
| 507 |
|
""" |
| 508 |
|
) |
| 509 |
|
|
| 510 |
|
# calculate share of timeseries for cooling and ventilation out of |
| 511 |
|
# industry-data |
| 512 |
|
|
| 513 |
|
timeseries = dsm["p_set"].copy() |
| 514 |
|
|
| 515 |
|
for index, liste in timeseries.items(): |
| 516 |
|
share = [float(item) * ind_vent_cool_share for item in liste] |
| 517 |
|
|
| 518 |
|
timeseries.loc[index] = share |
| 519 |
|
|
| 520 |
|
dsm["p_set"] = timeseries.copy() |
| 521 |
|
|
| 522 |
|
return dsm |
| 523 |
|
|
| 524 |
|
|
| 525 |
|
def ind_sites_vent_data_import(ind_vent_share, wz): |
| 526 |
|
""" |
|
@@ 453-484 (lines=32) @@
|
| 450 |
|
return dsm |
| 451 |
|
|
| 452 |
|
|
| 453 |
|
def ind_osm_data_import(ind_vent_cool_share): |
| 454 |
|
""" |
| 455 |
|
Import industry data per osm-area necessary to identify DSM-potential. |
| 456 |
|
---------- |
| 457 |
|
ind_share: float |
| 458 |
|
Share of considered application in industry demand |
| 459 |
|
""" |
| 460 |
|
|
| 461 |
|
# import load data |
| 462 |
|
|
| 463 |
|
sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
| 464 |
|
"ind_osm_loadcurves" |
| 465 |
|
] |
| 466 |
|
|
| 467 |
|
dsm = db.select_dataframe( |
| 468 |
|
f""" |
| 469 |
|
SELECT bus, scn_name, p_set FROM |
| 470 |
|
{sources['schema']}.{sources['table']} |
| 471 |
|
""" |
| 472 |
|
) |
| 473 |
|
|
| 474 |
|
# calculate share of timeseries for cooling and ventilation out of |
| 475 |
|
# industry-data |
| 476 |
|
|
| 477 |
|
timeseries = dsm["p_set"].copy() |
| 478 |
|
|
| 479 |
|
for index, liste in timeseries.items(): |
| 480 |
|
share = [float(item) * ind_vent_cool_share for item in liste] |
| 481 |
|
|
| 482 |
|
timeseries.loc[index] = share |
| 483 |
|
|
| 484 |
|
dsm["p_set"] = timeseries.copy() |
| 485 |
|
|
| 486 |
|
return dsm |
| 487 |
|
|